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Abstract Estimating the robustness of software in the presence of invalid inputs has long been
a challenging task owing to the fact that developers usually fail to take the necessary action to
validate inputs during the design and implementation of software. We propose a method for
estimating the robustness of software in relation to input validation vulnerabilities using
Bayesian networks. The proposed method runs on all program functions and/or methods. It
calculates a robustness value using information on the existence of input validation code in the
functions and utilizing common weakness scores of known input validation vulnerabilities. In
the case study, ten well-known software libraries implemented in the JavaScript language,
which are chosen because of their increasing popularity among software developers, are
evaluated. Using our method, software development teams can track changes made to software
to deal with invalid inputs.

Keywords Robustness . Input validation vulnerabilities . Bayesian networks

1 Introduction

Robustness is a quality attribute, which is defined by the IEEE standard glossary of software
engineering terminology (1990) as the degree to which a system or component can function
correctly in the presence of invalid inputs or stressful environmental conditions. Usually,
robustness is considered under the dependability quality attribute of software systems
(Shahrokni and Feldt 2013). For instance, Avizienis et al. (2001) define robustness as
dependability with respect to erroneous input. With buffer overflow and SQL injection attacks,
developers and software companies have become more considerate of robustness. A buffer
overflow attack occurs when too much data copied into a fixed size buffer, causes the data to

Software Qual J (2018) 26:455–489
DOI 10.1007/s11219-017-9359-5

* Tugkan Tuglular
tugkantuglular@iyte.edu.tr

Ekincan Ufuktepe
ekincanufuktepe@iyte.edu.tr

1 Department of Computer Engineering, Izmir Institute of Technology, Izmir, Turkey

http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-017-9359-5&domain=pdf


overwrite into adjacent memory locations, and may affect the behavior of the program
(Kuperman et al. 2005). SQL injection attacks allow attackers to obtain access to the databases
used by the applications, where input is treated as SQL code, and if not validated, the SQL
code can be submitted to the database (Halfond et al. 2006). Both buffer overflow and SQL
injection attacks are data attacks and may be successful if validation is not applied to the
entered data.

Existing static analysis tools do not provide any robustness estimation. Therefore, compa-
nies try to address software robustness through testing, for which there are tools available.
These tools do not provide an estimation for robustness, but instead provide success rate with
respect to the test suite used.

Quality estimations play an important role in evaluating software as a product. One use of
quality estimations is to provide a snapshot of software product at time t and to use the result to
decide whether to continue improving the product or not. Another use is to compare two
versions of the same product to see how the changes affected the software product. In this
paper, we propose a method for estimating the robustness of the software under consideration
against invalid input.

Input to software should be validated where it is entered (Jourdan 2008).
Otherwise, entered data may exploit existing input validation vulnerabilities in soft-
ware. Input validation vulnerability can be defined as vulnerable parts of the system
receiving unintended input, which may result in altered control flow, arbitrary control
of a resource, or arbitrary code execution (http://cwe.mitre.org/). Various input
validation vulnerabilities, such as SQL injection and Cross-Site Scripting, have been
identified as some of the most dangerous encountered vulnerabilities by the Open
Web Application Security Project (OWASP) (Smithline 2013) and National
Vulnerability Database (NVD 2014). These vulnerabilities are introduced during the
design and implementation phases of the software development lifecycle (SDLC),
when the developer fails to design, code, and test for validation of inputs. NVD only
provides report for each single vulnerability. In this work, input validation-related
vulnerability reports are collected one by one from NVD (NVD 2014). Our calcula-
tions have shown that the number of input validation vulnerabilities identified and
published between Jan. 2000 and Jan. 2015 is 17,317.

The following six input validation vulnerabilities defined by Common Weakness
Enumeration (CWE https://cwe.mitre.org/) are in the scope of this work:

& CWE-22: Improper limitation of a pathname to a restricted directory (BPath Traversal^)
& CWE-78: Improper neutralization of special elements used in an OS command (BOS

Command Injection^)
& CWE-79: Improper neutralization of input during Web page generation (BCross-site

Scripting^)
& CWE-89: Improper neutralization of special elements used in an SQL command (BSQL

Injection^)
& CWE-120: Buffer copy without checking size of input (BClassic Buffer Overflow^)
& CWE-134: Uncontrolled format string

Their descriptions are given in Appendix 1. Although there are more input validation
vulnerabilities, these are chosen because Common Weakness Scoring System (CWSS
https://cwe.mitre.org/cwss/) considers them as effective vulnerabilities, meaning widely
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spread and having considerate impact if exploited, and presents calculated vulnerability scores
for them.

An application with client-side and/or application side JavaScript code can have data input
that may flow to a Web site and/or a database. The possibility of such a data flow and at the
same time the possibility of data being an invalid data are the motivation behind this work.
Due to this probabilistic nature of applications including libraries and their environments, we
propose a robustness estimation based on Bayesian inference. When the proposed method
calculates a robustness estimation for an application and/or library, it performs static analysis
on the source of the software under consideration without checking its connection to a Web site
and/or to a database. The reason is that our method is designed with idea of enabling
developers to check even partially developed code for robustness. With current agile software
development practices, even the developer might not know whether the code written will have
a Web site and/or database connection.

We follow risk-based approach, since our idea of robustness measure stems from
vulnerabilities and their impact. Fenton and Neil (2012) state that Bayesian networks are
useful for risk assessment. Moreover, fault trees, which are similar to our input validation
vulnerabilities tree, are used in Bayesian network construction (Bobbio et al. 2001).

We propose a method for the estimation of robustness of a given software. The proposed
method employs an intermediate language for input validation called Input Validation
Language for Robustness (IVL4R), a static analyzer that utilizes IVL4R, and a Bayesian
network (BN) stemmed from input validation vulnerabilities utilizing accumulated data about
vulnerabilities for robustness estimation. The novelty of the proposed method is as follows:

& The proposed static analyzer checks the source code for input validation code that checks
validity of inputs, which can exploit input validation vulnerabilities. The proposed static
analyzer does not look for input validation vulnerabilities. However, the static analyzers
that accept rules from outside can be configured to act like our proposed checker for input
validation code.

& A Bayesian network constructed using input validation vulnerability tree is used to
calculate weakness of given software with respect to robustness. To the extent of our
knowledge, our proposal to estimate robustness using a Bayesian network is new. Its
novelty lies in employing accumulated data about vulnerabilities and analyzing results of
all functions of given software with respect to IVL4R.

& Our proposed approach does not search for input validation vulnerabilities. Instead, it
checks existence of input validation code that possibly prevents exploitation of input
validation vulnerabilities. The assumption here is that input validation vulnerabilities exist
in software. A vulnerability that is not known at the time being can be discovered later, but
it may have been residing in the code since the date of development.

The result of calculation gives software developers an estimation that lies between 0 and 1
and being close to 1 means software is in better shape in terms of robustness. This way,
software developers can track changes with respect to robustness between different versions of
software. Moreover, to be able to estimate robustness will result in better awareness and goal
setting for robustness. Since our proposed BN utilizes accumulated data about vulnerabilities
(starting from 2000 to the current time of calculation), which includes not only vulnerability
distributions but also their impacts, the measurement also indicates the software’s relative risk
with respect to robustness under currently (at the time of calculation) known circumstances.
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A BCross-site Scripting^ vulnerability existed in jQuery up until version 1.6.2 (2011) but
patched in the later versions. Somehow, it re-appeared in version 1.9.1 (http://blog.
mindedsecurity.com/search/label/jQuery 2013). According to MindedSecurity, when there is
a call to jQuery function with an argument, such as jQuery (location. hash), the jQuery, or its
alias B$,^ method tries to understand if the argument contains some tags. It means that if the
arguments of jQuery function contain some kind of tag, it will be rendered using innerHTML,
resulting in a potential DOM Based Cross-site Scripting attack. Other input validation
vulnerability examples are given in Appendix 2. Therefore, as running example, we prefer
to work on jQuery. For case study, we applied our proposed method to ten well-known
software libraries including jQuery implemented in the JavaScript language. We selected both
client-side and server-side JavaScript libraries.

The paper is organized as follows. Section 2 gives a summary of related work.
Section 3 explains the process of detecting the existence of input validation code in
the source code using IVL4R. Section 4 introduces our method for constructing a BN
to estimate software robustness in relation to input validation vulnerabilities. Section 5
presents the case study. Section 6 explains the tools used in this work. Section 7
concludes the paper.

2 Related work

Bayesian networks are also known as belief networks. They are graphical representation of
interactions between causes and effects. Bayesian network is a directed acyclic graphical
model, of which nodes are encoded with probabilistic relationships. They are used for
diagnostic purposes or for predictions if evidence is supplied. Without any evidence supplied,
Bayesian networks provide structured probability information between causes and effects. BIn
particular, each node in the graph represents a random variable, while the edges between the
nodes represent probabilistic dependencies among the corresponding random variables. These
conditional dependencies in the graph are often estimated by using known statistical and
computational methods^ (Ben-Gal 2007).

Frigault andWang (2008) explored the causal relationships between vulnerabilities encoded
in an attack graph. However, the evolving nature of vulnerabilities and networks was largely
ignored. They proposed a dynamic Bayesian network (DBN)-based model to incorporate
temporal factors, such as the availability of exploit codes or patches. Starting from the model,
they studied two concrete cases to demonstrate potential applications. This novel model
provides a theoretical foundation and a practical framework for continuously measuring
network security in a dynamic environment.

