
1

Stability prediction of the software requirements

specification

Jos é del Sagrado, Isabel M. del Á guila
Department of Informatics, University of Almer´ıa, 04120 Almer´ıa, Spain

Abstract

Complex decision-making is a prominent aspect of Requirements Engi-
neering. This work presents the Bayesian network Requisites that predicts
whether the requirements specification documents have to be revised. We
show how to validate Requisites by means of metrics obtained from a large
complex software project. Besides, this Bayesian network has been inte-
grated into a software tool by defining a communication interface inside a
multilayer architecture to add this a new decision making functionality. It
provides requirements engineers a way of exploring the software require-
ment specification by combining requirement metrics and the probability
values estimated by the Bayesian network.

Keywords: Requirements Engineering Software Requirements Spec-
ification CASE tools Bayesian network

1 Introduction

Since the appearance of the first intelligent editors, the challenge of supporting
software development using Artificial Intelligence techniques last for over 20
years. In spite of the success of some punctual results and progresses made
during these years, the intelligent environment for software development is still
considered under construction, perhaps because software engineers are typically
focussed on prosaic and practical engineering concerns rather than building
smart algorithms (Harman, 2012).

Expert knowledge is involved in every software development project, since
developers must face decisions based on their expertise during all the devel-
opment stages from requirements to maintenance (Meziane and Vadera, 2010).
That is to say, Software Engineering (SE) can be considered as a knowledge in-
tensive process and it can be framed within the AI domain (Harman, 2012). The
software engineering community has used many algorithms, methods, and tech-
niques that have emerged from the Artificial Intelligence community (Shirabad
and Menzies, 2005; Zhang et al., 2012).

Furthermore, if a portion of expert knowledge could be modeled and incor-
porated in the software engineering lifecycle, as well as in the tools that support
this lifecycle, we would obtain a great benefit for any development process.

Cite as:
del Sagrado, J., del Águila, I.M. Stability prediction of the software requirements specification. Software Qual J 26, 585–605 (2018).
https://doi.org/10.1007/s11219-017-9362-x

2

This work presents how the Bayesian network model, which allows the as-
sessment of Software Requirements Specification (SRS), called Requisites (del
Sagrado and del Águila, 2010) has been validated using data measured from a
specific software development project dataset and how it has been embedded
in a previously built software tool. The model was designed to be used as a
predictor that tells us whether the software requirements specification (SRS)
has enough quality, stopping the iterations needed in order to define the SRS.
Once measures were computed or obtained, their values will be introduced as
evidence. Thus, the propagation of belief will be used to determine if the re-
quirements specification have the enough quality to define a baseline for the
project. On the other hand, we present a successful solution that instantiates
an architecture for the seamless integration of a CARE (Computer Aided Re-
quirement Engineering) tool in order to manage requirements with some AI
techniques (del Sagrado et al., 2011). Specifically, we present the integration
in an academic CARE tool, InSCo-Requisite (Orellana et al., 2008), with the
Bayesian network. This tool has been extended with a new functionality that
makes the adaptation between the requirements metrics and the variables used
in the Bayesian network, allowing the use of this AI technique in the require-
ments specification stage.

The rest of the paper is structured as follows. After describing the basic
requirements workflow, section 2 describes the related works about the benefit
of using AI in software development. Section 3 includes de description of the
Bayesian network Requisites and how it has been validated using a real world
large scale dataset. Section 3 is devoted to the task of define the process followed
to the integration of Requisites in the tool InSCo-Requisite in order to define
a software project baseline. In this section, some examples of use a specific
software development project are also given. The paper ends with conclusions
in section 5.

1.1 Background. Requirements workflow

Requirements express the needs and constraints established for a software prod-
uct that contribute to the solution of some real world problem (Kotonya and
Sommerville, 1998). Requirements development is considered a good domain
for the application of AI techniques, because requirements by themselves tend
to be imprecise, incomplete and ambiguous. This area of SE is quite different
from others because requirements belong to problem space, whereas other arte-
facts, obtained in software development, reside in the solution space (Cheng
and Atlee, 2007). If requirement-related tasks are poorly executed, usually the
software product obtained becomes unsatisfactory from a software factory point
of view (Sommerville, 2011; Standish Group, 2008).

Requirements are critical to the success of a software project, because they
collect the needs or conditions that have to be met by the product. That is, they
are the basis for the rest of the development process. Therefore, any improve-
ment that takes place during the requirements development stage will favourably
affect the whole production life-cycle. This stage is articulated by the execu-

3

tion of several activities and has been defined, by different authors (Kotonya
and Sommerville, 1998; Abran et al., 2004; Wiegers and Beatty, 2013), as a
process with variations. The simplest set of activities for creating requirements
(Alexander and Beus-Dukic, 2009) comprises discovery, documentation and val-
idation. The discovering-documenting-validating cycle (DDV) is carried out
through several iterations in order to complete the requirements specification
and then moves towards the next development task.

Discovering requirements is the task which determines, through communica-
tion with customers and users, what are their requirements. Requirements are
elicited (or gathered) through interviews and other techniques such as stake-
holders workshops or inspections. In this first activity is where the problem,
that software is going to solve, has to be understood. It is usually a complex
task, because this activity requires good communication between software users
and software engineers. Requirements have to be conceived without ambiguities
in order to define what the system is expected to do.

