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Abstract
Web applications are deployed on machines around the globe and offer almost universal
accessibility. These applications assure functional interconnectivity between different com-
ponents on a 24/7 basis. One of the most important requirements is data confidentiality and
secure authentication. However, implementation flaws and unfulfilled requirements often
result in security leaks that malicious users eventually exploited. In this context, the applica-
tion of different testing methods is of utmost importance in order to detect software defects
during development and to prevent unauthorized access in advance. In this paper, we con-
tribute to test automation for web applications. In particular, we focus on using planning
for testing where we introduce underlying models covering attacks and their use in testing
of web applications. The planning model offers a high degree of extendibility and config-
urability and as well overcomes limits of traditional graphical representations. New testing
possibilities emerge that eventually lead to better vulnerability detection, therefore ensuring
more secure web services and applications.

Keywords Planning · Security testing · Model-based testing · Web applications

1 Introduction

Testing for vulnerabilities in software is without any doubt an important task during soft-
ware development. Despite this fact, it is interesting to note that over the past few years
the same vulnerabilities remain on the top 10 list of most common security leaks in web
applications (OWASP 2018). The reasons behind may be human implementation errors or
insufficient security mechanisms on the side of the application that are caused by lack of
security knowledge but also insufficient tool support.

SQL injections (SQLI) and cross-site scripting (XSS) are among the most common
attacks in the domain of web applications, despite increased awareness of their potential
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damage. In both attacks, malicious user inputs eventually get bypassed by the applications’
input filters, usually resulting in theft of confidential data or causing other harm to the user
or the system itself. As a consequence, there are corresponding costs needed for repairing
the software but also loss of trust in the system, both of which can be critical for service
providers. Therefore, means for improving security are of great importance and have to be
implemented.

In this paper, we contribute to this challenge and provide an approach that is based
on automated planning, which originates from classical artificial intelligence (AI). The
planning was initially intended to be used in robotics and intelligent agents (Russell and
Norvig 1995). However, there has been research using planning in the context of secu-
rity testing, e.g. see Durkota and Lisy (2014) and Backes et al. (2017). In these papers,
sequences of actions are generated in order to test certain types of systems for intrin-
sic leaks. In general, security testing of a system is done by checking whether a running
system can be tested or hacked by malformed inputs or whether it can be broken down
completely.

Other techniques include combinatorial testing (CT). One of the main motivations behind
CT is test set reduction (Kuhn et al. 2015; Simos et al. 2016; Raunak et al. 2017), where a
security leak is eventually detected using a reduced number of tests. This implies a reduc-
tion of testing time but still ensures the ability to identify causes of vulnerabilities. Some
other techniques rely on models, either of the application (Krämer and Legeard 2016;
Felderer et al. 2016) or of the attacks themselves (Duchene et al. 2014; Shameli-Sendi et al.
2017). A system under test (SUT) is checked regarding whether it behaves in line with
its specification using a graphical representation that corresponds to the SUT’s expected
behavior.

In this paper, we contribute to the application of AI for security testing of web appli-
cations, which makes use of automated planning for obtaining test suites to test common
XSS and SQLI vulnerabilities. The proposed paper represents an extension to our previ-
ously presented approach in Bozic and Wotawa (2018). In addition to test case generation,
we discuss a test execution framework encompassing a crawler, which helps in exhaustive
testing of the SUT. The idea behind our approach is to automatically obtain tests that mimic
unexpected user sequences and input values for detecting vulnerabilities. We elaborate the
approach in detail using a running example and also discuss first empirical results based on
using our approach for testing example applications.

We organize the paper as follows: Section 2 explains the intention of the paper, whereas
in Section 3, we introduce planning for security testing and outline the basic concepts of
automated planning. Afterwards, we discuss the functionality of the automated test exe-
cution framework in Section 5. In Section 6, we illustrate our approach using an example
followed by an empirical evaluation. In Section 8, we discuss related work and finally
conclude the paper in Section 9.

2 Approach overview

The main goal of this paper is to provide a testing approach that uses planning on multiple
levels. In the proposed approach, we split test cases into two distinct types: first, test cases
that instruct the testing system what to do, which serve as testing guidelines; second, test
cases that contain concrete values that will be processed by a SUT. The former are labeled
abstract test cases, whereas the latter are described as concrete tests. Thus, the test genera-
tion process will be split into two layers with distinguished mechanisms. The results from
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both implementations will consist of two distinct input sets, which will be combined before
test execution starts.

One of the main proposals in this paper is planning models. Models have been already
used in testing for multiple purposes (Krämer and Legeard 2016). In most cases, these mod-
els represent graphical depictions that come in two flavors: In case of white-box testing,
the model depicts the internal structure or expected behavior of a SUT. Under such circum-
stances, test cases are generated from the model, thereby comparing obtained results with
expected ones. On the other hand, black-box testing approaches lack any information about
the SUT. In these cases, a model can be inferred from the system’s behavior or, from the
offensive point of view, a model depicts attacks against such system. Our approach follows a
black-box definition where models are used for generation of attacks against a system. Plan-
ning models encompass their own unique set of definition languages. As will be explained
throughout the paper, advantages of such models can be summarized as follows:

– Exploration: Detection of potential paths and unintended behavior in a system. This
feature plays an important role in negative testing.

– Model reduction: Avoidance of model explosion in case of complex systems
– Configurability: Conditions can be set on individual definitions of the model that act as

constraints and guide the planning process. Such mechanism can produce more mean-
ingful inputs for a certain domain. This represents a stark contrast to concepts that rely
on (semi-) randomness (Stephens et al. 2016) or overly permutations (Raunak et al.
2017).

– Extendibility: Manipulations of the model can be added easily, eventually resulting in
wide-ranging consequences.

We use such planning representations in both layers of the test generation process. In
both cases, the model is adapted individually for its specific purpose. Although planning
represents the bulk of this paper, it represents one part in an overall testing framework. This
implementation connects the individual parts and executes the testing process. In general,
the overall structure of the approach can be split into multiple challenges:

1. Generation of abstract test cases: Planning model as attack model
2. Generation of concrete test cases: Planning gives guidelines for generation of concrete

values.
3. Test execution: Combine and execute the results from (1) and (2).

Each task will be addressed separately in the following sections. However, first we will
give a short introduction of the basic concepts of AI planning.

3 Planning for testing

Automated planning has been already used in testing in general and security testing in
particular. We already presented an adaptation of planning for security testing of web appli-
cations (see Bozic and Wotawa 2014, 2018) that we further extended for testing of the
transport layer security (TLS) protocol in Simos et al. (2018). However, in this paper, we
present an improved approach of Bozic and Wotawa (2018) in terms of test case generation
(number and variety of plans) and execution. In previous papers, we made use of planners
that returned only one (optimal) solution for a certain security testing problem, which limits
the potential for detecting failures and vulnerability. Therefore, we extended our approach
and use a different planning system where the plan generation process can be guided by
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the tester. The planning system takes a planning problem as input and thereby eventually
returns a set of solution in the form of plans, where a plan itself comprises a sequence of
actions that lead from an initial to a final state. The initial state is usually an idle state where
the execution of the SUT starts. The final state is a state when the execution terminates,
returning either a passing or a failing test verdict.