Kondakci (2010) proposed a network security risk assessment model using Bayesian belief
networks (BBNs). He introduced a generic threat model that can also be applied to risk
computation of various types of IT assets and dependable computing environments. He
modeled the classification of information security threats (human-related, internal, and
external) as a compound structure with four dependable parameters. He also developed a
new risk propagation model using the conditional probability method and average score
scheme, by which risk levels can easily be estimated and quantified for different assessment
systems. The reason for using a BN is given as its ability to represent knowledge and develop
automated reasoning systems. Traditional inference methods are difficult to apply in deter-
mining posterior distributions of risk factors in dynamically changing IT environments.
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Therefore, dependence analysis in large-scale networks can easily be performed by applying
Bayesian approaches.

Wagner (2010) used BNs to assess and predict software quality by using activity-based
quality models. To construct the BN, Wagner defined three types of nodes and followed four
steps. The first step involves creating a goal-based derivation of relevant activities and their
indicators, while the facts and sub-activities are identified in the second step. The third step
identifies suitable indicators for the facts. In the fourth step, node probability tables are defined
to show quantitative relationships. The nodes are created by a map of the BSituations and
Activities^ of the software. The BActivities^map holds information that has an influence on an
activity, i.e., anything that is done with the system. For example, maintenance and use are
high-level activities. The BSituations^ map contains, for example, the system, its environment,
and the development organization. For each situation that has a positive or negative effect on
an activity, a node is added to the facts. If the situation does not have any effect on the activity,
no node is added.

Guarnieri and Livshits (2010) stated that static analysis is a useful technique in a variety of
applications, ranging from program optimization to bug finding. Their solution utilizes staged
static analysis as a means to analyze streaming JavaScript programs. They suggested use of
combined offline-online static analysis as a way to accomplish fast, online analysis at the
expense of a more thorough and costly offline analysis of the static code. The offline stage may
be performed on a server ahead of time, whereas the online analysis is typically integrated into
the Web browser. Through a wide range of experiments on both synthetic and real-life
JavaScript code, they found that in normal use, where updates to the code are small, they
could update static analysis results within the browser fast enough to be acceptable for
everyday use. They demonstrated the advantages of this kind of a staged analysis approach
in a wide variety of settings, especially in the context of mobile devices.

Jensen et al. (2009) presented a static analysis program for JavaScript called TAJS that
performs type analysis on JavaScript code. The type analysis is performed on a lattice of
Bvalues^ and from transfer functions that have been derived from a data flow analysis and flow
graph. For example, if a function is called with a BtoString()^ function, they inferred the data
type of Bstring.^ In this work, they claimed that their type analyzer is the first sound and
detailed tool for JavaScript code. The use of a monotone framework with an elaborate lattice
structure, combined with recency abstraction, results in an analysis that achieves good
precision on demanding benchmarks.

Franke et al. (2011) described Bayesian decision support model, designed to help enterprise
IT system decision-makers to evaluate the consequences of their decisions by analyzing
various scenarios. Their model is based on expert elicitation from multiple experts on IT
systems availability. They have obtained this information through an electronic survey. The
Bayesian model they have proposed uses a leaky Noisy-OR method to weigh together the
expert opinions on 16 factors affecting systems availability. Using this model, the effect of
changes to a system is estimated prior, providing decision support for improvement of
enterprise IT systems availability. The Bayesian model thus obtained is then integrated within
a standard, reliability block diagram-style, mathematical model for assessing availability on the
architecture level. The IT systems play the role of building blocks in their Bayesian model. The
overall assessment framework thus addresses measures to ensure high availability both on the
level of individual systems and on the level of the entire enterprise architecture.

Okutan and Yıldız (2012) mentioned that there are lots of different software metrics
discovered and used for defect prediction. They have proposed a practical and easy approach
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through which they could determine the set of metrics that are most important and focus on
them more to predict defectiveness, instead of dealing with many metrics. They have used
Bayesian networks to determine the probabilistic influential relationships among software
metrics and defect proneness. Nevertheless to the metrics they used in Promise data repository,
they have defined two more metrics, i.e., number of developers (NOD) and lack of coding
quality (LOCQ) for the source code quality. They have extracted these metrics by inspecting
the source code repositories of the selected Promise data repository data sets. At the end of
their modeling, they have learned the marginal defect proneness probability of the whole
software system, the set of most effective metrics, and the influential relationships among
metrics and defectiveness. Their experiments on nine open source Promise data repository data
sets have shown them that response for class (RFC), lines of code (LOC), and LOCQ are the
most effective metrics, while coupling between objects (CBO), weighted method per class
(WMC), and lack of cohesion of methods (LCOM) are less effective metrics on defect
proneness. In addition, the number of children (NOC) and the depth of inheritance tree
(DIT) have shown them that they have very limited effect and are untrustworthy. On the other
hand, with their experiments on Poi, Tomcat, and Xalan data sets, they have observed that
there is a positive correlation between the NOD and the level of defectiveness.

Weber et al. (2012) presented a bibliographical review over the last decade on the
application of Bayesian networks to dependability, risk analysis, and maintenance. They have
shown an increasing trend of the literature related to these domains. This trend is because of
the benefits that Bayesian networks provide in contrast with other classical methods of
dependability analysis for instance: Markov Chains, Fault Trees, and Petri Nets, etc. Some
of the benefits of these methods are that they have the capability to model complex systems,
make predictions and diagnostics, compute the exact occurrence probability of an event,
update the calculations according to evidences, represent multi-modal variables, and help
modeling user-friendly via a graphical and compact approach. Their review is based on an
extraction of 200 specific references in dependability, risk analysis, and maintenance applica-
tions among a database with 7000 Bayesian network references.

Dejaeger et al. (2013) indicated that software testing is a crucial activity during software
development and fault prediction models assist practitioners herein by providing an upfront
identification of faulty software code by drawing upon the machine learning literature. While
especially the Naive Bayes classifier is often applied in this regard, citing predictive perfor-
mance and comprehensibility as its major strengths, a number of alternative Bayesian algo-
rithms that boost the possibility of constructing simpler networks with fewer nodes and arcs
remain unexplored. Their study contributes to the literature by considering 15 different
Bayesian network (BN) classifiers and comparing them to other popular machine learning
techniques. In addition, they have investigated the applicability of the Markov blanket
principle for feature selection, which is a natural extension to BN theory. They have tested
results using the statistical framework of Demšar, both in terms of the area under the ROC
curve (AUC) and the recently introduced H-measure. In conclusion, the simple and compre-
hensible networks with less nodes can be constructed using BN classifiers other than the Naive
Bayes classifier. Furthermore, they have found that the development context is an item that
should be taken into account during model selection and the aspects of comprehensibility and
predictive performance need to be balanced out.

Holm et al. (2014) has mentioned the importance of managing software vulnerabilities with
publicly available exploits for both developers and users. However, this is a difficult matter to
address as time is limited and vulnerabilities are frequent. Therefore, Holm et al. (2014)
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presented a Bayesian network-based model that can be used by enterprise decision makers to
estimate the likelihood that a professional penetration tester is able that obtains knowledge of
critical vulnerabilities and exploits for these vulnerabilities for software under different circum-
stances. In their approach, they have gathered the data on the activities in the model from the
previous empirical studies, vulnerability databases, and a survey with 58 individuals who all
have been credited for the discovery of critical software vulnerabilities. The model they have
proposed described 13 states related by 17 activities, and a total of 33 different datasets. In
conclusion, the model they have proposed can be used to support decisions regarding what
software to acquire or what measures to invest in during software development projects.

Perkusich et al. (2015) have mentioned that there are several software process models and
methodologies such as waterfall, spiral, and agile. However, the rate of successful software
development projects is low. The software is the major output of software processes, and
through this inference, they describe that by increasing software process, management quality
should increase the project’s chances of success. In addition, organizations have invested to
adapt software processes to their environments and the characteristics of projects to improve
the productivity and quality of the products. Due to these problems, Perkusich et al. (2015)
presented a procedure to detect problems of processes in software development projects by
using Bayesian networks. Their procedure was successfully applied to Scrum-based software
development projects. The Bayesian network was successfully validated through simulated
scenarios, and their procedure was successfully validated in two Scrum-based software
development projects.

3 Validation of input data

Every input should be validated before use. This is similar to the rule stating that Bevery
variable should be defined before it is used.^ This rule introduced define-use (du) pairs and
enabled their detection using static analysis. If a define-use pair is not found for a variable by
static analyzer, an anomaly flag is raised. Similarly, by our proposal, we extend define-use
pairs to define-validate-use (dvu) triples. It follows that if a define-validate-use triple is not
found for an input (variable), then an anomaly flag should be raised.