Documenting requirements is about capturing software requirements. These
requirements are captured in a document or its electronic equivalent, known as
Software Requirements Specification (SRS). Software requirements documents
play a crucial role in SE (Nicol ás and Toval, 2009). Early approaches to perform
this activity used to work with word processors, but this method of supporting
SRS was prone to error and tedious. CARE (Computer-Aided Engineering
Requirement) tools appeared to give a solution to these problems, providing
environments that make use of databases, allowing an effective management
of the requirements of any software project. These tools also allow the use
of modelling languages in requirements description (i.e. use cases, UML) or
informal languages (storyboards).

Validating requirements is in charge of checking if requirements present in-
consistencies, ambiguities or errors. This task is concerned with the process of
analysing requirements in order to detect or resolve conflicts, and properly de-
fine the bounds of the software system. The process of reaching a consensus on
an appropriated trade-offs, i.e. requirements negotiation, is performed during
this activity, as well. The need of a negotiation appears when two stakehold-
ers require mutually incompatible features or when requirements require more
development resources than those that are really available.

2 Related works

The existing works have already demonstrated that there is considerable po-
tential for software engineers to benefit from AI. The algorithms, methods, and
techniques emerged from the Artificial Intelligence community, which have been
intertwined Software Engineering (SE) community can be arranged in three ma-
jor areas: ’Search Based Software Engineering’(SBSE), ’Classification, Learning
and Prediction for Software Engineering’ and ’Probabilistic Software Engineer-
ing’, (Harman, 2012). SBSE re-formulates SE problems as optimisation prob-
lems and it has proved to be a widely applicable and successful approach from

4

requirements and design stages, a bibliometric analysis in of many publications
of SBSE describes how this area have grown since 2001 (Harman et al., 2012).
In classification, learning and prediction some authors propose models for the
prediction about risky issues in SE (Menzies and Shepperd, 2012), either re-
lated to the study of the defects (Kastro and Bener, 2008), or the process of
predicting the effort required to develop a software system (Wen et al., 2012).
A probabilistic AI technique with a high applicability in SE is Bayesian prob-
abilistic reasoning to model different software topics (Misirli and Bener, 2014),
as quality management (Tosun et al., 2015) or defect prediction (Mısırlı et al.,
2011). There is a blurred border between these three major areas, so some of
these works can be included in more than one.

Nevertheless, focusing on requirements stage, the requirements engineering
is the less covered by the AI approaches. SBSE focus on requirements only in a
3% of works, (Harman et al., 2012) (de Freitas and de Souza, 2011), and papers
that deals about how to apply Bayesian networks to requirements are few (del
Á guila and del Sagrado, 2015). Artificial Intelligence can provide a new dimen-

sion to the stage of requirements development, by defining methods and tools for
the engineer that allow a simpler execution of the entire software development
project. The task of discovering requirements can be assisted by machine learn-
ing techniques that allow to organize collaboration between stakeholders using
clustering techniques to manage discussion forums about requirements (Castro-
Herrera et al., 2009) or that allow the automatic clustering of product features
for a given domain (Dumitru et al., 2011). Requirements can be considered as
the bricks gluing different stages in software project development. So, if we have
a risky requirements process, probably we will have a risky project. In order
to mitigate the risks, we need to identify and assess the risks of requirements.
Bayesian networks classifiers can assists the process of predicting the risk level
of a given requirement (del Á guila and del Sagrado, 2011). Resource constraints
usually appear in earlier development stages and prevent the development of all
defined requirements, forcing developers to negotiate requirements. Therefore,
a basic action is the selection of the set of requirement to be included in the
next steps of the development project. This problem, known as the next release
problem (Bagnall et al., 2001), has received attention by AI researchers and it
is considered as an optimization problem (Bagnall et al., 2001; Karlsson and
Ryan, 1997; Greer and Ruhe, 2004; del Sagrado et al., 2015).

Probabilistic approaches have less used in RE, likely because RE decision
making is not sufficiently mature, and no closed set of decision problems in RE
are available that could be tackled with probabilistic models. Furthermore, there
are several major challenges about how to apply BN to RE, such as how to deal
with networks validation, or how to embed the models obtained in computer-

aided software engineering tools (del Á guila and del Sagrado, 2015). That is
the reason we include in this paper not only the probabilistic model and how it
has been validated but also the integration of the model in an academic CARE
tool InSCo-Requisite (Orellana et al., 2008) that has been extended with a new
functionality.

5

{ · · · }

i=1

3 A Probabilistic Requirements Engineering so-

lution

Bayesian networks (BNs) have been used for decision making in SE for many
years. Bayesians networks (Jensen, 2007; Kjaerulff and Madsen, 2007) allow us
to represent graphically and concisely knowledge about an uncertain domain.
A Bayesian network has:

• a qualitative component, G = (U, A), which is a directed acyclic graph

(DAG), where the set of nodes, U = V1, V2, , Vn , represents the sys-
tem variables, and the set of directed edges, A, represents the existence of
dependences between variables

a quantitative component, P , which is a joint probability distribution over
U that can be factorized according to:

P (V1, V2, · · · , Vn) = Πn P (Vi|Pa(Vi)) (1)

where P (Vi|Pa(Vi)) is the conditional probability for each variable Vi in
U given its set of parents Pa(Vi) in the DAG.

The structure of the associated DAG determines the dependence and indepen-
dence relationships among the variables. Besides the local conditional prob-
ability distributions measure the strength of the direct connections between
variables.

