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Abstract
Many Java programs encode temporal behaviors in their source code, typically mixing three
features provided by the Java language: (1) pausing the execution for a limited amount of
time, (2) waiting for an event that has to occur before a deadline expires, and (3) compar-
ing timestamps. In this work, we show how to exploit modern SMT solvers together with
static analysis in order to produce a network of timed automata approximating the temporal
behavior of a set of Java threads. We also prove that the presented abstraction preserves the
truth of MTL and ATCTL formulae, two well-known logics for expressing timed specifica-
tions. As far as we know, this is the first feasible approach enabling the user to automatically
model check timed specifications of Java software directly from the source code.

Keywords Software model checking · Time-dependent behavior · Java · Timed automata ·
SMT · Predicate abstraction

1 Motivation

Nowadays, more and more software is being developed whose behavior depends on time
and on the satisfaction of given time constraints. Consequently, the most popular program-
ming languages provide APIs to represent and manipulate time. This obviously represents
a further possible source of flaws, as shown by some recent cases such as, for example, the
two vulnerabilities discovered in the Linux kernel due to timestamp overflows1,2 or several
time-related errors discovered in Java software (Liva et al. 2018). It is, therefore, essential to
have verification tools to discover such flaws, and even better if this can be done by directly
analyzing the code.

1https://nvd.nist.gov/vuln/detail/CVE-2018-12896
2https://nvd.nist.gov/vuln/detail/CVE-2018-13053
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Efficient Satisfiability Modulo Theory (SMT) solvers (e.g., De Moura and Bjørner
(2008), Dutertre (2014), Cimatti et al. (2013)) have been widely used for different forms of
software verification. Some examples are symbolic execution (e.g., Rakadjiev et al. (2015),
Godefroid et al. (2012), Tillmann and De Halleux (2008), and Nori et al. (2009)), static
analysis (e.g., tools as OpenJML, EC/Java2, Krakatoa), model checking (e.g., Armando
et al. (2009), Cordeiro et al. (2011), Cimatti and Griggio (2012), Phan et al. (2015), Kahsai
et al. (2016), and Cordeiro et al. (2018)), and even model checking of timed automata (e.g.,
Morbé et al. (2011), Kindermann et al. (2012), and Cimatti et al. (2015)).

This work focuses on software model checking of timed specifications. This means
extracting a software model that, in this case, takes into account time (expressed as times-
tamps, durations, and other time constraints). We express such models as timed automata
(Alur et al. 1990), i.e. finite automata extended with real-valued clocks that can be reset
and must satisfy given clock constraints; for these reasons they are appropriate for model-
ing continuous time systems, in particular real-time systems. We aim at verifying programs
written in Java, one of the most popular programming languages to date. Despite the
widespread use of Java and the growing importance of time-dependent behaviors, only few
authors (e.g., see Liva et al. (2017), Luckow et al. (2015), Schoeberl et al. (2010), and
Bøgholm et al. (2008)) focused on timed automata extraction from Java programs. Fur-
thermore, these few works studied exclusively how to extract control flow automata, i.e.,
automata that follow the program control flow but do not take into account the state space
formed by program variables. This results in an over-approximation of the program behav-
ior, which precludes the possibility of verifying properties over program variables in various
program states and, in particular, those properties that depend on variables ranging over time
values such as timestamps and durations. For this reason, most of them aim at performing
best-/worst-case execution time analysis (WCET/BCET) or schedulability.

This paper tries to fill the gap described above and proposes a verification methodol-
ogy based on software model checking to establish the correctness of Java programs w.r.t.
specifications depending on real-valued clocks. We also show that the methodology can
effectively tackle real-world Java projects and it is able to detect very subtle bugs in Apache
Kafka, a distributed streaming platform,3 and Alluxio, a cloud storage abstraction library.4

The proposed methodology has the following innovative contributions:

– A formal semantics for timed features of Java (Section 5). In this respect, we consider
the following three features: (1) pausing the execution for a limited amount of time,
(2) waiting for an event that has to occur before a deadline expires, and (3) comparing
timestamps.

– A set of rules used to build a network of timed automata from concurrent and time-
dependent Java programs (Section 6). In this respect, we exploit an SMT solver.

– A proof which shows that the produced network of timed automata preserves the cor-
rectness of the original Java program w.r.t. the considered family of timed specifications
(Section 7).