3.1 Input validation language for robustness

In this work, we consider arguments to the function as inputs of the function. Argument
definition is the define part of the define-validate-use triple, and before use, there should be a
validation part, which is usually described by precondition(s). Preconditions can be imple-
mented in various ways, such as using if, switch, while, and for statements as well as assert and
try-catch structures. Since precondition implementation is language dependent, it is better to
use an intermediate language to represent precondition implementation, i.e., input validation.
We extended intermediate representation for input validation and sanitization developed by
Alkhalaf (2014) to input validation language for robustness by including preconditions to be
checked in the input so that it is possible to prevent exploitation of input validation vulnera-
bilities, assuming that they exist in software. The following Table 1 shows the proposed
preconditions. The length function returns the length of input. The indexof function checks if
the given argument exists in the input and returns −1 if does not exist and the location if exists.
In the intermediate representation, all the inputs are considered as string.
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The BNF representation of IVL4R is as follows:

Function → function( Var [, Var]* ){ Block }
Var → <identifier>
Block → Stmt [; Stmt]*
Stmt → Var := Exp | accept | reject

| if ( Pred ) { Block }[ else { Block } ]
Exp → "String" | Var | ValFunc
Pred → Pred && Pred | Pred || Pred | !Pred | ( Pred )

| ValFunc RelOp <integer>
RelOp → < | <= | > | >= | == | !=
ValFunc → indexof( Var, "String" )

| length( Var )
Integer → Digit | Integer Digit
String → Character | String Character
Digit → 0 | 1 | … | 9
Character → ‘a’ | ‘b’ | … | ‘z’ | ‘A’ | ‘B’ | … | ‘Z’ | ‘%’ | ‘/’ | ‘\’ | ‘<’ | ‘>’ | … | ‘.’

Reject statement corresponds to negative exit, meaning that if input variable is not
validated, the function exits. Accept statement indicates positive exit, meaning that input
variable is validated. ValFunc stands for validation functionality with respect to the chosen
input validation vulnerabilities. Each function in the software under consideration is trans-
formed to this intermediate language and then evaluated with respect to preconditions given in
Table 1. The evaluation results are fed to Bayesian network.

3.2 Implementation of input validation language for robustness

We selected jQuery’s version 1.9.1 library as the running example. jQuery is a frequently used
library that is preferred byWeb application developers because it is fast, small, and feature-rich.
It contains many functions that help developers handle events, perform manipulations, HTML

Table 1 Preconditions able to
prevent input validation vulnerabil-
ities from being exploited

Input validation vulnerability Precondition

CWE-22: Improper limitation
of a pathname to a restricted directory
(BPath Traversal^)

indexof(Var , B../^)
indexof (Var , B..\^)

CWE-78: Improper neutralization
of special elements used in an OS
command (BOS Command Injection^)

indexof (Var , B.exe^)
indexof (Var , B/bin/^)

CWE-79: Improper neutralization
of input during
Web page generation
(BCross-site Scripting^)

indexof (Var ,
B<script>^)

CWE-89: Improper neutralization
of special elements used in an
SQL command (BSQL Injection^)

indexof (Var , B OR ^)
indexof (Var , B AND ^)
indexof (Var , B IS

NULL ^)
CWE-120: Buffer copy without

checking size of input (BClassic Buffer
Overflow^)

length(Var)

CWE-134: Uncontrolled format string indexof (Var , B%^)
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document traversal, and animation. Furthermore, it is used by many popular Web sites such as
Amazon, Microsoft, WordPress, Reddit, Instagram, Stack Overflow, the Guardian, Fox News,
and many others. We focus on three main steps in collecting information about functions.

For all the functions, we check the function parameters to see whether they are validated
before use. To ascertain whether parameters are validated, we use TAJS’s (Jensen et al. 2009)
flow graph feature and extend TAJS to detect automatically whether there is a validation block
in the function. With our extensions to TAJS’s flow graph feature, we can automatically detect
whether a function’s parameters are validated before use. We differentiate validated and not
validated parameters in the flow graph.

On the right-hand side of Fig. 1, we see the output of our TAJS extension. The bold thick
frames denote that function attr()’s parameters Bname^ and Bvalue^ are used before they are
validated or the function does not include any validation block. To realize this process, we
initially constructed a tree of the source code consisting of four levels (see Fig. 2). The first

<main> function ( )
attr/attr.js:1:1

function attr ( name value )
attr/attr.js:1:1
outer: <main>

0: constant[undefined,v1]

1: function-decl[function attr ( name value ),-]

0

2: return[v1]

1

3: exceptional-return

4: constant[undefined,v1]

3

5: read-variable[’jQuery’,v3,-]

6: read-property[v3,’access’,-]

7: <variable-non-null-undef>[’jQuery’]

8: read-variable[’this’,v4,-]

9: read-variable[’jQuery’,v6,-]

10: read-property[v6,’attr’,v5]

11: <variable-non-null-undef>[’jQuery’]

12: read-variable[’name’,v7,-]

13: read-variable[’value’,v8,-]

14: read-variable[’arguments’,v12,-]

15: read-property[v12,’length’,v10]

16: <variable-non-null-undef>[’arguments’]

17: constant[1.0,v11]

18: >[v10,v11,v9]

4

19: call-jQuery.access [v3,’access’,v4,v5,v7,v8,v9,v1]

5

21: exceptional-return

7

20: return[v1]

6

Fig. 1 Output of TAJS’s extended flow graph on detecting missing input validation code with respect to input
validation vulnerabilities
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level represents the root, which is also the root of the source file. In the second level, we have
the functions defined in the source code. The third level contains the parameters of the
functions. The fourth and final level consists of parameter information containing three main
components: parameter name, first used line, and validated line, which are indicated by line
numbers in TAJS flow graph.

In Fig. 3, we outline the algorithm using the example of how to detect a parameter that is a
potential input validation vulnerability through the flow graph of the attr() function extracted from
TAJS. Before we check whether an input validation is performed, it is important to note that we
consider every parameter of the function as an input. Then, we check if the parameters are
validated before they are used. Having constructed our tree of function and parameter informa-
tion, we already have the Bvalidated line^ and Bused line^ attribute values as assigned parameters
after analyzing the function’s flow graph. Therefore, we define the constraint for invalidated data
as Bvalidated line > used line.^ Parameters that satisfy the constraint Bvalidated line < used line^
are assumed validated input. In Fig. 3, we can see two bold thick frames, denoting the function’s
parameters. In the bold thick frames, we see that a read operation is performed on the parameters,
which means that the function starts using the parameters at that point. Therefore, we check the
code above the bold thick frames to see whether the parameters are validated. Using the flow
graph, we do not find any validations before the variables are used. In Fig. 4, we see another
version of the same function, but with validated parameters/inputs. Once again, we see that the
parameters are used in both bold thick frames and dotted thick frames. However, in the dotted
thick frame, the parameter is read to validate the input in a simple Bif-block.^ If the parameter does
not match the constraint, it is directed to another situation to prevent any harm to the software.

Current scope of BInput Validation Language for Robustness^ does not cover float num-
bers. The scope of BInput Validation Language for Robustness^ is determined by the selection
of input validation vulnerabilities, which is 6 for the current design and implementation. When
another input validation vulnerability is decided to be included to the scope, first BInput
Validation Language for Robustness^ must be extended along with its implementation if

Fig. 2 Tree of function and parameter information
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necessary and related data for weight and score of this new vulnerability must be collected and
added to the Bayesian network.

4 Bayesian network construction

The reason we used a BN as the basis of our methodology is that BNs offer consistent
semantics for representing uncertainty and an intuitive graphical representation of interactions
between various causes and their effects. BNs are useful when information about the past and/
or the current situation is vague, incomplete, conflicting, or uncertain (Heckerman 1996). The

function attr ( name value )
attr/attr.js:1:1
outer: <main>

4: constant[undefined,v1]

   3

5: read-variable[’jQuery’,v3,-]

6: read-property[v3,’access’,-]

7: <variable-non-null-undef>[’jQuery’]

8: read-variable[’this’,v4,-]

9: read-variable[’jQuery’,v6,-]

10: read-property[v6,’attr’,v5]

11: <variable-non-null-undef>[’jQuery’]

12: read-variable[’name’,v7,-]

13: read-variable[’value’,v8,-]

14: read-variable[’arguments’,v12,-]

15: read-property[v12,’length’,v10]

16: <variable-non-null-undef>[’arguments’]

17: constant[1.0,v11]

18: >[v10,v11,v9]

   4

19: call-jQuery.access [v3,’access’,v4,v5,v7,v8,v9,v1]

   5

21: exceptional-return

   7

20: return[v1]

   6

Fig. 3 Example flow graph of a
function parameter without
validation
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Fig. 4 Example flow graph of a
function parameter with validation
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data used by the Bayesian network comes from three sources: (1) source code, (2) NVD
statistics, and (3) CWSS scores. Data extracted from source code with respect to BInput
Validation Language for Robustness^ design and implementation along with TAJS is complete
and precise. However, there is no indication or statement that NVD statistics are complete and
precise. Similarly, CWSS scores are calculated using expert judgment, which might be
considered as having some uncertainty. The nature of the problem fits to Bayesian networks.

Following the approach proposed by Christey (2005), we classified the input validation
vulnerabilities chosen for this work as an input validation vulnerability tree seen in Fig. 5.

The Bayesian network structure uses the data to update probabilities as given in formula (1).
In formula (1), X variable represents the observed nodes and xi is the data point in the given
Bayesian network. The parent(Xi) stands for the parent nodes of node xi. In formula (2), we have
given an example of P(x1,...,xn) which is defined from formula (1). Formula (2) explains that
everyFunction Input Parameter Status Nodes (FIPS) except FIPSSQLI. FIPSSQLI node is set to a
BNot Validated^ state. Therefore, if we extend formula (1), we obtain the given formula in (2).