A BN can be used as a predictor simply by considering one of the variables
as the class and the others as features that describe the object that has to be
classified. The posterior probability of the class is computed given the features
observed. The value assigned to the class is the one that reaches the highest
posterior probability value. A predictor based on a BN model provides more
benefits, in terms of decision support, than traditional predictors, because it
can perform powerful what-if problem analyses.

3.1 Bayesian Network Requisites

BNs are very useful in SE, since its representation of causal relationships among
variables is meaningful to software practitioners (Harman, 2012), (Misirli and
Bener, 2014). A specific case of use of this AI technique in requirements work-
flow is the Bayesian network Requisites (del Sagrado and del Á guila, 2010). It
has been built, through interaction with experts and using several information
sources, such as standards and reports. Its aim is to provide developers an aid,
under the form of a probabilistic advice, helping them at the time of making a
decision about the stability of the current requirements specification. Requisites
provides an estimation of the degree of revision for a given requirements speci-
fication (i. e. SRS). Thus, it helps the process of identifying if a requirements
specification is stable and does not need further revision (i.e. if it is necessary
or not to perform a new DDV cycle).

•

6

Figure 1: Bayesian Network Requisites.

The structure of Requisites (see Figure 1) contains variables (see Table 1)
and dependencies in order to assess the goodness of SRS. Once the structure was
established, the probability values, that define the quantitative part of the net-
work, were fixed with the aid of two software engineers in an interview-evaluation
cycle. Once the values have been computed, they will input as evidence and the
propagation of this belief over the network will be used to determine whether
the requirements specification should or should not be revised.

It is worth noting some of the relationships between variables that occur in
the network. Thus, if the ’degree of commitment’ (i.e. the number of require-
ments that have to be agreed) increases, then the level of ’specificity’ will drop.
If stakeholders have little ’experience’ in the processes of requirements engi-
neering, it is more likely to obtain requirements which are ’unclear’ in terms of
cost/benefits. The ’requirement completeness’ and the ’homogeneity of the de-
scription’ are influenced by the ’experience of software engineers’ in the domain
of the project and by the ’stakeholders expertise’ in the processes or tasks of re-
quirements engineering. If experience is high, the specification will be ’complete
and homogeneous’ because developers have been able to describe the require-
ments with the same level of detail all requirements they have been discovered.
Finally, the ’requirement variability’ represents the number of changing require-
ments. A change in the requirements will be more likely to occur if ’unexpected
dependencies’ are discovered or if there are requirements that do not add any
value to the end software or if there are missing requirements or if requirements
have to be negotiated.

There are free software packages for the construction and use of Bayesian
networks. In this work, we used Elvira (Elvira Consortium, 2002), a package
that allows the implementation of a Bayesian Network model using Java classes

Table 1: Variables in Requisites (del Sagrado and del Águila, 2010)

Variable Description Value

Stakeholders′
expertise

Represents the degree of familiarity that stakehold-
ers have in respect to Requirements Engineering
processes. If stakeholders have already collaborated
in other projects, using techniques and skills of the
Requirements Engineering discipline they will play
a clearer role and will commit fewer errors.

High,
Medium,
Low

Domain ex-
pertise

Expresses the level of knowledge that the develop-
ment team has about the project domain. When
developers use the same concepts than stakehold-
ers, communication will be correct and it will be
required a smaller number of iterations

High,
Medium,
Low

Reused
require-
ment

Checks if there are reused requirements. The reuse
tries to reduce the development cost by enhancing
the productivity of the development team. Thus, if
the number of requirements that come from reusable
libraries is high, in general, specification of the re-
quirements does not need new iterations.

Many,
Few,
None

Unexpected
dependen-
cies

In some cases, unexpected dependencies or relation-
ships can appear between requirements or groups of
them. This fact usually involves a new revision of
the specification of the requirements.

Yes,
Non

Specificity Represents the number of requirements that have
the same meaning for all stakeholders. That is, if
stakeholders use the same semantic, we will need
less revision and a shorter process of negotiation in
order to reach a commitment.

High,
Medium,
Low

Unclear
cost/benefit

Represents that stakeholders or developers include
requirements that do not have direct quantifiable
benefits for the business or the organization in which
the software to be developed will operate.

High,
Medium,
Low

Degree of
commit-
ment

Represents the number of requirements that have
needed a negotiation to be accepted. The require-
ments of a project are a complex combination of
requirements from different stakeholders, and some
of them can generate conflicts that unbalance the
specification.

High,
Medium,
Low

Homogeneity
of the

description

A good SRS must be described at the same level
of detail. If some requirements have been described
in a detailed way, all the requirements of this SRS
should be described at the same level of detail. If
there is not homogeneity, the SRS will need to be
revised.

Yes,
Non

Requirement
complete-
ness

Indicates if all significant requirements have been

elicited and/or specifie7d.

High,
Medium,
Low

Requirement
variability

Represents that requirements have suffered changes.
If the specification of a requirement changes, it
is quite possible that this modification will affects
the whole SRS, and an additional revision is likely
needed.

High,
Medium,
Low

Degree of Is the value predicted by Requisites and it indicates Yes,

8

to support the model itself and the inference process needed to use it. However,
from a practical point of view, the integration of a built network within a soft-
ware system is not trivial, because it is necessary to define the communication
paths between both components by matching variables and results.