In the following, we first formally define the planning problem and afterwards discuss
modeling for security testing. The used underlying definitions for planning originate from
Fikes and Nilson (1971). In our previous work (Bozic and Wotawa 2014), we already
introduced the adaptations necessary to deal with security testing. To be self-contained,
we briefly discuss the underlying definitions starting with the planning problem, which is
defined as follows:

Definition 1 The tuple (P, I,G,A) states a planning problem, where P defines the set
of predicates, I and G are the initial and goal states, and A denotes the set of actions. A
predicate p ∈ P represents a first-order logic formula and is used by a ∈ A. Every state
is specified by predicates that are true in this state. The planning problem is to obtain a
sequence of actions from A leading from an initial state to a goal state.

In case that the preconditions of an action a are true in a certain state S, then it will

be added to the plan. In this case, a will act as a transition to the new state S′, thus S
a−→

S′. The predicates from its postconditions will be valid in S′ and act as the new state’s
precondition.

Definition 2 A solution for a planning problem (P, I,G,A) is a plan that comprises a set

of actions so that I
a1−→ S2

a2−→ . . .
an−→ G.

The definition of predicates and their corresponding conditions will guide the planning
process. Sometimes more solutions do exist for a planning problem. During its search, the
planner decides what path to choose according to the underlying planning algorithm. On
the other hand, if no solution can be produced for a problem, then the planner terminates
further search.

3.1 Planningmodel

In order to specify a planning problem, we create a planning model. In contrast to other
graphical representations, e.g. UML state machines, we describe our model in the Planning
Domain Definition Language (PDDL) (McDermott et al. 1998).

The reasons for this decision are the potential extendibility and configurability of such
planning models. For example, actions can be defined without preconditions, which makes
the overall model more comprehensive. Thus, model explosion can be avoided. New spec-
ifications can be added easily or several models can be combined. Consequently, every
change in the model will result in the generation of diverse plans. Here we are able to obtain
plans with greater variety that eventually improve fault detection. In addition to that, a plan-
ning model might cause execution traces that are usually not defined in a model of the
specification of a SUT.

Regarding PDDL, two descriptions have to be specified, namely:

1. Domain: Comprehends the definitions that are present in every problem
2. Problem: Comprehends the definitions that are valid only in a specific problem
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In general, PDDL uses a type-object hierarchy and the definition of first-order logic
predicates. The objects are used in both specifications and are put as parts of predicates.
Additionally, actions are specified by parameters, pre- and postconditions. The conditions
are defined by predicates and describe when an action is selected and what effects it will
cause when executed.

The problem specification usually defines application specific parameters. However, our
approach keeps both specifications as minimal as possible. The problem defines objects
and the initial and final states. The corresponding problem specification in PDDL looks as
follows.

(define (problem mbtp)
(:domain mbtd)
(:objects x)
(:init (inInitial x))
(:goal (and (inFinished x))))

Listing 1 Problem description in PDDL

The initial state represents the starting point of the test execution. This is the point before
any action has been carried out. On the other hand, the final state is reached when a test case,
i.e. a plan, has been carried out. In reality, the initial state is the point before the execution
framework even accesses a specific URL address of a SUT. The final state is eventually
reached after an attack and all its actions have been carried out and a test verdict is given.
Our specification relies on only one object, x, that takes the role inside a specific state
during execution.

In addition to that, PDDL’s domain encompasses, among others, the definitions of
predicates and actions. Our definition for testing of web applications is given below.

The specification defines all possible states that are encountered during test execution as
predicates. These are used for the definition of actions, together with the already mentioned
object x as a parameter. The action’s pre- and postconditions can be specified by zero, one
or more predicates that guide the plan generation. Actions can be picked multiple times as
part of one plan if the conditions are met. Actually, they are defined in a way that ensures
that many plans can be generated by the planner, for example by omitting or using multiple
conditions. On the concrete level, all actions will be carried out over a HTTP infrastructure,
as will be described in Section 5.

The planning specifications are saved in the form of PDDL files and submitted to a
planning system for constructing a plan. Then, plans are generated by the planner according
to a planning algorithm (see Section 3.2). An example of a generated plan with seven actions
is given below.

[GetSite(x), AttackSQLGet(x), GetSite(x), AttackSQLPost(x),

AttackXSSPost(x), GetSite(x), AttackXSSGet(x)]

As can be seen in this example, the plan comprehends actions as specified in the domain
definition. A generated plan represents an abstract test case that guides the test execution.
In fact, the planning model is a model of potential attacks. To be concise, it comprehends
all actions that can be carried out under certain circumstances. The conditions guide the
plan generation, so the planner will search for all possible sequences that satisfy the cri-
teria. From the practical point of view, this depicts all possible malicious actions that a
user might take for obfuscating a system. It focuses on client-side messages, so it omits
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(define (domain mbtd)
(:requirements

:strips :typing :negative-preconditions)

(:predicates
(ininitial ?x)
(inGotSite ?x)
(inAttackedSQLI ?x)
(inAttackedXSS ?x)
(inFinished ?x))

(:action GetSite
:parameters(?x)
:precondition (and )
:effect (and (inGotSite ?x)))

(:action AttackXSSGet
:parameters(?x)
:precondition (and (inGotSite ?x) (inAttackedSQL ?x)))
:effect (and (inAttackedXSS ?x) (inFinished ?x)))

(:action AttackXSSPost
:parameters(?x)
:precondition (and (inGotSite ?x) (inAttackedSQL ?x))
:effect (and (inAttackedXSS ?x) (inFinished ?x)))

(:action AttackSQLGet
:parameters(?x)
:precondition (and (inGotSite ?x))
:effect (and (inAttackedSQL ?x) (inFinished ?x)))

(:action AttackSQLPost
:parameters(?x)
:precondition (and (inGotSite ?x) (inAttackedXSS ?x))
:effect (and (inAttackedSQL ?x) (inFinished ?x)))

Listing 2 Domain description in PDDL

man-in-the-middle attacks where the attacker emulates the server in front of a victim. Hence,
server-side processes will not be taken into consideration in the planning model. (How-
ever, the reactions from the server to the client’s actions will be checked automatically
by the framework during execution.) Also, the goal of this approach is to test an applica-
tion, i.e. to prove a vulnerability that could be exploited in the aftermath. Figure 1 depicts
the plan generation process from the model. All generated plans constitute an abstract
test set.