P x1;…; xnð Þ ¼ ∏
n

i¼1
P xijparents X ið Þð Þ ð1Þ

P FIPSUFS; FIPSPT; FIPSXSS;⌝FIPSSQLI; FIPSBO; FIPSOSCI;UFS;PT;XSS; SQLI;BO;OSCI;Application
� �

¼ P Application j UFS∧PT∧XSS∧SQLI∧BO∧OSCIð Þ:
P UFS j FIPSUFSð Þ:
P PT j FIPSPTð Þ:
P XSS j FIPSXSSð Þ:
P SQLI j⌝ FIPSSQLI
� �

:
P BO j FIPSBOð Þ:
P OSCI j FIPSOSCIð Þ:
P FIPSUFSð Þ:P FIPSPTð Þ:P FIPSXSSð Þ:P ⌝FIPSSQLI

� �
:P FIPSBOð Þ:P FIPSOSCIð Þ

ð2Þ
When constructing a BN, we need to define the relationships between the nodes (see

Fig. 2). Each predecessor node affects the successor nodes’ probabilistic table (NPT).
Therefore, the number of NPTs is equal to the number of nodes in the BN. The number of
node probabilistic tables in our BN is

number ofvulnerability nodes
¼ numberof function input parameter status nodes

numberofNPTs ¼ number of function input parameter status nodes
þ number ofvulnerability nodes

þ 1:

ð3Þ
In formula (3), the value B1^ represents the software included as the Application Node,

while the number of vulnerabilities is six, corresponding to the six input validation vulnera-
bilities defined above. The number of Function Input Parameter Status Nodes is also equal to
the number of vulnerability nodes. Each input parameter status node is uniquely directed to a

Input Validation Vulnerabilities
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OS Command 

Injection
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Scripting
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Fig. 5 Input validation vulnerability tree
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single vulnerability node to separate the required validation codes from other vulnerabilities. In
other words, there is a one-to-one correspondence between Function Input Parameter Status
Nodes and Input Validation Vulnerability Nodes. However, it is important to declare that the
number of Function Input Parameter Status Nodes depends on the number of Input Validation
Vulnerability Nodes and the number of Input Validation Vulnerability Nodes can be changed
through the configuration file we have created for our tool. For instance, if an application that
does not include and use any SQL statements, the developer can remove the SQL injection
input validation vulnerability from the configuration file. Therefore, the new Bayesian network
will have five Input Validation Vulnerability Nodes and five Function Input Parameter Status
Nodes instead of six. Instead of removing one input validation vulnerability, if a new type of
input validation vulnerability is defined and added to the configuration file, then the number of
Input Validation Vulnerability Nodes will be seven and following that the number of Function
Input Parameter Status Nodes will be seven as well.

pt?>In Fig. 6, BN for estimating robustness against input validation vulnerabilities is
given. The hierarchy in Fig. 6 from bottom to the top works in three steps. First, all of the
function parameters are analyzed with static analysis. The static analysis checks for specific
validation codes defined in the source code and pass the information to the upper nodes,
which are the input validation vulnerabilities. In the second step, for each, existing
validation code in the source code increases the probability of the BContaining Validation
Code^ of the input validation vulnerability. Then in the third step, in direct proportion, the
increase of containment of validation code increases the robustness of the application. The
BN can be divided into three layers: A, B, and C. As seen in Fig. 6, the topmost node as layer
A represents the Application NPT; in layer B, six Input Validation Vulnerability Nodes
contain corresponding vulnerability NPTs; and in layer C, the Function Input Parameter
Status Nodes contains the respective function NPTs of the analyzed function parameters if
they have a validation code related to its child node (Input Validation Vulnerability Node).

All the BNs developed using our proposed method have the same three layer structure. The
top layer is always single node, and the remaining two layers have the same number of nodes
due to the one-to-one correspondence property explained above. For the time being, we
suggest the use of 6-6-1 BN structure since it has the highest coverage in terms of existing
input validation vulnerabilities. If a new type of input validation vulnerability is found and
defined, the new type of input validation vulnerability can be added into the BN making it 7-7-
1 structure. The presented tool enables this addition through the configuration file.

Fig. 6 Bayesian network for measuring robustness against input validation vulnerabilities
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As explained above, developers may propose that one input validation vulnerability is not
possible for their software then their BN will have a 5-5-1 structure. For JavaScript, all input
validation vulnerabilities taken into consideration in this work have their examples. Therefore,
for any software written in JavaScript, the BN must have 6-6-1 structure for highest possible
coverage. Hence, all the BNs constructed for the libraries investigated in the case study have 6-
6-1 structure.

4.1 Calculating the node probabilistic table for function nodes

The bottom layer C in Fig. 6 has six Function Input Parameter Status Nodes. These
nodes are independent from each other and parent nodes of a single Input Validation
Vulnerability Node. Each Function Input Parameter Status NPT (Table 2) is calculated
by checking if the function parameters have a validation code related to its child node
(Input Validation Vulnerability Node). For example, if the Function Input Parameter
Status Node’s child node is XSS, then the function parameters are checked with static
analysis if there is a validation code for XSS. After the checks, a probabilistic value
is calculated according to usage of validation codes for input validation vulnerabil-
ities. A detailed calculation of Function Input Parameter Status NPT calculation is
given in algorithm 1.

In algorithm 1, the function input parameter status node probabilistic tables’ values
are calculated. Every input validation vulnerability could require different validations
to avoid invalidated inputs. Therefore, for every vulnerability, a new Function Input
Parameter Status (FIPS) node is created. All of the FIPS NPT values are calculated
with the same logic. However, the only difference that makes every FIPS nodes
identical is that the FIPS node that is directed to the vulnerability uses the
vulnerability’s validation rules. This provides an independent observation among all
the vulnerabilities.

The algorithm first starts with a static analysis that collects information about
function and its parameters and obtains information if the parameters are validated
or not. Then, the vulnerabilities’ validation BNF rules are pre-loaded. Since the
functions’ parameter validation status information is already extracted from static
analysis, an increment is performed over their validation statuses. If the function
parameter has a status Not Validated, then the Bnot validated count^ is incremented.
However, if the function parameter has a status Validated, then the validation content
is checked with its directed vulnerability. If the validation content contains the
corresponding vulnerability’s validation rules, then the Bvalidated count^ is
incremented, otherwise the Bnot validated count^ is incremented.

After the Bnot validated count^ and Bvalidated count^ are complete, a ratio
calculation is performed. The ratio is performed over the Bnot validated count^ and
Bvalidated count^ values, divided by the total numbers of parameters. The total
number of parameters is equal to the summation of Bvalidated count^ and Bnot

Table 2 Function input parameter
status node probabilistic table Validation status Function input parameter status

Validated 0.325
Not validated 0.675
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validated count.^ Finally, ratio values are assigned to each corresponding FIPS node’s
probabilistic table.

Algorithm 1 Function Input Parameter Status NPT value calculation.

1. functions[] = getAnalyzedFunctionInfo()

2. vulnerabilities[] = getVulnerabilities()

3. FOR i=0 to vulnerabilities.size

4. vulnerabilityValidationRules[i] = getVulnerabilityValidationRules(vulnerabilities[i])

5. END FOR

6. FOR i=0 to vulnerabilities.size

7. countNotValidated = 0

8. countValidated = 0

9. FOR j=0 to functions.size

10. FOR k=0 to function[j].parameters.size

11. IF function[j].parameters[k] = “Not Validated”

12. INCREMENT countNotValidated

13. END IF

14. ELSE IF function[j].parameters[k] = “Validated”

15. IF hasRule(function[j].parameters[k], vulnerabilityValidationRules[i])

16. INCREMENT countValidated

17. END IF

18. ELSE

19. INCREMENT countNotValidated

20. END ELSE

21. END ELSE IF

22. END FOR

23. END FOR

24. total = countNotValidated + countValidated

25. functionNPT[i] = { countNotValidated/total, countValidated/total }

26. assignFunctionValuesToNPT(functionNPT[i])

27. END FOR

4.2 Calculating the node probabilistic table for vulnerability nodes

Second layer B in Fig. 6 has six Input Validation Vulnerability Nodes. The Input Validation
Vulnerability Nodes have 2 states: BContains Validation Code^ and BContains NO Validation
Code^. States BContains Validation Code^ and BContains NO Validation Code^ give a
probabilistic value of the analyzed code that has specific validation codes for each correspond-
ing vulnerability. Every Input Validation Vulnerability Node has a single predecessor node and
every Input Validation Vulnerability Node’s predecessor node is different from another. An
example NPT for Input Validation Vulnerability of SQL Injection is given in Table 3. In the
NPT values for Containing NO Validation Code and validated function parameters, the weight
of the corresponding input validation vulnerability is assigned. The weight of the vulnerability
(formula 4) is calculated from the data gained from NVD (Table 3).