A previous version of this work (Spalazzi et al. 2018) showed some core components of
our approach. In this work, we extend the translation rules, we prove the soundness of the
produced network of timed automata, and we apply it to more software projects.

3https://issues.apache.org/jira/browse/KAFKA-4290 accessed on 15th June 2019
4https://github.com/Alluxio/alluxio accessed on 15th June 2019
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In Section 2, we draw some connections between the relevant work in the area and
our methodology. Section 3 introduces some theoretical backgrounds to make the rest of
the work self-contained. In Section 4, we introduce some inherent limitations of software
model checking that have an impact on the design choices behind the presented verification
methodology. In Section 5, we formally define a semantics for the time-dependent aspects
of the Java language. In Sections 6 and 7, we present the rules for extracting timed automata
from Java threads and show the soundness of the approach. In Section 8, we show the appli-
cability of our methodology to discover bugs in a running example as well as two real-world
Java projects used as workbenches for the methodology itself. In particular, we show that
the methodology can be helpful to discover previously unknown bugs in the software, and
that such bugs are often difficult to discover by traditional test-based approaches. For our
experiments, Uppaal is used to verify the timed automata networks obtained with our tool
(Larsen et al. 1997). In Section 9, we collect some concluding remarks and suggest future
research directions stemming from the presented work.

2 Related work

With the term temporal property, and its derivatives such as temporal logic, we refer to all
those properties that depend on how a system evolves over time. Linear Temporal Logic
(LTL) and Computation Tree Logic (CTL) are examples of temporal logics to represent
these types of properties. With the term timed temporal properties, and derivatives such as
timed temporal logic, we refer to all those properties that refer to real time and constrain the
values that timestamps and durations can take. Metric Temporal Logic (MTL) and Timed
Computation Tree Logic (TCTL) are examples of timed temporal logics.

Software verification techniques can be classified (Jhala and Majumdar 2009; D’silva
et al. 2008) into techniques that are able to work with either a concrete or an abstract
software representation.

The term concrete indicates that such techniques are able to represent program states
exactly (Fig. 1b). This approach, even if it seems attractive, is infeasible whenever there are
infinite (or very large) state spaces, as is usually the case with software in many practical
situations. In order to avoid unfeasibility, a trade-off between time/space complexity and
completeness is required.

In particular, techniques based on under-approximate abstraction are used, e.g., system-
atic execution exploration (Godefroid 1997; Havelund and Pressburger 2000; Liva et al.
2018), a kind of dynamic analysis that is “geared towards falsification” (Jhala and Majum-
dar 2009). In other words, it is sound, i.e., no spurious counterexamples are generated,5 but
incomplete, i.e., some counterexamples may not be detected (Godefroid 2004). There is a
similar situation with runtime verification (Bauer et al. 2011), where a formal specification
is compared with a real software execution. However, in this case, there is no extraction of
a model of the software to be tested.

A different approach is represented by over-approximate abstraction, e.g., the state-space
abstraction, where the concrete state space is partitioned into equivalence classes, such that
each class is an abstract state (Ball and Rajamani 2002; Beyer et al. 2007; Corbett et al.
2000; Heizmann et al. 2013; Herber et al. 2008; Kung et al. 1994; Liva et al. 2017; Pu et al.

5A counterexample is an execution trace that does not satisfy a given property. A spurious counterexample
is an execution trace that can be observed by the verification system but cannot be observed in the original
system.
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2006; Sen and Mall 2016). This kind of abstraction is “geared towards verification” (Jhala
and Majumdar 2009), i.e., it is complete in finding all the counterexamples at the speci-
fied abstraction level, but it is unsound because it may produce spurious counterexamples
(Clarke et al. 1994). To reduce the number of counterexamples, some sort of Counterexam-
ple Guided Abstraction Refinement (Clarke et al. 2000) is required, where an abstract model
is iteratively and automatically refined. Several techniques for both “untimed” automata
(Clarke et al. 2000) and timed automata (Wang and Jiao 2014) have been proposed.

To recap, as clearly stated by Jhala and Majumdar (2009), over-approximate abstraction
can prove the correctness of a software (under the condition that the abstraction is sound
w.r.t. the code) whereas under-approximate abstraction, especially systematic testing, can
only conjecture it. It can only reveal the presence of bugs but not their absence (this is in
line with the famous Dijkstra’s sentence (Dijkstra 1969)).