The reason why we intend to generate plans of different shapes is to stress the SUT with
unexpected actions. In the best case, a defect will be triggered due to a specific sequence of
actions. The plan generation process is explained in the next section.
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Fig. 1 Abstract test case generation from the planning model

3.2 Planning system

In previous work, we relied on Metric-FF (2016) for plan generation. Unfortunately, that
planner usually returns only one plan for a planning problem. However, in the current
approach, we generate a high number of plans. This number is multiplied with the number
of concrete values so a much higher number of test cases is the result. For this purpose, we
use a Java implementation of the Graphplan algorithm, JavaGP (2017).

The Graphplan algorithm was initially introduced in Blum and Furst (1995). Here a plan-
ning graph is constructed in the search for a solution. The algorithm starts in an initial state
and extends the graph level as long as no plan is generated. First, the planner checks whether
the goals of the effects in the last graph level are true in the conditions of the initial level by
using backward chaining. If this is not the case, then new actions are selected and the graph
is extended. Then the newly obtained goals act as the starting point for solution extraction.
In this case, the depth of the planning graph is increased. In JavaGP, this parameter can be
set manually in order to define or restrict the number of generated plans. The higher the
value, the more plans will be generated. With increasing size of the planning graph, the
number of necessary steps to obtain a plan increases as well.

Finally, if a path is found that reaches from the initial to the last graph level, then a plan
has been found. The individual actions on that path will constitute the atomic parts of the
plan.

In our case, the planning system reads the generated PDDL files and returns a set of
plans that will be submitted to the test execution framework. A small excerpt of the test set
is depicted in Table 1.

The main motivation for generating multiple plans is to cause unintended behavior,
eventually confusing the SUT. Also, the planning algorithm generates plans with repetitive
actions, which means that some actions are executed multiple times in one test case. The
test suite encompasses plans with a broad diversity. As depicted in Table 1, the length of the
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Table 1 Generated plans for
XSS and SQLI 1 GetSite(x), AttackSQLGet(x),

AttackXSSGet(x), AttackSQLPost(x)

2 GetSite(x), AttackSQLGet(x), GetSite(x),

AttackXSSGet(x), AttackSQLPost(x)

3 GetSite(x), GetSite(x), AttackSQLGet(x),

AttackXSSGet(x), AttackSQLPost(x),

GetSite(x), AttackXSSPost(x)

4 GetSite(x), AttackSQLGet(x), GetSite(x),

AttackXSSGet(x), GetSite(x),

AttackSQLPost(x)

5 GetSite(x), AttackSQLGet(x), GetSite(x),

AttackXSSGet(x),GetSite(x), GetSite(x),

AttackSQLPost(x), AttackXSSGet(x)

6 GetSite(x), GetSite(x), AttackSQLGet(x),

AttackXSSGet(x), GetSite(x), GetSite(x),

AttackSQLPost(x), AttackXSSPost(x)

7 GetSite(x), AttackSQLGet(x),

AttackXSSPost(x), GetSite(x),

AttackSQLPost(x)

8 GetSite(x), AttackSQLGet(x), GetSite(x),

AttackXSSPost(x), AttackSQLPost(x),

GetSite(x), AttackXSSPost(x)

9 GetSite(x), AttackSQLGet(x), GetSite(x),

GetSite(x), AttackXSSPost(x),

AttackSQLPost(x), GetSite(x), GetSite(x),

AttackXSSGet(x), AttackSQLPost(x)

10 GetSite(x), AttackSQLGet(x), GetSite(x),

AttackXSSPost(x),GetSite(x),

AttackSQLPost(x), GetSite(x),

AttackXSSGet(x), GetSite(x),

AttackSQLPost(x)

plans differs in number, whereas some bigger plans comprehend smaller ones. Also, we set
the initial precondition to cause the action GetSite to be the first action in every plan.

3.3 Planning for web applications

The communication between a client and an application on a server proceeds over HTTP(S).
Usually, the client accesses a web application via its URL address by sending a HTTP
request. The server returns a corresponding HTTP response. Both message types encompass
a standardized structure with unique parameters, whereas its values are generated when
these messages are created. All message content, including harmful ones, between peers is
transferred via HTTP messages. Vulnerabilities are triggered either due to security leaks on
the side of the client or the sever. A detailed description of both attacks can be found in
Fogie et al. (2007) and Clarke et al. (2012).
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HTTP request messages encompass methods that are usually GET or POST. In the first
case, a client requests data from a URL address, whereas data is submitted to the destination
in the second case. However, both methods can be used to submit and receive data. An
example of the request line of HTTP GET looks like:

GET /site/login form.php?username=john&password=!js123
HTTP/1.1

On the other hand, the counterpart POST can have the following form:

POST /site/login form.php HTTP/1.1
Host: w3company.com
username=john&password=!js123

Here both depictions describe an example of a login form with two parameters. How-
ever, in certain cases, it does make sense to send a GET message attempt where a POST is
expected and vice versa. For this reason, we labeled actions to resemble such HTTP requests
so that a request is sent with another method instead of the expected one. In such way,
we are able to trigger unexpected executions by the tester. The corresponding parameters
will be instantiated with malicious inputs and sent as part of a real HTTP message to the
server.

In this section, the generation of abstract test cases is elaborated. However,
attacks need to be instantiated with concrete values before being submitted. There-
fore, our novel technique for generation of concrete test cases is introduced in the next
section.

4 Planning-based attack concretization

Until now, we have described the use of a planner in order to generate sequences of
actions. However, since PDDL lacks the support for concrete parameter values, a method
for generating concrete test cases is needed.

We define malicious inputs as attack vectors. These are concrete values that an attacker
could use in order to exploit an application. In our approach, they are meant for testing
purposes and can be either XSS scripts or SQL commands. This means that two sets of
concrete test cases will be used, one for every vulnerability. Both test sets are attached
separately to the framework and accessed at runtime during execution.

For this reason, a method is introduced for the generation of attack vectors. It comprises
two parts, namely the specification of attack grammars and the definition of attack vector
models. By combining these definitions, a set of concrete values is automatically generated
for both types of vulnerabilities, respectively.

4.1 Attack grammars

Formal grammars have been already used for security testing purposes (Su andWassermann
2006; Godefroid et al. 2008). Such grammars consist of finite sets of terminal and nontermi-
nal symbols that can be specified in the Backus-Naur form (BNF) structure (Backus 1959;
Naur 1960). Actually, our definition of an attack grammar is motivated by the lack of a con-
crete structure for XSS and SQLI attack vectors. So, our assumption is, since no general
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specification for such structures exists, that the order and occurrence of specific elements,
in our case nonterminals, is not strictly specified as well. This guarantees a certain degree
of flexibility for the construction of concrete inputs.