Table 3 Input validation vulnera-
bility node probabilistic table Function input parameter status Not validated Validated

Contains NO Validation Code 0.95 0.232026333
Contains Validation Code 0.05 0.767973667
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In Table 3, the case, where the inputs are Validated, but there are Containing NO
Validation Code for the SQL Injection, we say that with 0.232026333 probability, the
application can encounter an SQL Injection attack. The 0.232026333 probability is
obtained from NVD, which describes that, among the six input validation vulnerabil-
ities, the application might be vulnerable against SQL Injection. Because there is a
validation code detected in the source code, but the validation is not for SQL
Injection directly, 0.232026333 is given. However, if there is a validation
(Validated) and a specifically Containing Validation Code for SQL Injection, then
0.767973667 (1–0.232026333) is given. For not validated function parameters, static
values are assigned. If the function input parameter is BNot Validated^ for the
containing vulnerability, we assign 0.95 and BContaining Validation Code^ vulnera-
bility 0.05 is assigned. A detailed algorithm is given in algorithm 2.

Let ωi be the vulnerability weight,
ri the number of reports of the vulnerability,
n the summation of all input validation vulnerabilities’ reports.

ωi ¼ ri
n

ð4Þ

In algorithm 2, the vulnerability node’s probabilistic table value calculation is given.
Initially, vulnerabilities’ reports in the past 15 years are obtained from NVD (Table 4). The
reports give the information of how much the vulnerability is frequent, in other terms the
frequency of the vulnerability. The vulnerability weights are calculated by their 15 years of
individual reports divided to the total reports of input validation vulnerabilities that are used in
the Bayesian network.

To fill in the NPT values, there are 4 different cases that should be considered;

& Not validated–Contains Validation Code➔ x = 0.05
& Not validated–Contains NO Validation Code ➔ 1-x = 0.95
& Validated–Contains Validation Code ➔ y
& Validated–Contains NO Validation Code ➔ 1-y

For the cases where there is no validation (not validated), we assume that there is a higher
probability that the vulnerability contains the vulnerability. Therefore, constant values for Not

Table 4 Input validation vulnerabilities reported between 2000 and 2015, their weights, and CWSS scores

Input validation vulnerabilities Reported between 2000 and 2015 Vulnerability weights CWSS scores

SQL Injection 4018 0.232026333 93.8
Buffer Errors 5449 0.314661893 79.0
Uncontrolled Format String 161 0.009297222 61.0
Path Traversal 1742 0.100594791 69.3
OS Command Injections 156 0.009008489 83.3
Cross-Site Scripting (XSS) 5791 0.334411272 77.7
TOTAL 17,317
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Validated–Contains Validation Code = 0.05 and for Not Validated–Contains NO Validation
Code = 0.95 are given. The constant values are not given directly 0 and 1, but given values
close to 0 and 1 to satisfy the basic rules of a Bayesian approach. To fill in the rest of the NPT
cases, Validated–Contains Validation Code and Validated–Contains NO Validation Code, we
use the weight that is calculated from formula 4 and used the values from Table 4.

The Bayesian approach is based on beliefs and provides us with uncertain infer-
ences. Uncertainty here means that it is not possible to be 100% sure of anything.
Therefore, a small probability of standard deviation is given in BNs. If a probabilistic
value like B1^ or B0^ were given, this would represent a frequentist approach, and not
a Bayesian approach. The frequentist approach assigns probabilities to random events
according to their frequency of occurrence or subsets of populations as proportions of
the whole, whereas the Bayesian approach assigns probabilities to propositions that
are uncertain (Korb and Nicholson 2003), thereby we have assigned the Not
Validated–Contains Validation Code case as 0.05 instead of 0 and for Not
Validated–Contains NO Validation Code case as 0.95 instead of 1. In addition to
0.95, nine more values are given and the changes of nodes are shown in Appendix 4.
It has been observed that on every 0.01 change made on the NPT value of Not
Validated and Containing NO Validation Code, the robustness measure and vulnera-
bility nodes change with 0.01 as well.

Algorithm 2 Input validation vulnerability NPT value calculation.

1. //Calculated from the previous reported vulnerabilities and the weights are calculated by the
2. //distribution among the other input validation vulnerabilities
3. vulnerabilityWeights[] = calculateVulnerabilityWeights()
4. vulnerabilities[] = getVulnerabilities()
5. vulnerabilityNPTValues[]
6. vulnerabilityStatus[] = {“Contains No Validation Code”, “Contains Validation Code”}
7. inputStatus[] = {“Not Validated”, “Validated”}
8. FOR i=0 to vulnerabilityWeights.size
9. FOR j=0 to inputStatus.size
10. FOR k=0 to vulnerabilityStatus.size
11. value = 0
12. IF inputStatus[j] = “Not Validated”
13. IF vulnerabilityStatus [k] = “Contains Validation Code”
14. value = 0.95
15. vulnerabilityNPTValues.add(value)
16. END IF
17. ELSE IF vulnerabilityStatus [k] = “Contains No Validation Code”
18. value = 1 – value
19. vulnerabilityNPTValues.add(value)
20. END ELSE IF
21. END IF 
22. ELSE IF inputStatus[j] = “Validated”
23. IF vulnerabilityStatus [k] = “Contains Validation Code”
24. value = vulnerabilityWeights[i]
25. vulnerabilityNPTValues.add(value)
26. END IF
27. ELSE IF vulnerabilityStatus [k] = “Contains No Validation Code”
28. value = 1 – value
29. vulnerabilityNPTValues.add(value)
30. END ELSE IF
31. END ELSE IF
32. END FOR
33. END FOR
34. END FOR
35. assignVulnerabilityValuesToNPT(vulnerabilityNPTValues[])
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4.3 Calculating the node probabilistic table for application nodes

In Fig. 6, layer A has only one node which is the Application Node. Inside the Application
Node, there holds a Node Probabilistic Table (NPT). The NPT keeps information about its
predecessor nodes, and through its predecessor nodes, the Application Node makes its
reasoning by passing the information to its defined two states: BRobust^ and BNot Robust.^
As it is seen in Fig. 5, the Application Node has 6 predecessor nodes which are the input
validation vulnerabilities, and the vulnerability nodes have two states as well. Therefore, the
Application NPT has 26 identical cases. Table 5 shows the structure of Application Node
Probabilistic Table. Full Application Node Probabilistic Table is given in Appendix 5.
BRobust^ and BNot Robust^ values at the bottom of the NPT (last two rows) are calculated
using algorithm 3.

In Table 5 for each case, all containing vulnerability scores are summed. After calculating
every case’s score, the case scores are normalized (5). Formula 5 is a 0–1 scale normalization
formula, where E is the set of n elements E = {e1, ..., en}. ei is the element that is going to be
normalized, while Emin is the minimum value and Emax is the maximum value of set E. The
vulnerability scores are obtained from Common Weakness Scoring System (CWSS). The
detailed algorithm is given in algorithm 3.

Normalized eið Þ ¼ ei−Emin

Emax−Emin
ð5Þ

In algorithm 3, the application node’s probabilistic table value calculation is given. To
calculate the NPT values, first the vulnerabilities in the BN are received, then the pre-
calculated vulnerability scores from CWSS (Table 4) are received. To find all variations of
input validation vulnerability cases, a subset finding algorithm is used. For a vulnerability to be
contained, there should be no validation code for that input validation vulnerability existing in
the source code. For every contained vulnerability, the vulnerability’s CWSS score is added to
the caseScore. In other words, the caseScore value is the summation of CWSS scores of
contained vulnerabilities. All of the calculated case scores are collected in an array. Since the
vulnerability CWSS score values are between [0,100], therefore the case scores could be B0^ at
minimum and B600^ (100 × number of vulnerabilities) at maximum. However, in Bayesian
networks, the NPTs only accept values between [0,1], so that a 0–1 scale normalization is

Table 5 Application node probabilistic table

XSS Contains validation
code

Contains validation code …. Contains NO validation
code

SQL Injection Contains Validation
Code

Contains Validation Code …. Contains NO Validation
Code

Buffer Overflow Contains Validation
Code

Contains Validation Code …. Contains NO Validation
Code

Path Traversal Contains Validation
Code

Contains Validation Code …. Contains NO Validation
Code

OS Command Injection Contains Validation
Code

Contains Validation Code …. Contains NO Validation
Code

Uncontrolled Format
String

Contains Validation
Code

Contains NO Validation
Code

…. Contains NO Validation
Code

Robust 1 0.82 …. 0
Not Robust 0 0.18 …. 1
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applied on the calculated array of case scores. Then, the normalized case scores are assigned to
their matching case in the NPT.

Algorithm 3 Application NPT value calculation

1. vulnerabilities[] = getVulnerabilities()

2. vulnerabilityScores[] = getVulnerabilityScores() //CWSS Score values

3. vulnerabilityCases[] = findAllVulnerabilityCases()

4. allCaseScores[]

5. FOR i=0 to vulnerabilityCases.size

6. caseScore = 0

7. FOR j=0 to vulnerabilities.size

8. IF vulnerabilityCases[i] has vulnerabilities[j]

9. caseScore = caseScore + vulnerabilityScore[j]

10. END IF

11. END FOR

12. allCaseScores[i] = caseScore

13. END FOR

14. normalizedCaseScores[] = normalize(allCaseScores[])

15. assignScoresToNPT(normalizedCaseScores[])

4.4 Implementing an automated Bayesian network generator

A tool is required to keep the information needed to construct a BN. It should be possible to store
information about the BN’s connections between nodes and every node’s NPT in a file. For this
purpose, we use OpenMarkov (2014), which is a Java open source software tool. OpenMarkov is an
active open source software tool which is compatible with up to date Java, while some similar tools
only support previous old versions of Java that causes compatibility problems. Most Bayesian
network APIs are drag and drop applications, where nodes and edges are addedmanually. Although
they also provide a BN file to save and reuse it again, however, OpenMarkov provides an XML file
format, which is easy to parse and write. In addition, Java has libraries to parse and write XML files.
Therefore, by using OpenMarkov’s XML file format, we are able to create our own BN. To ensure
that the connection between calculating the NPT and file operation of the BN is smooth, we
developed the BN generator in Java, because OpenMarkov is written in Java.