3.2 Validation of Requisites

The Bayesian network Requisites makes a prediction indicating whether a re-
quirements specification is sufficiently accurate or requires further revision. The
inference process, that uses the evidences offered by the metrics calculated over
the current version on the SRS, to calculate the marginal probability distribu-
tion of the variable ’degree of revision’.

A real world large scale dataset is adopted to evaluate the approach of Requi-
sites. RALIC is the acronym for Replacement Access, Library and ID Cars and
it was a large-scale software project to replace the existing access control system
at University College London and consolidate the new system with library access
and borrowing (Lim and Finkelstein, 2012). The objectives of RALIC include
replacing existing access card readers, printing reliable access cards, managing
cardholders information, providing access control, and automating the provi-
sion and suspension of access and library borrowing rights. The stakeholders
involved in the project had different and sometimes conflicting requirements.
The project duration was 2.5 years, and the system has already been deployed
at University College London. We have obtained the evidence values measuring
this dataset and these metrics are injected to the BN to analize the inference
through the probabilistic model.

RALIC requirements were organised into three levels of hierarchy: project
objectives, features, and specific requirements. A feature that contributed to-
wards a project objective was placed under the project objective, and a specific
requirement that contributed towards the feature was placed under the feature.
These requirements organization indicates the level of detail at which require-
ments are described, i.e. the homogeneity of the description. In order to set the
homogeneity of the description value, we can study the level of detail reached
by each of the project objectives. We study the proportion of the requirements
linked to a project objective that have been described in terms of specific re-
quirements. Figure 2 shows in a box-plot the distribution of the percentage
of detail applied to describe project objectives. The 75 percent of project ob-
jectives have been described in terms of specific requirements in a percentage

above 50.96. This indicates that the branches in the hierarchical structure of the
project have a similar depth, which translates into an homogeneous description.
Thus, the value of Homogeneity of description is set to ’yes’ in Requisites.

Stakeholders are asked to rate requirements rather than rank all of them,
because previous work has shown that large projects can have hundreds of re-
quirements, and stakeholders experienced difficulty providing a rank order of
requirements when there are many requirements (Lim and Finkelstein, 2012).
Each stakeholder assigns ratings to the set of requirements identified by the
project team. A rating is a number on an ordinal scale (e.g., 0 − 5) reflecting

9

{ }

{ } { }

0 10 20 30 40 50 60 70 80 90 100 110

Figure 2: Distribution of the percentage of detail applied to describe project
objectives.

the importance of the requirement to the stakeholder (e.g., 0 means that the
requirement is not considered by the stakeholder; 1 means that the requirement
is not very important to the stakeholder; 5 means that the requirement is very
important).

Specificity has to deal with the meaning of requirements for stakeholders.
So, the more number of stakeholders agree on the meaning of requirements,
the lesser revision we need. In order to measure the specificity value, we used
a consensus measure, the average of the ratings assigned to a given project
objective. That is to say, the higher the average rating of a project objective
is, the higher specificity we have. Figure 4.a shows the distribution of the
average rating of each project objective, whilst figure 4.b shows the distribution
of the specificity of each project objective. The specificity value of each project
objective has been computed directly from its average rating by adapting the

range from 0, 1, 2, 3, 4, 5 to 1(low), 2(medium), 3(high) . As result of these
process the value of specificity will have to set to ’high’ in Requisites, because
the 90% of the project objectives map to an specificity value of ’high’.

The stakeholder priority data for RALIC was also collected (Lim and Finkel-
stein, 2012). The stakeholders were asked to recommend people whom they
think are stakeholders in the project. Their recommendations were then used
to build a social network, where the stakeholders were nodes and their recom-
mendations were links. The output was a prioritized list of stakeholders and
their requirements preferences.

Stakeholders were requested, through the OpenR questionnaire, to make rec-
ommendations on the salience (i.e. level of influence on the system) of other
stakeholders. The salience of a stakeholder is assigned as an ordinal variable

whose domain is the set 1, 2, 3, 4, 5, 6, 7, 8 . Salience an expertise are in straight
relationship, as the influence on a system an Stakeholder has, can be considered
also as a measure of its level of expertise. In order to get an overall estimation of
the stakeholders’ expertise, first we have resumed the recommendations received

10

60

55

50

45

40

35

30

25

20

15

10

5

0

a b c d e f g h i j

Figure 3: Ratings assigned by stakeholders to project objectives.

8 10

7 9

8
6

7

5
6

4 5

3 4

3
2

2

1
1

0

0 1 2 3 4 5

0

1 2 3

a) Stakeholders rating b) Specificity

Figure 4: Distribution of project objectives’ rating and specificity.

11

{ }

60 140

50 120

100
40

80

30

60

20
40

10 20

0

1 2 3 4

5 6 7 8

0

1 2 3

a) Saliency b) Expertise

Figure 5: Distribution of stakeholders’ salience and expertise.

by each stakeholder as the average (Figure 5.a shows the stakeholders’ salience
distribution computed in this way). Then the expertise of each stakeholder
is obtained mapping her/his salience to the set 1(low), 2(medium), 3(high) .
Figure 5.b shows the stakeholders’ expertise distribution computed in this way.
It can be observed that 92% of the stakeholders receive a ’low’ expertise recom-
mendation, thus the value of stakeholders’ expertise is set to ’low’ in Requisites.