In our approach, grammars are defined for both types of attacks with the goal to generate
concrete attack vectors. For this reason, the symbols are defined in a way that they resemble
building blocks for individual parts of an attack vector. For this reason, we label these spec-
ifications as attack grammars. An excerpt from our grammar for XSS in BNF form looks as
follows.

<pre>::= \ | " | ’ | > | ; | ! | -
<opening>::= < <html> <content> >
<html>::= SCRIPT | OBJECT | IFRAME | FORM | SRC | BODY |

LINK | IMG
<content>::= <attribute> = <value>
<attribute>::= href | src | style | title | Content |

disabled | onmouseover | onclick | onerror | onmousemove
<value>::= alert(document.cookie) | "alert(document.cookie)"

| "javascript:alert(XSS)" | x | java\0script:alert(\"XSS
\")>";’ | JaVaScRiPt:alert(’XSS’) | "0;url=javascript:
alert(’XSS’);" | "jav ascript:alert(0);" | " &#14;
javascript:alert(0);" | "http://xss.rocks/xss.js" | ’
vbscript:msgbox("XSS")’ | "&{alert(’XSS’)}" | "<http://
xss.rocks/xss.css>; REL=stylesheet" | "xss:expr/*XSS*/
ession(alert(’XSS’))" | ’no\xss:noxss("*//*"); | "text/
javascript">alert(’XSS’); | "xss:expression(alert(’XSS’))
" | "behavior: url(xss.htc);" | "0; URL=http://;URL=
javascript:alert(’XSS’);" | "background-image: url(&#1;
javascript:alert(’XSS’))" | "width: expression(alert(’XSS
’));" | "http://%77%77%77%2E%67%6F%6F%67%6C%65%2E%63%6F%6
D" | "h tt p://6 6.000146.0x7.147/" | "javascript:
document.location=’http://www.google.com/’" | "http://www
.google.com/ogle.com/"

<wobject>::= alert(0) | alert(XSS) | alert(’XSS’)
<closing>::= < / <html> >
<post>::= \ | " | ’ | > | ; | ! | -

Listing 3 Attack grammar for XSS

As can be seen, this grammar comprehends various HTML elements, as well as attribute
definitions and values. In order to construct the grammar, we relied on the HTML spec-
ification (2018), our own experience, and other sources (e.g. XSS 2018). The grammar
comprises values and characters that are known to cause XSS issues.

Usually, in order to carry out a successful SQLI, only the WHERE clause of the SQL
statement needs to be specified (Su and Wassermann 2006). This means that the SELECT
statement from SQL commands does not need to be modeled. As was the case with XSS, the
foundation for constructing the grammar specification for SQLI has been external sources
(2018) as well as our previous work (Bozic and Wotawa 2012). The attack grammar for
SQLI is depicted below.
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<expression>::= <pre> <whitespace> OR <whitespace> <var>
<whitespace> <symbol> <var2> <post>
<whitespace>

<pre>::= ’ | a’ | 1
<outer>::= ’ | a | %27 | 1 | ’%a%’
<var>::= version | database() | user() | ’’ | 1
<symbol>::= != | = | LIKE
<whitespace>::= _ | /**/
<var2>::= <outer> <whitespace>
<post>::= # | -- | #’

Listing 4 Attack grammar for SQLI

The motivation behind this technique is to find a combination of terminals that, when
concatenated into one sequence, will be instantiated with concrete values. Such a sequence
will represent an attack vector. This link between attack grammars and planning outputs
will be explained in the next section in more detail.

4.2 Attack vector model

In the proposed approach, we want to use planning in order to generate concrete test cases
in addition to abstract ones. For this sake, we create a new planning specification. This
representation, called attack vector model, will guide the generation of concrete values in
the further steps. It is important to denote that the function of the planning model from
Section 3.1 does not resemble the function of the attack vector model. As already men-
tioned, XSS and SQLI attacks lack a standard structure. Therefore, the attack vector model
is constructed in a way so that plans and, subsequently, concrete test cases with greater
variety are generated.

The plans from these models, generated by the same planning system, will contain
sequences of actions that resemble symbols from the grammars in Section 4.1. In fact, an
obtained sequence of actions will be interpreted as an expression according to the BNF
specification. A small example of such interpretation is depicted in Table 2. To be more
precise, a single action from a plan corresponds to a specific nonterminal from the grammar.
This means that a sequence of actions will result in the selection of a sequence of nonter-
minals, which will be aligned in accordance to the plan. Basically, a plan can be seen as a
concatenation of nonterminals, which represents an expression.

For this sake, a model of attack vectors has to be specified for both vulnerabilities. As
was the case in Section 3.1, we rely on PDDL for the planning specification. Both domain
and problem definitions for XSS are depicted below.

As can be seen, the labels of actions resemble the names of nonterminals from
Section 4.1. The attack vector model for SQLI can be seen below.

Table 2 Mapping of
a plan to expression
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(define (domain priord)
(:requirements

:strips :typing :negative-preconditions)

(:predicates
(ininitial ?x)
(inOpened ?x)
(inPre ?x)
(inPost ?x)
(inClosed ?x)
(inContented ?x)
(inContented2 ?x))

(:action pre
:parameters (?x)
:precondition (and (ininitial ?x))
:effect (and (inPre ?x) (not (ininitial ?x))))

(:action opening
:parameters (?x)
:precondition (and (inPre ?x))
:effect (and (inOpened ?x)))

(:action content
:parameters (?x)
:precondition (and (inOpened ?x) (inPre ?x)
(not (inContented ?x)) )

:effect (and (inContented ?x)))

(:action post
:parameters (?x)
:precondition (and (inContented ?x) (inPre ?x) (inOpened

?x))
:effect (and (inPost ?x)))

(:action wobject
:parameters (?x)
:precondition (and (inPost ?x) (inContented ?x)
(inPre ?x)
(inOpened ?x) (not (inContented2 ?x)) (not
(inClosed ?x)))

:effect (and (inContented ?x) (inContented2 ?x)))

(:action closing
:parameters (?x)
:precondition (and (inPre ?x))
:effect (and (inClosed ?x)))

(define (problem priorp)
(:domain priord)
(:objects x)
(:init (ininitial x) (not (inContented x))

(not (inContented2 x)) (not (inClosed x)))
(:goal (and (inContented x) (inOpened x) (inClosed x))))

Listing 5 Attack vector model for XSS

Software Quality Journal (2020) 28:307–334318



(define (domain priordsqli)
(:requirements

:strips :typing :negative-preconditions)

(:predicates
(ininitial ?x)
(inVar ?x)
(inPre ?x)
(inVar2 ?x)
(inClosed ?x)
(inVared ?x)
(inPosted ?x))

(:action pre
:parameters (?x)
:precondition (and (ininitial ?x))
:effect (and (inPre ?x) (not (ininitial ?x))))

(:action var
:parameters (?x)
:precondition (and (inPre ?x))
:effect (and (inVar ?x)))