We want our BN to be more dynamic, automated, and flexible before we develop the BN
generator, so that developers can modify the BN according to their JavaScript application as
desired. To achieve this, we prepare a configuration file that is first parsed by our tool. Using
this approach, developers are able to add or remove functions and vulnerability nodes. Another
benefit of the configuration file is to store information about functions and vulnerabilities. This
supports keeping our tool updated. If changes occur related to the statistics of vulnerabilities or
functions, the configuration file can be modified to adapt to current values.

The size of the function part of the configuration file grows linearly with the number of
functions that the software under consideration has. Similarly, vulnerability part of the
configuration file grows linearly with the number of vulnerabilities taken into consideration,
which is 6 for the current implementation. The size of the current vulnerability part of the
configuration file is 954 bytes.

Our algorithms (evaluating NPTs for each vulnerability and function) are integrated in the
tool. OpenMarkov is not directly integrated with our tool and not modified. In addition, one of
the reasons that we have chosen and used OpenMarkov is that it is a non-commercial tool.
OpenMarkov is added as a jar project to our tool. OpenMarkov uses XML files to run, create,
and modify its BNs. Furthermore, XML files are well structured, easy to parse, and write in
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Java, due to the XML libraries that exists in Java. Thereby, our tool creates an XML for
OpenMarkov, and the XML file becomes a bridge between our tool and OpenMarkov. Our
tool triggers OpenMarkov to run the BN file that is created by our tool. Next, we start building
our BN by first defining the nodes. Then, we establish the connections and relationships
between nodes. We define the architecture of our BN, which is constructed in three levels:
BApplication,^ BInput Validation Vulnerability,^ and BFunction Input Parameter Status.^
When including the relationships of our nodes in our tool, we direct all vulnerability nodes
to the application node and each Function Input Parameter Status Node to a single Input
Validation Vulnerability node. Finally, we assign the calculated NPTs to the nodes.

4.5 Proof of concept

In Table 6, the overall robustness is calculated for two cases: first, the raw format of selected five
functions from five different JavaScript libraries and second, same selected five functions from
five different JavaScript libraries but with added validation code by us (see Appendix 3). When
the first case is analyzed, the robustness has been calculated as 0.06209 (Table 6). In Table 7, we
see that there is some validation code containing for Buffer Overflow in the raw format of the
analyzed code. The validation code for functions extractElementNode and d3_selection_each,
due to the validation usage length. However, for the second case, where validation code is added
to the five functions, our tool has detected validation codes for input validation vulnerabilities.
The NPT values are calculated as 1 (Table 8), because all of the defined input validation rules for
input validation vulnerabilities are defined for every function parameter. Therefore, the second
case’s robustness has been calculated as 0.82710 (Table 6) by the Bayesian network.

Preconditions could be stored in a function and called from every function that accepts
input data as argument. Our method considers this possibility as well and through the flow
diagram it detects whether inputs are checked or not in another function before they are used.

5 Case study

As case study, we selected 10 JavaScript libraries. Before giving their robustness estimation
and their evaluation, we present application of our method to jQuery version 1.9.1, where all

Table 6 Robustness estimation for
five selected functions from five
different libraries

Robust

Analysis on Raw Code 0.06209
Analysis on Validation

Added Code
0.82710

Table 7 Analysis results on five selected functions from five different libraries

Format string
vulnerability

Path
traversal

XSS SQL
Injection

Buffer
overflow

OS Command
Injection

Contains Validation
Code

0 0 0 0 0.11111 0

Contains NO
Validation Code

1 1 1 1 0.88889 1
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functions of jQuery are covered. In Fig. 7, a screenshot of jQuery’s Bayesian network for
estimating its robustness in relation to input validation vulnerabilities is given. At the rightmost
part of the BN, we can see the Function Input Parameter Status (FIPS) Nodes. On the left side
of them, their child nodes of Input Validation Vulnerability Nodes are given. Among all of the
FIPS Nodes, only one node that is connected to the BBuffer Overflow^ vulnerability has shown
different values than the others. This means that some validation code has been detected by the
static analysis for Buffer Overflow vulnerabilities. Therefore, the Buffer Overflow node and its
parent FIPS Node have shown different probabilities than the others, and its value for
Validated has been calculated as 0.00362. This has affected the Buffer Overflow node’s
Contains Validation Code as 0.05232. The static analysis cannot find any other validation
code for the other FIPS Nodes, thereby their Not Validated status probabilities are given as 1.
In conclusion for jQuery and with its few containment of validation code for Buffer Overflow,
the robustness has been calculated as 0.05039.

Descriptions of selected JavaScript libraries for the case study are given in Table 9. They
are well-known and regularly used JavaScript libraries. Six of them are client-side, and the
remaining four of them are server-side libraries. We applied our method to each of them
covering all of their functions. Their robustness estimations are presented in Table 10.

A BN is generated for each library. When BNs are investigated, it is observed that these
libraries have only very few validations for Buffer Overflow vulnerabilities. Further analysis has
shown that there are no validation codes for other input validation vulnerabilities. Out of ten

Table 8 Analysis results on five selected functions with added input validation from five different libraries

Format string
vulnerability

Path
traversal

XSS SQL
Injection

Buffer
overflow

OS Command
Injection

Contains Validation
Code

1 1 1 1 1 1

Contains NO
Validation Code

0 0 0 0 0 0

Fig. 7 Generated Bayesian network for estimating jQuery’s robustness in relation to input validation vulnerabilities
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libraries, D3 has the most input validation code; therefore, D3 has the highest robustness measure
as 0.05116 among all libraries. On the other hand, Backbone does not have any input validation
code; therefore, it has the lowest robustness value of all other JavaScript libraries. In an overall
review of JavaScript libraries, it is seen that JavaScript libraries have very few precautions against
input validation vulnerabilities. The only validation code that libraries include are related Buffer

Table 9 Description of JavaScript libraries evaluated in the case study

Location Description

client-side AngularJS (https://angularjs.org/) is a web application and GUI related JavaScript library that lets
you write client-side web applications. It lets you use the old HTML as your template language
and lets you extend HTML’s syntax to express your application’s components clearly and
sufficiently. It automatically synchronizes data from user interface with developer’s JavaScript
objects through 2-way data binding.

client-side D3 (http://d3js.org/) is a graphical/visualization JavaScript library for manipulating documents based
on data. It uses HTML, SVG, and CSS on data for visualization. D3 follows a data-driven
approach to DOM manipulation.

client-side Joose (http://joose.it/) is a JavaScript library that provides Bkeywords^ for class declaration, object
construction, inheritance and more. These keywords become a part of the language and help the
developer not to care about the implementation details of all these concepts.

client-side jQuery (http://jquery.com/) is a DOM oriented JavaScript library that performs manipulation, event
handling, animation and document traversal.

client-side Prototype JavaScript Framework (http://prototypejs.org/) is a DOM and web application oriented
JavaScript library that takes the complexity out of client-side web programming. It adds useful
extensions to the browser scripting environment and provides elegant APIs around the interfaces
of DOM and Ajax.

client-side Zepto (http://zeptojs.com/) is a JavaScript library for modern browsers compatible with jQuery API.
server-side Backbone (http://backbonejs.org/) is a web application related library that gives structure to web

applications by providing models with key-value binding and custom events, collections with a
rich API of enumerable functions, views with declarative event handling and connects it to all of
existing API over a RESTful JSON interface.

server-side Chaplin (http://chaplinjs.org/) is a web application related JavaScript library and an architecture for
JavaScript applications using the Backbone library. Chaplin addresses Backbone library’s
limitations by providing a lightweight and flexible structure that features well-proven design
patterns.

server-side Dojo (http://dojotoolkit.org/) is a DOM oriented JavaScript library that scales with the development
process, using web standards as its platform. It is also a toolkit for building desktop and mobile
web applications.

server-side Handlebars (http://handlebarsjs.com/) is a template system JavaScript library that provides to build
semantic templates effectively. It is an extension to another JavaScript library Mustache
templating language.

Table 10 Robustness estimation of JavaScript libraries evaluated in the case study

No. JavaScript Library Type Version Robustness

1 jQuery Client-side 1.9.1 0.05039
2 Joose Client-side 2.1 0.05064
3 Zepto Client-side 1.1.6 0.05103
4 Backbone Server-Side 1.1.2 0.05
5 AngularJS Client-side 1.4.2 0.05061
6 D3 Client-side 3.5.5 0.05116
7 Dojo Server-Side 1.10.4 0.05105
8 Chaplin Server-Side 1.0.1 0.05033
9 Handlebars Server-Side 3.0.0 0.05052
10 Prototype JavaScript Framework Client-side 1.7.2 0.05047

Software Qual J (2018) 26:455–489 477

https://angularjs.org
http://d3js.org
http://joose.it
http://jquery.com
http://prototypejs.org
http://zeptojs.com
http://backbonejs.org
http://chaplinjs.org
http://dojotoolkit.org
http://handlebarsjs.com


Overflow, which is also very few. The average robustness of all ten JavaScript libraries has been
calculated as 0.05062, which shows that JavaScript libraries are not that robust as we rely on them.