Then, we need to study the behaviour of the BN Requisites when the data
extracted from RALIC dataset are incorporated to the model. The a priori
probabilities are shown in Figure 1. If the value of the variable ’homogeneity of

the description’ is set to ’yes’ the probability of the value ’no’ to the degree of
revision will arise to 0.54. That is, the more uniform is the overall description
of the requirements, the less revision is needed. This trend is reinforced when
we included the evidence value for ’specificity’, the ’degree of revision’ gets
0.45, 0.55 for ’yes’ and ’no’ respectively. Nevertheless, because of the ’expertise
for stakeholders’ reach a value of ’low’ the final prediction, shown in Figure 6,
is that we have to review the SRS. The final values are 0.52 for ’yes’ and 0.48

for ’no’.

4 Integrating Requisites in a CARE tool

One of the bigger breakthroughs in requirements management workflow was
produced when we stopped thinking of documents and started thinking about
information. So, to be able to handle this information you have to resort to
databases, specifically to documentary databases that have evolved into what
nowadays are called CARE tools. There is a raising number of CARE tools that
are currently available on the market (de Gea et al., 2012). Among them, the
best known are IRqA (Visure Solutions, 2012), Telelogic DOORS (IBM, 2012)
and Borland Caliber (Borland Software Corporation, 2016). InSCo-Requisite is
an academic web CARE tool, developed by DKSE (Data Knowledge and Soft-
ware Engineering) group at the University of Almer´ıa, which supports partially

12

Figure 6: Requisites state after including the evidence obtained from RALIC.

the requirements development stage (Orellana et al., 2008). It provides a ba-
sic functionality where groups of stakeholders collaboratively work through the
Internet in order to define the SRS. Because of the opportunity to easily make
changes in this tool, we have an exceptional chance to tackle the integration
of AI techniques in a CARE tool. Besides, this solution successfully instanti-
ates an architecture for the seamless integration of a CARE (Computer Aided
Requirement Engineering) tool in order to manage requirements with some AI
techniques (del Sagrado et al., 2011).

4.1 InSCo-Requisite

Commercial CARE tools offer powerful solutions to capture the requirements
of a software development project and also include methods to analyze the
requirements or to monitor the changes on each requirement. The purpose
of InSCo-Requisite is not to compete against these commercial tools. It has
been developed within an academic setting to deal with the problem of the
management of software projects that include components based and not based
on knowledge (del Á guila et al., 2010; Cañ adas et al., 2009). Its main goal is
to offer, under a distributed environment, an intuitive and easy-to-use tool to
manage requirements.

Requirements are more than a list of ’the system shalls’. In a broad sense,
requirements are a network of interrelated elements or artifacts. These arti-
facts (objectives, constraints, priorities, ...) must be modified and managed
during the task of discovering requirements. Our tool guides requirements man-
agement by means of templates, which can be classified into two groups for
functional requirements: objectives, which specify business-related information,

and user requirements, which are related to customer needs. At the lowest level

13

Figure 7: Conceptual model of InSCo-Requisite.

14

Figure 8: Generic Architecture.

of refinement, templates are fulfilled using natural language and scenarios. Non

functional requirements have their own template to collect the quality attributes
and the constraints. Figure 7 shows the InSCo-Requisite artifact model. Users
can be assigned to various projects, which are organized into folders that per-
mit a hierarchical structuring of the requirements. A user can participate in a
project by proposing new requirements, changes in requirements or comments
on them (both own and from other).

We can represent relationships between requirements, as those defined be-
tween objectives and users’ requirements or between. The tool maintains a
hierarchical structure of templates, which shows a global perspective of the
project content and displays parent/child relationships between templates in a
explorer window.

InSCo-Requisite offers some facilities for informal collaboration through rich
contextual discussions about requirements. Users can start discussions about
any of the existing requirements in order to propose changes, improvements,
or discuss about the template content. Therefore the tool provides access to a
change log for every requirement, stakeholder or project. For any requirement,
there is no limit in terms of events that can be assigned to it or the number of
changes or comments that a stakeholder can make on it.

Java EE (Java Enterprise Edition) is the platform chosen for developing and
deploying InSCo-Requisite. It has a multi-layered architecture based on Struts,
an open-source multi platform framework created by the Apache Software Foun-
dation. The architecture adopted in the first version of the tool separates pre-
sentation logic from business logic and persistent storage. The interface layer
represents the client side, that is to say, web browsers that send requests to the
application server at the service layer, using the HTTP (HyperText Transfer
Protocol). This layer is also in charge of representing the data received from

15

the service layer, basically under the form of HTML (HyperText Markup Lan-
guage), CSS (Cascading Style Sheet) and Javascript code. The service layer is
composed by an Apache Tomcat server that gives support to the Java EE Plat-
form for the InSCo Requisite application. The server processes the incoming
requests, executes the appropriated Java servlets, and exchanges data with the
data layer by means of a JDBC (Java DataBase Connection). Finally, the data
layer, is in charge of keeping the data persistence and is composed by an Oracle
Database Server.

4.2 Connection between Requisites and InSCo-Requisite

It would be considerably helpful, for any development team, to have AI tech-
niques (i.e. Bayesian network) available, as an aid, inside a CARE tool (del
Sagrado et al., 2012). The BN Requisites aids in the requirements definition
process during a specific software project, as we have shown in section 3.2.
Since the requirements management task is performed by means of a CARE
tool (InsCo-Requisite), this tool must provide the information required by the
network (evidence) in order to obtain the value for the variable (e.g. degree of
revision) that we want to predict.