(:action symbol
:parameters (?x)
:precondition (and (inVar ?x) (inPre ?x) (not

(inVared ?x)))
:effect (and (inVared ?x)))

(:action var2
:parameters (?x)
:precondition (and (inVared ?x) (inPre ?x) (inVar ?x))
:effect (and (inVar2 ?x)))

(:action post
:parameters (?x)
:precondition (and (inVar2 ?x) (inVared ?x) (inPre ?x)
(inVar2 ?x) (not (inPosted ?x)) (not (inClosed ?x)))

:effect (and (inVared ?x) (inPosted ?x)))

(define (problem priorpsqli)
(:domain priordsqli)
(:objects x)
(:init (ininitial x))
(:goal (and (inVared x) (inPosted x))))

Listing 6 Attack vector model for SQLI
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For the combination of the plans and the attack grammar, we make use of a modified
Grammar Solver (2018). In addition, the implementation parses the generated plans and
searches for the corresponding nonterminals in the grammar. For each expression, the pro-
gram will generate concrete inputs according to the BNF grammar. In order to illustrate
the idea behind the approach, let’s take for example the case in Table 2 from the XSS
model specification. For every element of the expression, the implementation searches for
the corresponding symbol in the grammar. In this example, the selection will comprise the
following symbols.

<pre>::= \ | " | ’ | > | ; | ! | -

<opening>::= < <html> <content> >

<wobject>::= alert(0) | alert(XSS) | alert(’XSS’)

Now, the implementation recursively generates elements of the grammar for the selected
symbols. The output will be a concatenation of these symbols, thus resulting in a new gram-
mar expression. As already stated, the symbols can be terminals, or in case of nonterminals,
the program will search further by going down the parse tree. In fact, this will result in
the selection of a subpart of the overall attack grammar. In the above example, the symbol
<opening> includes the following expressions.

<html>::= SCRIPT | IMG | ...

<content>::= <attribute> = <value>

<attribute>::= href | src | style | ...

<value>::= alert(document.cookie) | "javascript:alert(XSS)"|...

Then, the tree will be traversed where the terminals of each node will be combined into
a Cartesian product. Then, the product will be combined again with the terminals of the
upper node. This process continues as long as the search inside the entire parse tree of the
concatenated expression is not exhausted.

For example, let A, B, and C be matrixes that contain combinations of terminal symbols
inside a specific nonterminal. The final set of attack vectors AV will be a Cartesian product
of all matrixes.

A × B × C = AV

The individual terminals inside the matrixes are represented by letters. The resulting
matrix will represent the final test set of attack vectors. Here the individual elements in the
matrix equal a concrete attack vector.

{
a b

} ×
{

e f

c d

}
× {

g h
} =

⎧
⎪⎪⎨

⎪⎪⎩

(a, e, g) (a, f, g) (a, c, g) (a, d, g)

(b, e, g) (b, f, g) (b, c, g) (b, d, g)

(a, e, h) (a, f, h) (a, c, h) (a, d, h)

(b, e, h) (b, f, h) (b, c, h) (b, d, h)

⎫
⎪⎪⎬

⎪⎪⎭

For the above example, some of the attack vectors will look as follows:

\<SCRIPT href="alert(document.cookie)">alert(’XSS’)

"<IMG style="javascript:alert(’XSS’);">alert(0)

"<IMG src="javascript:alert(’XSS’);">alert(XSS)

The generated result according to all expressions, i.e. plans, comprises a set of attack vec-
tors. Each individual result represents an attack vector that will be combined with abstract
test cases in the next step. The combination of both results will finally lead to the concrete
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test set. The reason for using the planning-based concatenation represents the fact that for
every different plan, a different concrete test set is obtained. If the attack vector models are
slightly modified by the tester, the resulting plans will produce a completely different test
result. In fact, the sequence of actions, i.e. nonterminals, is only dependent on the specified
pre- and postconditions in the planning specification. This is one major difference to other
techniques, e.g. regex or fuzzing, where a sequence is usually specified in advance. Figure 2
depicts the entire attack vector generation technique.

By combining planning and attack grammars, we are able to generate concrete test sets
that will be used further by the framework. The establishment of a communication between
attacker and SUT, as well as the plan-guided test execution, is described in the next section.

5 Test execution framework

After the previous data generation is finalized, a mechanism is needed to combine both input
sets. Then, the resulting concrete test cases will be submitted against the SUT. Both tasks are
handled by the implemented testing framework. This implementation resembles the com-
munication between the client and the server over HTTP. For this purpose, it implements
the functionality of creating, sending, receiving, and reading HTTP messages. Additionally,
HTTP responses are parsed and critical elements for the detection of XSS and SQLI are
extracted. This plays a crucial role for the test oracle (see Section 5.2), which is consulted
every time an attack was carried out.

For functionality of the HTTP communication, we rely on HttpClient (2018), which
offers the possibility for configuring HTTP messages. A Java library, jsoup (2018), serves
as the parser for incoming responses from the SUT. The framework is programmed in
Java. The overall structure of the implemented approach, which combines Figs. 1 and 2, is
summarized in Fig. 3.

However, in order to fully comprehend the overall approach, let’s take a look on its
underlying algorithm in the next section.

5.1 PLAN4SEC 3.0

In the previous sections, we described the use of a planning technique for security testing
on two layers. One layer focuses on the generation abstract test cases, whereas the other

Fig. 2 Concrete test case generation from the attack vector model
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deals with the construction of attack vectors. Both planning applications are represented in
the form of a plan generation and execution algorithm. In Bozic and Wotawa (2014), the
authors of this work introduced the PLAN4SEC algorithm that has been improved further
in the form of a second version (Bozic and Wotawa 2015). Now, in this work, we present an
additionally adapted version, namely PLAN4SEC 3.0, which is depicted in Algorithm 1.

The main difference to the previous version is the dynamic generation of numerous, more
diverse, plans and the inclusion of attack grammars. As was the case before, the planner
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Fig. 3 Planning-based testing framework

relies on the domain and problem definitions in PDDL for both the abstract test cases and
attack vector modeling.

First, the planner generates a set of plans (P ) from the planning model (PM) that act as
abstract test cases. Then, the same planner reads the definitions for both attack vector mod-
els (AV M) and returns a set of sequences (AV P ) in conjunction with the attack grammars
(G). As already stated, the attack grammars are specified in the BNF form. The resulting
plans resemble BNF expressions. The functionΨ takes as inputs attack grammars and attack
vector plans and returns two sets of attack vectors (AV ), for XSS and SQLI respectively. In
the framework, this is done with the Grammar Solver. Both test sets are attached separately
to the framework and are retrieved at runtime during execution.