With respect to the over-approximate abstraction techniques, two classic techniques are
predicate abstraction and control flow abstraction.

With predicate abstraction, the equivalence classes (i.e., abstract states) are created using
predicates over a subset of the program variables (Fig. 1c). This means that each abstract
state is denoted by a Boolean combination of these predicates that over-approximate the
reachable concrete states of the program (Beyer and Wendler 2012). This abstraction com-
putation is usually done using a Satisfiability Modulo Theories (SMT) solver (Armando
et al. 2009; Ball and Rajamani 2002; Beyer et al. 2007; Beyer and Keremoglu 2011; Clarke
et al. 2005; Corbett et al. 2000; Cordeiro et al. 2011; Kahsai et al. 2016; Kung et al. 1994;
Sen and Mall 2016). Indeed, a large set of concrete states can be collapsed into a single
abstract state denoted by the (usually small) set of predicates satisfied by such concrete
states.

With control flow abstraction, the equivalence classes are denoted by the program loca-
tions (see Fig. 1d): there exists an abstract state for each program location, i.e., for each
program statement (Heizmann et al. 2013; Herber et al. 2008; Liva et al. 2017; Pu et al.
2006). Therefore, program variables are abstracted away, and the abstract state space coin-
cides with the set of program locations. As a consequence, the abstract state space can
be computed very quickly (no SMT solvers need to be involved), at the cost that several
program properties cannot be verified.

It should be noticed that these techniques, in order to be defined, must refer to the seman-
tics of the programming language in question, not only to their syntax. For what it concerns
Java, the first work defining both syntax and semantics of Java with multi-threading is by
Bogdanas and Roşu (2015). In their work, the semantics of Java is defined by means of the

Fig. 1 An example of state space extraction: a its very simple source code, b the related concrete state space,
the abstract state space based c on a predicate abstraction, and d on the control flow abstraction
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K-framework, a modular framework for engineering language semantics based on a set of
reduction rules over configurations. A configuration is a composite and extendable alge-
braic structure of the program state. We extend their work introducing new information in
the configurations that consider the semantic of time.

Some authors (Herber et al. 2008; Liva et al. 2017) proposed to extract control flow
timed automata from a general purpose programming language, but doing this they do not
take into account the role played by program variables along the execution. Therefore, these
works cannot check specifications that look at the state of the program variables. Others
focused on schedulability analysis and best- or worst-case execution times (Luckow et al.
2015; Thomsen et al. 2015; Schoeberl et al. 2010; Bøgholm et al. 2008), but they do not
consider the correctness of the program w.r.t. properties that depend on variables ranging
over timestamps and durations. To the best of our knowledge, none of them considers the
problem of model checking timed properties, i.e., temporal properties of Java code that
also depend on timestamp and duration variables. The methodology presented in this paper
fills this gap, and we show some applications to real-world projects as an argument for its
applicability and usefulness, when applied to complex software systems.

Herber et al. (2008) model-check SystemC programs, extracting timed automata from
them. They also assume that most of the instructions have a zero-time model. Their approach
can only handle programs containing mathematical operations over numeric variables. Our
methodology overcomes this limitation, allowing to cope with user-defined data types and
methods.

Blast (Beyer et al. 2007) and Ultimate LTLAutomizer (Dietsch et al. 2015) apply model
checking to C programs. Blast extracts untimed control flow automata from C functions; it
can only check reachability of program locations; and it only deals with Integer and Boolean
program variables. Ultimate LTLAutomizer uses an SMT solver to select finite prefixes of
a path and check for their infeasibility before considering the full infinite path. Therefore,
it is able to verify a strict subset of liveness properties. Nevertheless, they both restrict to
reachability of pre-defined error locations in the source code, and specifications cannot take
into account real valued clocks and their related constraints.

Java PathFinder (JPF) (Havelund and Pressburger 2000; Cuong and Cheng 2008), its
evolution Symbolic PathFinder (SPF) (Păsăreanu and Rungta 2010), and Bandera (Cor-
bett et al. 2000) are popular model checkers for Java programs. JPF uses a Java Virtual
Machine that explores symbolic paths of the Java bytecode under analysis. SPF uses con-
straint solvers to generate a model from Java bytecode. Bandera employs program slicing
techniques for abstracting program variables that do not affect the verified specification.
None of the three extracts timed automata from Java code and, therefore, they only allow
the analysis of “untimed” temporal properties; i.e., according to the meaning we provided
above, it is possible to check properties in LTL but not in MTL or TCTL.