Table 11 is introduced to present the number of functions each library we investigated has. In
Table 11, the performance of runtime evaluation over ten JavaScript libraries is given. The
runtime values are gathered by running our tool 25 times repeatedly per libraries. The perfor-
mance evaluation covers the complete process from the start until to the final process of
robustness calculation. This process includes static analysis, function input parameter analysis,
calculation of probabilistic data for BN, BN creation, and execution (robustness calculation). It
has been observed that the average runtime is directly proportional with the number of functions
of the analyzed JavaScript file. The average runtimes of the analyzed JavaScript libraries take less
than a minute. Among the JavaScript libraries, Backbone has the least average runtime with
2.24 s, while AngularJS has the longest runtime with 37.28 s, due to its number of functions and
SLOC. The mean value of average runtimes of ten JavaScript libraries has been calculated as
16.49 s, which might be considered as a reasonable time for robustness calculation.

6 Tool support

In this work, a tool called TAJS has been extended and used to calculate values for Bayesian
network. TAJS is a JavaScript static analysis tool that is developed by Jensen et al. (2009). It is
developed to support JavaScript developers, detect errors, and help understanding the code.
TAJS supports DOM and all ECMAScript languages that performs a dataflow analysis. It
models the JavaScript semantic with a rich lattice structure. TAJS performs a call graph
extraction, data type analysis, removal of eval() function, and detection of unused code
through a flow graph it generates.

For this research, TAJS is extended to collect function and function parameter information
through its flow graph output. This helps to initialize and create a data structure for the inputs
to functions (function parameters), thereby when an analysis is performed on inputs, the
information that is obtained after the analysis can easily be stored into this data structure.

TAJS is extended further to check for specific type of validations on function parameters. To
perform this check, TAJS’s flow graph output is used. The flow graph output that TAJS provides is
in .dot format, which is a graphical representation file. Flow graph output is a graphical

Table 11 JavaScript libraries robustness measurement runtime table

No. JavaScript library Number of
functions

SLOC Min runtime
(s)

Max runtime
(s)

Average runtime
(s)

1 jQuery 579 9597 11 29 16.12
2 Joose 361 3802 4 10 6.88
3 Zepto 255 1587 3 8 4.68
4 Backbone 123 1610 2 4 2.24
5 AngularJS 1350 28,366 27 54 37.28
6 D3 1511 9504 26 67.8 36.55
7 Dojo 974 18,566 16 58 27.52
8 Chaplin 284 3111 3 18 6.24
9 Handlebars 271 3746 5 11 6.72
10 Prototype JavaScript

Framework
733 7510 10 44 20.68
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representation of a source code that shows the interactions inside the code. Therefore, the extension
that is made in TAJS searches for function parameters that are previously extracted from the first
extension. If the function parameter is found in the flow graph, it checks for Bif[r]^ instructions, if a
validation is performed on the function parameter. The next is checking the Bif[r]^ instruction’s
content, if the content has the function parameter in it and also has any input validation codes for
input validation vulnerabilities then it collects these information to be used later in the BN.

The last extension performed on TAJS is addition of a package for creation of a BN file for
OpenMarkov from its analysis results, transferring it to OpenMarkov and triggering
OpenMarkov to execute the BN file. The BN file holds necessary data for the connections
between the nodes of BN.

7 Conclusion

In this paper, we proposed a method for estimating software robustness in relation to input
validation vulnerabilities using BN and developed a tool to construct an automated BN
generator to measure robustness of JavaScript applications. We collected 15 years of reported
statistics about input validation vulnerabilities. We investigated the effect of each input
validation vulnerability in software. Through our investigations, we decided on six input
validation vulnerabilities, of which Common Weakness Scores are available, and classified
them using a tree. Performing input validations for input validation vulnerabilities is recom-
mended in the design and development phases of the SDLC. Therefore, we chose static
analysis to analyze all functions in the software to extract function call graphs and flow graphs
using the Input Validation Language for Robustness.

The BN constructed is expressed in three levels: function input parameter status,
vulnerability, and the application’s robustness. The function input parameter status
represents the function nodes we analyzed using the Input Validation Language for
Robustness. The vulnerability level represents our input validation vulnerability nodes,
including the common weakness scores of each vulnerability. The final top level gives
us the overall estimation of the robustness of the application or library in relation to
input validation vulnerabilities.

In the case study, we applied our method to JavaScript’s most popular library, jQuery,
owing to its widespread usage and preference by JavaScript developers. When all functions are
evaluated, jQuery is estimated to be 5% robust in relation to input validation vulnerabilities. In
addition to estimating the overall robustness, we also observed the probability of each input
validation vulnerability occurring in the application. The case study includes nine more
JavaScript libraries. We investigated in total 10 popular JavaScript libraries, including both
client-side and server-side libraries, and report our findings. With the proposed method, we
checked all the functions of these ten JavaScript libraries (6441 functions in total) and found
that JavaScript libraries are not robust with respect to input validation vulnerabilities. In other
words, they do not contain the necessary source code to withstand data attacks, such as SQL
injection. The average robustness of all ten JavaScript libraries has been calculated as 0.05062,
which shows that JavaScript libraries are not that robust as we rely on them. This is valuable
information for the software developers, who use or plan to use these libraries.

Our investigation of related work that uses BNs shows that the distribution is usually
considered as uniform. However, in our model and tool, we use statistics obtained from real
data, which makes our work and estimation realistic and unique. Another advantage is that the
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tool we use is flexible and dynamic. Therefore, developers can easily introduce their own
preconditions and scores by simply modifying the configuration file.

As a future work, we would like to compare our approach with software robustness testing.
Moreover, we would like to also include languages like Java, C++, and Python.

Following the well-known quote Byou can’t control what you can’t measure,^ it is almost
impossible to react to or take precautions without any estimation of robustness in relation to
input validation vulnerabilities. If developers become aware of the robustness estimation of
their software, they can improve it accordingly.

Appendix 1. Descriptions of input validation vulnerabilities in the scope
of work

CWE-79: Improper Neutralization of Input During Web Page Generation (BCross-site
Scripting^).

Description Summary.
The software does not neutralize or incorrectly neutralizes user-controllable input before it

is placed in output that is used as a web page that is served to other users.
http://cwe.mitre.org/data/definitions/79.html
CWE-89: Improper Neutralization of Special Elements used in an SQL Command (BSQL

Injection^).
Description Summary.
The software constructs all or part of an SQL command using externally-influenced input

from an upstream component, but it does not neutralize or incorrectly neutralizes special
elements that could modify the intended SQL command when it is sent to a downstream
component.

http://cwe.mitre.org/data/definitions/89.html
CWE-120: Buffer Copy without Checking Size of Input (BClassic Buffer Overflow^).
Description Summary.
The program copies an input buffer to an output buffer without verifying that the size of the

input buffer is less than the size of the output buffer, leading to a buffer overflow.
http://cwe.mitre.org/data/definitions/120.html
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (BPath Traversal^).
Description Summary.
The software uses external input to construct a pathname that is intended to identify a file or

directory that is located underneath a restricted parent directory, but the software does not
properly neutralize special elements within the pathname that can cause the pathname to
resolve to a location that is outside of the restricted directory.

http://cwe.mitre.org/data/definitions/22.html
CWE-78: Improper Neutralization of Special Elements used in an OS Command (BOS

Command Injection^).
Description Summary.
The software constructs all or part of an OS command using externally-influenced input

from an upstream component, but it does not neutralize or incorrectly neutralizes special
elements that could modify the intended OS command when it is sent to a downstream
component.

http://cwe.mitre.org/data/definitions/78.html
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CWE-134: Uncontrolled Format String.
Description Summary.
The software uses externally-controlled format strings in printf-style functions, which can

lead to buffer overflows or data representation problems.
https://cwe.mitre.org/data/definitions/134.html

Appendix 2. Input validation vulnerability examples

CWE-78: Improper Neutralization of Special Elements used in an OS Command (BOS
Command Injection^).

An OS Command Injection using Node.JS

child_process.exec('ls', function (err, data) {
console.log(data);

});

Another example of an OS Command injection.

child_process.spawn('/bin/ls', ['-l', '.'])

CWE-89: Improper Neutralization of Special Elements used in an SQL Command
(BSQL Injection^).

Assume that the user has defined a database with JavaScript.

var db = openDatabase('mydb', '1.0', 'Test DB', 6*1024*1024);
db.transaction(function (tx) {

tx.executeSql('DROP TABLE IF EXISTS LOGS');
tx.executeSql('CREATE TABLE IF NOT EXISTS LOGS (id unique, log)');
tx.executeSql('INSERT INTO LOGS (id, log) VALUES (1, "foobar")');

tx.executeSql('INSERT INTO LOGS (id, log) VALUES (2, "info")');
});

The attacker can inject an SQL as,

db.transaction(function (tx) {  tx.executeSql('DROP TABLE IF EXISTS LOGS');})

CWE-120: Buffer Copy without Checking Size of Input (BClassic Buffer Overflow^).
JavaScript heap spraying example (https://crypto.stanford.edu/cs155old/cs155-spring11

/lectures/03-ctrl-hijack.pdf)

var nop = unescape(“%u9090%u9090”)
while(nop.length<0x100000)
nop += nop
var shellcode = unescape(“%u4343%4343%...”);
var x = new Array()
for(i=0; i<1000; i++)
{

x[i] = nop + shellcode;
}
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Appendix 3. Five JavaScript functions for Proof of Concept

Original JavaScript functions (in regular font style) empowered with input validation code (in
bold font style).