Another important part of the framework is the crawler. The task of the crawler is to
ensure that a SUT is tested completely. It accepts a manually specified list of URL addresses
that are meant for testing and searches for their corresponding hyperlinks. All encountered
links are added to the list of seeds (URL). After the list of addresses has been finalized, the
testing process can start. In such way, we want to ensure that every web application with all
connected hyperlinks is automatically tested.

An abstract plan (A) from P guides the execution on the abstract level. The execution
traverses through all generated hyperlinks (l from URL) in search for HTML elements to
test. The first attack vector (av) from the set of concrete values (AV ) is selected and the
actions of the abstract plan guide the execution.
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During execution, websites are parsed and various user input HTML elements, e.g. input
fields and textareas, are extracted by the mentioned parser. This information (E) is pro-
cessed for further test execution, which assigns the attack vectors to these input elements.
During the testing process, every element (e) is tested against every attack vector from AV .
However, in case that multiple input elements are found on a website, every single one of
these will be tested individually.

In this approach, we rely only on two HTTP methods (M), namely GET and POST. For
example, a HTTP GET attack against a website with two user input elements may look as
follows:

GET /site/login form.php?username=<script>alert(0)</script>
&password=

Parameter values have to be URL-encoded for submission (e.g. the XSS script
<script>alert(0)</script> would be submitted as %3Cscript%3Ealert%
280%29%3C%2Fscript%3E) but for demonstration purposes, we denote the plain form
of the attack vectors.

In the example, the parameter username is tested while password remains blank.
However, afterwards, the same attack will be repeated but password will be tested so
username remains empty.

GET /site/login form.php?username=&password=<script>alert(0)
</script>

The same principle, when adapted to HTTP POST, will have the following form:

POST /site/login form.php HTTP/1.1
Host: w3company.com
username=<script>alert(0)</script>&password=

POST /site/login form.php HTTP/1.1
Host: w3company.com
username=&password=<script>alert(0)</script>

The same principle is used when testing for SQLI, only the attack vector will differ in
that case.

The test executor starts with the first abstract test case (A) from P . However, since
abstract actions cannot hold any concrete value, a concretization phase is needed in order to
carry out instantiated test cases. This is done automatically by the testing framework.

Here concrete Java methods (C) are implemented that are called according to the cur-
rent action (a) from an abstract sequence. In fact, every action from the abstract test case
corresponds to one Java method. In addition to that, it should be noted that the number of
plan does not determine the overall number of concrete test cases. In fact, this is not known
in advance but figured out during execution since we do not know how many plans will be
generated.

The function Φ takes as arguments an abstract action (a) from the plan (A) and maps it
to its corresponding Java method (c). The result represents an instantiated method call, i.e.
a concrete test case (a′).
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Now, every single abstract test case will be executed for every HTML element from a
website, i.e. the SUT, against every attack vector. After every test, a test oracle is consulted
in order to check whether a vulnerability has been triggered (see Section 5.2). If an action
from a plan is executed and a passing test verdict is returned after the test, then we consider
this plan to be a successful test case (thus, res(A) = PASS). Otherwise, the execution
framework concludes a FAIL for the given plan.

Afterwards, the next plan will be picked from the test set. This process will continue as
long as attack vectors are available or the execution crashes.

This demonstrates how only one action from the plan, one attack vector for every type of
attack, and two input elements from one website will affect the testing procedure. Therefore,
the importance of planning is the guidance of the execution. A plan with a different action
sequence may lead to different testing results.

5.2 Test oracles

After every attack, the resulting response from the server is parsed and checked accord-
ing to a criterion. Then, a verdict is given whether the attack was successful with the
submitted attack vector. In order to get an insight about the functionality of the test ora-
cle, Figure 4 depicts the behavior of an application that has been tested with a XSS
script.

When the user sends data to a website, this can be reflected back to the sender inside the
body of the HTTP response. However, this responded information can serve as an indication
whether the test was successful or not.

Application-intern security measures include the filtering of user inputs. Whereas some
inputs are allowed, others are on the black list. Characters like < and >, among others,
are usually on this list. Since XSS relies on scripts being activated and doing some harm,
it is important that they do not get detected by input filters. Critical elements are usually
neutralized by an application with mechanisms like HTML escape encodings. In such way,
critical symbols are rewritten and cannot cause any harm on the victim’s size. Here < is
escaped with &lt; while > is encoded with &gt;.

Critical XSS elements encompass a variety of different elements like images (<img>)
and frames (<frame>). In fact, all our XSS attack vectors contain such elements with a
code attached to them. The execution framework decides that a test was successful when
the submitted script was not detected and is reflected back to the sender in its original form.
Thus, the communication would look like the one in Fig. 5.

Before the attack vector is submitted to a website, all of its critical HTML elements are
parsed and their occurrence is noted. After the test has been carried out, the implementation
reads the response from the server and recounts the critical HTML elements again. Here the
number of these elements should be increased by one, since the sent script should have been

Fig. 4 Filtered XSS input
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Fig. 5 Unfiltered XSS input

added to the response body as well. For example, if the attack vector contains a <script>,
then the occurrence of this (unfiltered) element will be higher than before. In this case, our
program returns a PASS. However, if the number remains the same, then the framework
indicates a FAIL. In this case, the attempt was probably filtered out or something else
happened. The same mechanism is used to test both reflected and persistent XSS, since both
rely on a surplus of HTML elements.

SQL injections work similar with regard to input filtering. However, in this case, a SQL
statement is submitted in order to access data from the SUT’s database. In order for the
attack to succeed, information is retrieved from the database and unintentionally sent to the
user. Figure 6 shows the procedure. However, since the behavior of an application is impos-
sible to predict, we specify one expected value that the tester excepts to retrieve from the
database. For example, if a company’s database is tested, then the attacker could figure out
information like email addresses via social engineering. This key value is searched auto-
matically inside the server’s response body after the attack. If found, the framework returns
a PASS. Otherwise, the submitted SQL injection will be escaped, similar to XSS, and
remains ineffective.

6 Case study

We demonstrate the applicability of our approach to testing of a known web application for
testing purposes, namely Mutillidae (2018). Before the execution starts, we let the planner
generate a set of plans according to the planning model. It should be noted that a minor
change in the planning specification will result in different plans. The tester can manipulate
the specification if the necessity emerges or in order to increase the variety of plans. Since
the attack vectors for SQLI and XSS are already attached to the implementation, we need
only to specify the URL address of the SUT. Since the crawler is in use, the tester can submit
the address of the homepage in order to test the application in depth or add the address for
one single website. For this demonstration, we add the root URL of the locally employed

Fig. 6 Procedure for SQL injection
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SUT: http://localhost/mutillidae/. Then, the crawler returns, among many
others, the following links:

/index.php?page=dns-lookup.php

/index.php?page=user-info.php

/index.php?page=login.php

/set-up-database.php

Now the executioner reads the first plan that resembles the one shown in Section 3.1.
The first action GetSite in the plan indicates to read the first URL from the list and
extracts important data like user inputs and other HTML elements. For the first URL
address, the parser returns two fields, namely username and password. Afterwards, a
SQLI attack is carried out against both input elements with the method GET. We specify an
expected value that resembles an existing entry in the database, e.g. john@smiths.com.
The first attack vector is ’ OR 1 = 1 -- . However, the server’s response will be
negative for both tested elements since it does not contain the expected email address.
Then, another action will instruct to carry out the same attack but with a POST
method. In contrast to the last attempt, the attack here is successful for both input
elements.