But, AI techniques and CARE tools have been developed independently of
each other. Therefore, it is necessary to define a communication interface be-
tween them, preserving the independent evolution of both areas and achieving
a synergetic profit between them (del Sagrado et al., 2011). The CARE tool
is in charge of the management of all the information related to the devel-
opment project (requirements, customers, etc) which is stored in a database.
Next, the communication interface connects the CARE tool and the Bayesian
network, interchanging the required information needed for the execution of
the appropriated processes and adapting the languages used by each tool (see
figure 8). Thus, the task of validating requirements receives metrics from the
SRS and returns an estimation of the degree of revision for the SRS, that is
the knowledge-based tool helps the requirements validation task according the
DDV cycle. All of these communication processes are performed through XML
files.

The BN Requisites makes a prediction indicating whether a requirement
specification is sufficiently accurate. The evidences (i.e. the observed variables)
are provided by the CARE tool InSCo-Requisite, that is in charge of extracting
the values of variables from: the data about projects, requirements, users’ ac-
tivity and so on. Table 2 shows how these evidences are obtained. For example,
the ’stakeholders expertise’ is estimated by analyzing all the projects in which
the stakeholders of the current project have participated on, together with their
degree of participation and the requirements that have been affected by this
participation; the ’specificity’ is estimated by counting the number of changes
or comments made on requirements by two or more stakeholders. Observe that
currently, some variables cannot be obtained from the InSCo-Requisite tool,
and must be estimated by users, as e.g. ’domain expertise’ or ’reused require-
ment’, but our architecture allows to include these metrics in Requisites when

16

Table 2: Connections between measures in InSCo-Requisite and Requisites

Requisite Vari-
ables

Measures in InSCo-Requisite

Stakeholders′ ex-
pertise

For every stakeholder in the project counts:

Projects to which stakeholders have been

assigned.
Requirements with stakeholders participa-

tion.

High,

Medium,

Low

Domain expertise Manual assignment. High,
Medium,
Low

Reused require-
ment

InSCo-Requisite does not support it. Many,
Few,
None

Unexpected de-
pendencies

InSCo-Requisite does not support it. Yes,
No

Specificity Number of ACCEPTED requirements in
which:

Several stakeholders have participated.

High,

Medium,

Low

Unclear
cost/benefit

Number of requirements whose:

Status has changed (ACCEPTED-

REJECTED)
Comments have been sent by several stake-

holders.

High,

Medium,

Low

Degree of commit-
ment

Number of requirements in which:

Several stakeholders have sent comments
Several stakeholders have performed

changes

High,

Medium,
Low

Homogeneity of
the description

All the branches in the hierarchical structure
of the project have a similar depth.

Yes,
No

Requirement com-
pleteness

Level of fulfilment of template fields of all the
requirements.

High,
Medium,
Low

Requirement vari-
ability

Number of changes registered on requirements. High,
Medium,
Low

17

Figure 9: A processes model for Requirements Engineering

InSCo-Requisite would be able to measure them. Once these values have been
collected, it is necessary to combine and discretize them in order to establish a
correspondence with the values of the variables in Requisites (see last column
in Table 2).

4.3 A Use Case

The requirements engineer executes several times the DDV cycle until gets a
complete requirements specification. The whole process is shown in Figure
9, and the enhancement, obtained by the integration of Requisites in InSCo-
Requisite, specifically concerns to the task of validating requirements.

When an aid request for validating requirements starts, InSCo-Requisite asks
Requisites for its set of variables. At this point, requirements engineer chooses
one of two modes: analytic or exploratory. The analytic mode (see Figure 10)
is used when the user wants to obtain the posterior probability distribution
of any target variable, given some evidence (i.e. an assignment of the values
of some of the other variables). In exploratory mode (see Figure 11) the user
can choose a target variable and the system returns the list of variables that
isolates it from the rest of the variables in the network (i.e. its Markov blanket)
together with the measures (see Table 2) obtained by InSCo-Requisite. Then
the posterior probability of the target variable, given the fixed evidences for

18

Figure 10: Analityc mode of InSCo-Requisite

the relevant variables, is obtained. In both modes, always is computed the
posterior probability distribution of ’degree of revision’ because it indicates us
if the current SRS needs further revision.

Consider a situation in which the requirements engineer wants to check
whether the current SRS can be considered as a baseline of a software project.
In the analytic mode, the list of variables in Requisites is displayed and InSCo-

Requisite can extract values of variables (displayed in column Project value) by
applying the correspondence (see Table 2) between them and different metrics.
The engineer can consider these values as evidences and can set them manu-
ally in the column Evidence (see Figure 10). The posterior probability of any
target variable, given the assignment of evidences, can be obtained by clicking
on Propagate to the network. In the case depicted in Figure 10, the probability

value of 0.775 associated to the variable degree of revision indicates that the
current SRS has to be reviewed.

Now, suppose that the requirements engineer is interested on ’requirements
completeness’. The exploratory mode allows the engineer to choose this variable
as the target. Automatically its set of neighbouring nodes (i.e. the variables
that shield it from the rest of the network) are displayed in the column Relevant

variables(see Figure 11). The evidence values of each one of them can be selected
by means of drop-down list of values. Finally, the a posteriori probability of
’degree of revision’, the target variable and all of its neigbours that have not

receive evidence can be obtained by clicking on Propagate to the network.
The analytic mode lets find out what are the aspects of the project on which

the developer should focus to improve the specification of requirements and
to afford the next phases of software development with greater guarantees of
success.