/**
* jQuery version 1.9.1 Functions: remove
* */

function remove ( selector, keepData ) {
if(selector.indexOf(" OR ") == -1 &&

selector.indexOf(" AND ") == -1 &&
selector.indexOf(" IS NULL ") == -1 &&
selector.indexOf("<script>") == -1 &&
selector.length <= 1024 &&
selector.indexOf("../") == -1 &&
selector.indexOf("..%u2216") == -1 &&
selector.indexOf("..%c0%af") == -1 &&
selector.indexOf("..\\") == -1 &&
selector.indexOf("%2e%2e%2f") == -1 &&
selector.indexOf("..%255c") == -1 &&
selector.indexOf("%") == -1 &&
selector.indexOf(".exe") == -1 &&
selector.indexOf("\/bin\/") == -1 &&

keepData.indexOf(" OR ") == -1 &&
keepData.indexOf(" AND ") == -1 &&
keepData.indexOf(" IS NULL ") == -1 &&
keepData.indexOf("<script>") == -1 &&
keepData.length <= 1024 &&
keepData.indexOf("../") == -1 &&
keepData.indexOf("..%u2216") == -1 &&
keepData.indexOf("..%c0%af") == -1 &&
keepData.indexOf("..\\") == -1 &&
keepData.indexOf("%2e%2e%2f") == -1 &&
keepData.indexOf("..%255c") == -1 &&
keepData.indexOf("%") == -1 &&
keepData.indexOf(".exe") == -1 &&
keepData.indexOf("\/bin\/") == -1

)
{

var elem,
i = 0;

for ( ; (elem = this[i]) != null; i++ ) {
if ( !selector || jQuery.filter( selector, [ elem ] ).length > 0 ) {

if ( !keepData && elem.nodeType === 1 ) {
jQuery.cleanData( getAll( elem ) );

}

if ( elem.parentNode ) {
if ( keepData && jQuery.contains( elem.ownerDocument, elem ) ) {

setGlobalEval( getAll( elem, "script" ) );
}
elem.parentNode.removeChild( elem );

}
}

}
}
return this;
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}

/**
* AngularJS version: 1.4.2 Function: extractElementNode
* */

function extractElementNode(element) {
if(element.indexOf(" OR ") == -1 &&

element.indexOf(" AND ") == -1 &&
element.indexOf(" IS NULL ") == -1 &&
element.indexOf("<script>") == -1 &&
element.indexOf("../") == -1 &&
element.indexOf("..%u2216") == -1 &&
element.indexOf("..%c0%af") == -1 &&
element.indexOf("..\\") == -1 &&
element.indexOf("%2e%2e%2f") == -1 &&
element.indexOf("..%255c") == -1 &&
element.indexOf("%") == -1 &&
element.indexOf(".exe") == -1 &&
element.indexOf("\/bin\/") == -1

)
{

for (var i = 0; i < element.length; i++) {
var elm = element[i];
if (elm.nodeType === ELEMENT_NODE) {

return elm;
}

}
}

}

/**
* D3 version: 3.5.5 Function: d3_selection_each
* */

function d3_selection_each(groups, callback) {
if(groups.indexOf(" OR ") == -1 &&

groups.indexOf(" AND ") == -1 &&
groups.indexOf(" IS NULL ") == -1 &&
groups.indexOf("<script>") == -1 &&
groups.length <= 1024 &&
groups.indexOf("../") == -1 &&
groups.indexOf("..%u2216") == -1 &&
groups.indexOf("..%c0%af") == -1 &&
groups.indexOf("..\\") == -1 &&
groups.indexOf("%2e%2e%2f") == -1 &&
groups.indexOf("..%255c") == -1 &&
groups.indexOf("%") == -1 &&
groups.indexOf(".exe") == -1 &&
groups.indexOf("\/bin\/") == -1 &&

callback.indexOf(" OR ") == -1 &&
callback.indexOf(" AND ") == -1 &&
callback.indexOf(" IS NULL ") == -1 &&
callback.indexOf("<script>") == -1 &&
callback.length <= 1024 &&
callback.indexOf("../") == -1 &&
callback.indexOf("..%u2216") == -1 &&
callback.indexOf("..%c0%af") == -1 &&
callback.indexOf("..\\") == -1 &&
callback.indexOf("%2e%2e%2f") == -1 &&
callback.indexOf("..%255c") == -1 &&

Software Qual J (2018) 26:455–489 483



callback.indexOf("%") == -1 &&
callback.indexOf(".exe") == -1 &&
callback.indexOf("\/bin\/") == -1

)
{

for (var j = 0, m = groups.length; j < m; j++) {
for (var group = groups[j], i = 0, n = group.length, node; i < n; i++) {

if (node = group[i]) callback(node, i, j);
}

}
}
return groups;

}

/**
* Backbone version: 1.1.2 Function: trigger
* */

function trigger(name) {
if(name.indexOf(" OR ") == -1 &&

name.indexOf(" AND ") == -1 &&
name.indexOf(" IS NULL ") == -1 &&
name.indexOf("<script>") == -1 &&
name.length <= 1000 &&
name.indexOf("../") == -1 &&
name.indexOf("..%u2216") == -1 &&
name.indexOf("..%c0%af") == -1 &&
name.indexOf("..\\") == -1 &&
name.indexOf("%2e%2e%2f") == -1 &&
name.indexOf("..%255c") == -1 &&
name.indexOf("%") == -1 &&
name.indexOf(".exe") == -1 &&
name.indexOf("\/bin\/") == -1

)
{

if (!this._events) return this;
var args = slice.call(arguments, 1);
if (!eventsApi(this, 'trigger', name, args)) return this;
var events = this._events[name];
var allEvents = this._events.all;
if (events) triggerEvents(events, args);
if (allEvents) triggerEvents(allEvents, arguments);

return this;
}

}

/**
* Zepto version: 1.1.6 Function: className
* */

function className(node, value){
if(node.indexOf(" OR ") == -1 &&

node.indexOf(" AND ") == -1 &&
node.indexOf(" IS NULL ") == -1 &&
node.indexOf("<script>") == -1 &&
node.length <= 1024 &&
node.indexOf("../") == -1 &&
node.indexOf("..%u2216") == -1 &&
node.indexOf("..%c0%af") == -1 &&
node.indexOf("..\\") == -1 &&
node.indexOf("%2e%2e%2f") == -1 &&
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node.indexOf("..%255c") == -1 &&
node.indexOf("%") == -1 &&
node.indexOf(".exe") == -1 &&
node.indexOf("\/bin\/") == -1 &&

value.indexOf(" OR ") == -1 &&
value.indexOf(" AND ") == -1 &&
value.indexOf(" IS NULL ") == -1 &&
value.indexOf("<script>") == -1 &&
value.length <= 1024 &&
value.indexOf("../") == -1 &&
value.indexOf("..%u2216") == -1 &&
value.indexOf("..%c0%af") == -1 &&
value.indexOf("..\\") == -1 &&
value.indexOf("%2e%2e%2f") == -1 &&
value.indexOf("..%255c") == -1 &&
value.indexOf("%") == -1 &&
value.indexOf(".exe") == -1 &&
value.indexOf("\/bin\/") == -1

)
{

var klass = node.className || '',
svg   = klass && klass.baseVal !== undefined

if (value === undefined) return svg ? klass.baseVal : klass
svg ? (klass.baseVal = value) : (node.className = value)

}
}

Appendix 4. Effect of values at vulnerability node on robustness estimation

Different values for “not validated” and “contains no validation code” at vulnerability node and their effect on the
robustness estimation

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

Robustness 0.1004 0.0904 0.0804 0.0704 0.0604 0.0504 0.0404 0.0304 0.0204 0.0104 0.0004
Format

String
Vulnera-
bility

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

Path
Traversal

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

XSS 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
SQL

Injection
0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

Buffer
Overflow

0.8979 0.9078 0.9178 0.9278 0.9377 0.9477 0.9577 0.9676 0.9776 0.9875 0.9975

OS
Command
Injection

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

Since there exists only input validation code for Buffer Overflow, its value is different than other vulnerability
node values
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Appendix 5. Full Application Node Probabilistic Table
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0,87 0,69 0,7 0,52 0,67 0,49 0,5 0,32 0,7 0,52 0,53 0,35 0,5 0,32 0,33 0,15

0,13 0,31 0,3 0,48 0,33 0,51 0,5 0,68 0,3 0,48 0,47 0,65 0,5 0,68 0,67 0,85
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0,72 0,54 0,55 0,37 0,52 0,34 0,35 0,17 0,55 0,37 0,38 0,2 0,35 0,17 0,18 0

0,28 0,46 0,45 0,63 0,48 0,66 0,65 0,83 0,45 0,63 0,62 0,8 0,65 0,83 0,82 1
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