The framework grabs the next action and reloads the current URL address again, thereby
grabbing its elements. Then, the execution continues to XSS and takes the first input from
the list of attack vectors. It submits the input against both elements and checks for the
existence of an additional HTML element. In this case, the submitted attack vector is a
<script>alert(0)</script>. Since it was successful with the POST method, the
parser encountered a surplus of one <script> in the response, thus returning a PASS. In
fact, a XSS vulnerability was detected in both input elements.

The execution continues further and tries additional XSS and SQLI attempts but with
different methods. In both cases, the framework returns a FAIL. After the last action from
the plan is carried out, the execution repeats the execution but uses other attack vectors and
checks whether different values lead to different test verdicts.

After both sets of attack vectors are exhausted, the next URL address will be picked for
testing. However, when testing the second entry from the list, we could detect only XSS
vulnerabilities since the website does not comprehend a database entry at all.

The execution continues as long as all URLs have been tested and returns a finalized test
result overview.

If a plan triggers a vulnerability, then the action sequence and their values that lead to
the detection can be traced back. The obtained information can give an insight about the
security leak of the application.

7 Evaluation

In this section, we describe the initial test results for the proposed approach. For this sake,
the planning-based abstract test cases and attack vectors are taken into consideration. How-
ever, the number of concrete test cases does explode in case a high number of abstract test
cases are generated, when multiplied with a high number of BNF expressions and the cor-
responding combination of terminals. Since the size of such test set would be intuitively
incomprehensible, we decided to reduce its size drastically for a proof-of-concept evalua-
tion. Therefore, we rely on a small set of only three abstract test cases. Also, only one small
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expression is used for XSS and SQLI, respectively, with only an excerpt from both attack
grammars.

In such way, the framework relies upon 120 concrete test cases in total, 60 for every
type of attack. For demonstration purposes, this results in 60 × 60 = 3600 concrete inputs
for only one action from an abstract plan for only one input field. This gives an overview
about the size of a test set with only a small fraction of the overall attack vector model and
grammar. It should be noted that the executor tests for both vulnerabilities simultaneously,
i.e. by combining every SQLI attack vector with every XSS input in case that the abstract
test case instructs an attack.

Three web applications were tested, namely Mutillidae, BodgeIt (2018), and Gruyere
(2018). These programs are used for security testing purposes and represent a good starting
point for an initial evaluation.

Table 3 depicts the obtained test results according to indicating categories. Besides the
tested application (SUT), it gives information about the number of found hyperlinks from the
initial URL (#URLs) and the attack type (atype). In addition to that, the exploitation rate,
i.e. the number of attack vectors that succeeded in triggering a vulnerability, is defined by
the number of individual successful attack vectors, divided by the total number of successful
attack vectors (ER(#)). This means that the individual attack vector succeeded more than
once during testing.

One of the general remarks is the fact that the final test verdicts relies completely on
the parser and the test oracles. The parser does extract HTML elements for testing pur-
poses. However, vulnerabilities can be triggered by other means as well, e.g. by inserting
the attack vector right after the URL address. This fact was taken into consideration when
implementing the framework.

An additional feature is that the executor can bypass eventual intrinsic restrictions on
websites. For example, the fixed length of text inputs, hidden input fields, and read-only
restrictions are mitigated. Both features influenced the test results.

It should be noted that the depicted test verdicts comprehend all successful test cases.
They were able to trigger a vulnerability at least once during execution for a certain HTTP
method, i.e. POST or GET. The latter fact ensures that attacks were carried out for both
methods, even if unintended by a website.

When considering all tested SUTs, the test execution consumed the most time when test-
ing Mutillidae. Here 73 hyperlinks have been found by the crawler, with plenty of HTML
elements. Tested elements have been, among others, login fields, search fields, and tex-
tual posts. For XSS, every tested attack vector was at least once successful in triggering
a vulnerability somewhere. Regarding SQLI, only the attack vectors that started with a
’ (apostrophe) triggered a vulnerability. The other test cases that started with a different
symbol have been ineffective.

Table 3 Test results for SUTs
SUT #URLs atype ER (#)

Mutillidae 74 XSS 60/902

SQLI 14/5400

BodgeIt 24 XSS 60/706

SQLI 0/0

Gruyere 9 XSS 46/92

SQLI 0/0
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For the BodgeIt Store, the obtained results are explained in the following way. One of
the obvious observations when analyzing the results is the fact that most of the successful
test cases have been achieved when testing input elements that are read-only. For these
cases, the test execution framework was able to mitigate these restrictions in many cases
and successfully trigger a vulnerability. A possible explanation for this could be that the
developer did not implement security mechanisms for these HTML elements since she or
he believed that the set restriction alone would hinder an exploitation. Besides that, a search
field was the only element where additional XSS could be triggered. In general, this SUT
comes in short regarding user input elements. The generated XSS attack vectors have been
quite successful. Also, both XSS-related abstract test cases resulted in success at least at one
point during the execution. Regarding SQLI, this vulnerability can be triggered. However,
once triggered, the expected key value for this type of attack (see Section 5.2) will result in
the fact that, once detected for the first time, it will be present at the website in the future.
That means that a false positive will be given for every SQLI attack vector afterwards. For
this case, we decided to omit this detection from the statistics.

Regarding Gruyere, it is a rather small application without many user input fields. For
this SUT, we generated slightly different attack vectors for XSS. In general, the behavior
of this application was different than the other applications. Namely, our framework did
not trigger any vulnerability on an input field. However, it did succeed in triggering a XSS
vulnerability when putting the attack vector just after the current URL, as mentioned above.
This fact indicates that a XSS attack attempt can be launched not just by targeting user
inputs. Unfortunately, we could not trigger a SQLI with the same approach.

One of the common observation for all tested SUT was the fact that a positive testing
verdict was given in case a critical HTML element was encountered. This means that the
attack vectors with these unfiltered were considered overall positive.

Despite the positive results for the proposed approach, there are some drawbacks as well.
One of the disadvantages of the parser is that it does not take into consideration dynamically
created DOM structures on websites. This limits the applicability of the testing framework
to a certain degree. This fact also implies that the test oracle cannot be consulted in the
aftermath for these cases.