19

Figure 11: Exploratory mode of InsCo-Requisite

Thus, after setting the degree of revision, the developer can compare the
values of the variables obtained by propagation in the Bayesian network, with
the values obtained by direct measurement in the CARE tool. Based on this
comparison, the developer will take corrective actions. Moreover, exploratory
mode allows the engineer to focus on a single variable. In this way, the improve-
ments to be made in project management can focus on actions that directly
affect on the set of measures that influence this variable in order to keep it on
a specific quality level.

5 Conclusions

Complex decision-making is a prominent aspect of Requirements Engineering
since it is mainly a human activity that has the least technical load in the whole
software project. In this work we have defined how to enhance the requirements
specification development through the integration of a Bayesian network in a
requirements management tool. The approach we have taken does not consist
on solving a particular problem. Instead of it, we have instantiated an architec-
ture that can be adapted to other models of reasoning and other software tools.
This has been achieved by establishing a communication interface, between the
academic CARE tool InSCo-Requisite and the Bayesian network Requisites,
within a multilayer architecture. Besides we have proved the validity of Requi-
sites not only by his integration on InSCo-Requisite, but also with the use of the
evidences extracted from a large scale project, RALIC. The metrics calculated
using this project data allow us to successfully predict the need of revision of
the SRS.

20

The integration between Requisites and InSCo-Requisite provides the decision-
maker a way of exploring the state of the work carried out on requirements using
both analytic and exploratory model to improve the overal results of this stage.

In the next future, we plan to make an empirical evaluation of the enhanced
InSCo-Requisite tool. We also want to refine the Bayesian network Requisites
using the data recorded by this tool and to extend InSCo-Requisite function-
alities to other requirements management tasks as traceability, change analysis
and risk assessment.

Acknowledgment

This research has been funded by the Spanish Ministry of Education, Culture
and Sport under the projects TIN2010-20900-C04-02, TIN2015-71841-REDT.

References

Abran, A., Moore, J., Bourque, P., Dupuis, R., and Tripp, L. (2004). Guide to

the Software Engineering Body of Knowledge. IEEE Computer Society, Los
Alamitos.

Alexander, I. and Beus-Dukic, L. (2009). Discovering requirements. How to

specify products and services. Wiley and Sons Ltd, New York, USA.

Bagnall, A. J., Rayward-Smith, V. J., and Whittley, I. (2001). The next release

problem. Information & Software Technology, 43(14),883–890.

Borland Software Corporation (2016). Caliber. Manage Agile require-
ments through visualization and collaboration. http://www.borland.com/en-
GB/Products/Requirements-Management/Caliber/. Accessed 1 Mars 2016.

Cañ adas, J., Orellana, F. J., del Á guila, I., Palma, J., and Tú nez, S. (2009). A
tool suite for hybrid intelligence information systems. In Proc. of Conferencia

de la Asociación Españ ola para la Inteligencia Artificial (CAEPIA’09), pages
9–13, Sevilla, Spain.

Castro-Herrera, C., Cleland-Huang, J., and Mobasher, B. (2009). Enhancing
stakeholder profiles to improve recommendations in online requirements elic-

itation. atlanta, georgia, usa. In 17th IEEE International Requirements En-

gineering Conference, (RE ’09), pages 37–46, Atlanta, Georgia, USA.

Cheng, B. H. C. and Atlee, J. M. (2007). Research directions in requirements
engineering. In Future of Software engineering, (FOSE), Minneapolis, MN,
USA.

de Freitas, F. G. and de Souza, J. T. (2011). Ten years of search based software
engineering, A bibliometric analysis. In Search Based Software Engineering,
pages 18–32. Springer Berlin Heidelberg.

http://www.borland.com/en-

21

de Gea, J. M. C., Nicols, J., Alemn, J. L. F., Toval, A., Ebert, C., and Viz-
cano, A. (2012). Requirements engineering tools, Capabilities, survey and
assessment. Information and Software Technology, 54(10),1142–1157.

del Á guila, I. M. and del Sagrado, J. (2011). Requirement risk level forecast
using bayesian networks classifiers. International Journal of Software Engi-

neering and Knowledge Engineering, 21(2),167–190.

del Águila, I. M. and del Sagrado, J. (2015). Bayesian networks for enhancement
of requirements engineering, a literature review. Requirements Engineering,
pages 1–20.

del Águila, I. M., del Sagrado, J., Túnez, S., and Orellana, F. J. (2010). Seamless
software development for systems based on bayesian networks - an agricultural

pest control system example. In Fifth International Conference on Software

and Data Technologies, (ICSOFT), Volume 2, pages 456–461, Athens, Greece.

del Sagrado, J. and del Á guila, I. M. (2010). A bayesian network for predicting
the need for a requirements review. In Meziane, F. and Vadera, S., editors,
Artificial intelligence applications for improved software engineering develop-

ment, new prospects, pages 106–128, New York. IGI Global.

del Sagrado, J., del Águila, I. M., and Orellana, F. J. (2011). Architecture for the
use of synergies between knowledge engineering and requirements engineering.
Lecture Notes in Computer Science, 7023,213–222.

del Sagrado, J., del Águila, I. M., and Orellana, F. J. (2012). Metaheuristic aided
software features assembly. In 20th European Conference on Artificial Intel-

ligence (ECAI 2012), Including Prestigious Applications of Artificial Intelli-

gence (PAIS-2012) System Demonstrations Track, pages 1009–1010, Mont-
pellier, France.

del Sagrado, J., del Á guila, I. M., and Orellana, F. J. (2015). Multi-objective
ant colony optimization for requirements selection. Empirical Software Engi-

neering, 20(3),577–610.