Also, the test oracles put the focus on analyzing critical HTML keywords, e.g. SCRIPT
or IMG, but not on their content, like the attributes and their values.

The relatively small number of SQLI exploits is justified according to our test oracle, i.e.
a technique that relies on the definition of expected outputs. Since the structure of the under-
lying database behind the SUT is not known and the framework cannot directly retrieve its
entries, the improvement of its test oracle needs more consideration in the future.

However, some of these drawbacks are due to the implemented framework and do not
represent a restriction of the approach itself. Since this work’s main focus lies on the
test case generation and the proof of the applicability of the planning-based approach, the
practical implementation of its parts represents a different challenge.

8 Related work

Two major fields represent the bulk of the work in the presented paper, namely planning
and security testing of web applications. Several works address either one or both areas
and provide some insight into proposed methods. Planning was adapted on different case
studies in different ways. On the other hand, methods like model-based testing focus more
on (security) testing issues by usually relying on a graphical representation of the SUT.
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The first adaptation of planning to software testing was proposed in 1989 (Anderson
and Fickas 1989). In this approach, the authors discuss the idea to formalize the system
specification as a planning problem. A detailed introduction in planning is given in Ghallab
et al. (2004).

A more advanced approach that combines planning and testing includes Durkota and
Lisy (2014). The authors rely on attack graphs by taking into consideration probability and
cost measures for choosing attack actions. They introduce an algorithm for selection of an
optimal attack strategy and use an attack policy. A policy has a cost so an attacker can
determine the probability of attack by choosing different (sub)policies. A Markov decision
process (MDP) is used to produce an optimal attack, i.e. an attack that has an overall mini-
mized cost, in the form of an attack graph. The algorithm does an exhaustive search of every
action with regard to its cost at any possible decision point during the search. Although
a generated plan from our approach resembles an attack path as well, we do not rely on
probabilistic calculations for the attack construction but attack with a huge variety of plans
instead.

Another work, which discusses a planning-based testing approach of networks is elab-
orated in Backes et al. (2017). Here an automated pentesting method is applied according
to models of SUTs, i.e. networks, by taking into consideration multiple mitigation actions.
As was the case with the previous work above, cost and probability assignments to actions
are done as well. They use mitigation strategies to simulate an attacker as part of a what-
if analysis mechanism. In this way, attack scenarios can be evaluated before their actual
execution.

In Shmaryahu et al. (2018), the authors elaborate a testing approach for detecting defects
in networks. This represents a learning approach, where the attacker learns from previous
attacks. For this case, the authors combine contingent planning (Hoffmann and Brafman
2005) with partially observable Markov decision processes (POMDP). Initially, information
about a SUT is obtained by fingerprinting the network. Eventually, this information pro-
vides insight about the system’s configuration. Then, a PDDL specification is defined and
enchanted with probability and cost measures. Plans are extracted from that representation,
thereby inferring attack trees that can be executed against the network under test.

In Simos et al. (2018), a planning-based approach is introduced for testing of TLS imple-
mentations. The authors introduce a testing framework that is meant for the detection of
vulnerabilities during the TLS handshake. For this issue, a planning specification is defined
that gives guidelines for negative testing purposes. Several SUTs are stressed with unex-
pected behavior and values from the client, thereby recording its output. The generated plans
guide the attacks that are meant to downgrade the security mechanisms or break the SUT
altogether.

In contrast to planning-based testing applications, testing of web applications represents
a common issue for a long time.

The authors of Büchler et al. (2012) introduce a semi-automatic model-based testing
approach for testing of web applications. The intention behind the work is to apply the
results of a model checker for security testing purposes. The process starts with a secure
model that is manually generated by a tester. Then, the model is mutated in order to intro-
duce common vulnerabilities like XSS. A model checker generates attack traces and, with
the help of an intermediate language, produces the source code. The automated execu-
tion proceeds at the browser level of the web application with the help of the Selenium
framework.

Appelt et al. (2014) introduced a mutation-based testing technique for SQL injections.
The target system represents web services that rely on web application firewalls (WAF). The
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automated approach, μ4SQLi, generates test cases by applying three types of mutations
to web service parameters: behavior-changing, syntax-repairing, and obfuscation. With the
help of a simple grammars, malicious SQLI are generated that are submitted against two
different SUTs. The authors conclude that their approach succeeded in bypassing the WAF
of the SUT.

The authors of Simos et al. (2016) introduce a method that combines combinatorial test-
ing with XSS detection. The approach relies on a XSS grammar to derive attack vectors
in a combinatorial manner. After execution, the fault localization approach, BEN, analyzes
the test cases that were able to trigger a XSS vulnerability. The structure of each input is
analyzed in order to identify critical combinations that lead to the detected exploit.

Further offensive testing approaches against web applications and networks can be found
in Duchene et al. (2014), Felderer et al. (2016), Sudhodanan et al. (2016), and Shameli-
Sendi et al. (2017), respectively. A general introduction and analysis of model-based testing
is elaborated in Krämer and Legeard (2016) .

9 Conclusion and future work

In this work, we adapted automated planning and scheduling to security testing of web
applications. A planning model is specified in PDDL and serves as an input for the planner.
The output is a set of plans that represents abstract test cases that are read by a test execution
framework. Every action from a plan guides the execution against the SUT. In addition
to that, we implemented a concretization phase that encompasses HTTP functionality. A
website is parsed and HTML user input elements are extracted for testing. The crawler
supports the execution by adding hyperlinks to the list of initial seeds.

In addition to that, we introduce a new planning-based test case concretization technique.
Here we specify two attack grammars for each type of attack. Then, a planner generates
sequences that represent expression in the BNF structure of the grammar. Every plan will
result in the generation of a specific test set of attack vectors.

Two sets of attack vectors act as user inputs in order to test a SUT against XSS and SQLI.
Initial test results with a reduced test set have proven that planning-based security testing is
able to detect both types of vulnerabilities in an automated manner.

The use of planning models can help in keeping the representation relatively small but
maintain wide test case generation possibilities. Adjustments can be added easily to the
model, whereas the plan generation can be controlled by the tester.

In the future, we plan to undertake a more extensive evaluation by using the full pos-
sibility of the test concretization. Also, the attack grammars can be extended to generate
even more diverse attack vectors. An extension of the PDDL specification for attack vectors
would add to the diversity as well.

As already mentioned, the test oracles should be refined in order to better detect vulner-
abilities. The main motivation of this work is, besides its introduction, the proof-of-concept
based on some first empirical results.

In general, the planning model specification can be extended by taking more real-world
activities into consideration. Also, other attack types can be modeled as well. In fact, since
a hacking procedure represents a sequence of actions, other malicious activities can be
included into the model. Another possibility is the combination of different attack types
for more exhausting security testing. A comparison with other state-of-the-art techniques
from both planning and testing will help to measure performance metrics of our approach as
well.
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