Dumitru, H., Gibiec, M., Hariri, N., Cleland-Huang, J., Mobasher, B., Castro-
Herrera, C., and Mirakhorli, M. (2011). On-demand feature recommendations
derived from mining public product descriptions. In 33rd International Con-

ference on Software Engineering (ICSE), pages 181–190, Waikiki, Honolulu,
Hawaii, USA.

Elvira Consortium (2002). Elvira, An environment for probabilistic graphical
models. In First International Workshop on Probabilistic Graphical Models

(PGM02), pages 222–230, Cuenca, Spain.

Greer, D. and Ruhe, G. (2004). Software release planning, an evolutionary and
iterative approach. Information & Software Technology, 46(4),243–253.

22

Harman, M. (2012). The role of artificial intelligence in software engineering.
In Proceedings of the First International Workshop on Realizing AI Synergies

in Software Engineering, pages 1–6. IEEE Press.

Harman, M., Mansouri, S. A., and Zhang, Y. (2012). Search-based software
engineering: Trends, techniques and applications. ACM Computing Surveys

(CSUR), 45(1),11.

IBM (2012). Rational DOORS. http://www-03.ibm.com/software /prod-
ucts/es/ratidoor. Accessed 1 mars 2016.

Jensen, F. V. (2007). Bayesian Networks and Decision Graphs. Information
Science and Statistics. Springer, corrected edition.

Karlsson, J. and Ryan, K. (1997). A cost-value approach for prioritizing re-
quirements. Software, IEEE, 14(5),67–74.

Kastro, Y. and Bener, A. B. (2008). A defect prediction method for software
versioning. Software Quality Journal, 16(4),543–562.

Kjaerulff, U. B. and Madsen, A. L. (2007). Bayesian Networks and Influence

Diagrams: A Guide to Construction and Analysis. Springer Publishing Com-
pany, Incorporated, 1st edition.

Kotonya, G. and Sommerville, I. (1998). Requirements Engineering: Processes

and Techniques. Wiley, New York, NY, USA.

Lim, S. L. and Finkelstein, A. (2012). Stakerare: using social networks and
collaborative filtering for large-scale requirements elicitation. Software Engi-

neering, IEEE Transactions on, 38(3),707–735.

Menzies, T. and Shepperd, M. (2012). Special issue on repeatable results in
software engineering prediction. Empirical Software Engineering, 17(1),1–17.

Meziane, F. and Vadera, S. (2010). Artificial intelligence applications for im-

proved software engineering development: new prospects. IGI Global, New
York, USA.

Misirli, A. T. and Bener, A. B. (2014). Bayesian networks for evidence-based
decision-making in software engineering. Software Engineering, IEEE Trans-

actions on, 40(6),533–554.

Mısırlı, A. T., Bener, A. B., and Turhan, B. (2011). An industrial case study of
classifier ensembles for locating software defects. Software Quality Journal,
19(3),515–536.

Nicol ás, J. and Toval, A. (2009). On the generation of requirements specifi-
cations from software engineering models: A systematic literature review.
Information and Software Technology, 51(9),1291–1307.

http://www-03.ibm.com/software

23

Orellana, F. J., Cañ adas, J., del Á guila, I. M., and Tú nez, S. (2008). Insco
requisite - a web-based rm-tool to support hybrid software development. In
10th International Conference on Enterprise Information Systems (ICEIS)

(3-1), pages 326–329, Barcelona, Spain.

Shirabad, J. S. and Menzies, T. (2005). Predictor models in software engineering
(promise). In 27th international conference on Software engineering, (ICSE
’05), pages 692–692, New York, NY, USA. ACM.

Sommerville, I. (2011). Software engineering. Pearson Education, Inc., Boston,
MA, USA, 9 edition.

Standish Group (2008). Chaos report.(2002).

Tosun, A., Bener, A., and Akbarinasaji, S. (2015). A systematic literature
review on the applications of bayesian networks to predict software quality.

Software Quality Journal, pages 1–33. cited By 0; Article in Press.

Visure Solutions (2012). Visure Requirements. Software for Requirements Engi-
neering. http://www.visuresolutions.com/visure-requirements-software. Ac-
cessed 1 mars 2016.

Wen, J., Li, S., Lin, Z., Hu, Y., and Huang, C. (2012). Systematic litera-
ture review of machine learning based software development effort estimation
models. Information and Software Technology, 54(1),41–59.

Wiegers, K. and Beatty, J. (2013). Software requirements. Pearson Education.

Zhang, Y., Harman, M., and Mansouri, A. (2012). The SBSE repository: A
repository and analysis of authors and research articles on search based soft-
ware engineering. crestweb. cs. ucl. ac. uk/resources/sbse repository.

http://www.visuresolutions.com/visure-requirements-software