More recent approaches to software verification, such as CPAChecker (Beyer and Ker-
emoglu 2011) and SeaHorn (Gurfinkel et al. 2015), provide a modular environment where
programs are manipulated through several stages to form a sort of verification “pipeline.”
They differ in their internal implementation, e.g., while CPAChecker uses Control-Flow
Automata as intermediate representation for the source code, SeaHorn translates the input
program into Constrained Horn Clauses. Both then allow to post-process the intermediate
representation of the program, in such a way that the user can select a different verification
strategy for each program. Typically, the final step is to use one among several available
SMT solvers in order to falsify the input (reachability) specification. Even in this case,
our approach is innovative because we target real-time temporal specifications expressed in
MTL or TCTL.
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SymRT (Luckow et al. 2015) is a tool based on SPF that extracts networks of timed
automata from Java code and is designed to verify reachability properties expressed in
TCTL along with WCET/BCET and schedulability analysis. SymRT uses a control-flow
abstraction as it aims at only verifying real-time properties and does not need to consider
the state space produced by program variables. In our work, we use predicate abstraction
and take into account program (especially time) variables and, thus, verify a wider set of
specifications.

Sen and Mall (2016) apply several static analysis tools for reverse engineering a finite-
state model from Java bytecode, mostly for documentation purposes. The major difference
w.r.t. our approach is that they do not handle time neither in the model nor in the specifica-
tion, and that they compute a transition system for each object in the program. This means
they compute the state-space of each class, based on the abstract states of the class’s private
attributes, and compute how a method invocation can move the object from one abstract state
to another. The finite-state model of the program is obtained as the combination of the tran-
sition systems of the objects used in the program itself. We are interested in employing this
technique for abstracting objects used by threads, but we claim that it is not good enough to
describe the sequence of intermediate steps taken by a thread (e.g., we may need to know in
which order a thread acquires its resources in order to detect a deadlock situation).

3 Theoretical background

For the sake of self-consistency, let us collect here several formal definitions that will be
used in the rest of th e paper.

3.1 Networks of timed automata

Let us assume a finite set of clock variables C. We call temporal constraints T C(C) the
terms of the grammar: T C(C) ::= � | ¬T C(C) | T C(C) ∨ T C(C) | C ∼ C | C ∼ T, where
∼∈ {<, ≤,=,≥, >} is a comparison operator and T is the time domain. In the following,
we assume that the time domain is a continuous set (e.g., T = R≥0). Let us call clock
valuation any mapping γ : C → T associating clock variables to their time value in domain
T. Given a clock valuation γ , a time value d ∈ T, and a set of clock variables r ⊆ C,

• γ + d denotes the clock valuation γ ′ such that γ ′(c) = γ (c) + d , for every c ∈ C, and
• γ [r → 0] denotes the clock valuation γ ′ where γ ′(c) = 0, for every c ∈ r , and

γ ′(c) = γ (c), for every c ∈ C \ r .

Furthermore, let AP be finite set of atomic propositions, let M be a finite set of messages,
and let B = {ε} ∪ {!!m, ??m : m ∈ M} be a finite set of broadcast labels.

A timed automaton A is a tuple
〈
Q, q̂, C, τ, I

〉
, where Q ⊆ 2AP is a finite set of locations,

q̂ ∈ Q, is a distinguished initial location, C is a finite set of clock variables, τ ⊆ Q ×
T C(C) × 2C × B × Q is a finite set of edges, I : Q → T C(C) maps locations to temporal
constraints.

Let us assume the timed automata A1, . . . , An, for some n ∈ N, then we call network of
timed automata the tuple (A1, . . . , An).

Intuitively, given a timed automaton A = 〈
Q, q̂, C, τ, I

〉
with an edge (s, γ, r, b, t) ∈ τ ,

we say that the edge is enabled if the current location of the automaton is s ∈ Q and the
clock variables configuration satisfy γ ∈ T C(C). If the automaton takes the edge it means
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Fig. 2 Transitions in timed transition systems

that it updates its location to t ∈ Q and resets all its clock variables contained in r ⊆ C.
At any moment, if more than one edge is enabled, the system decides non-deterministically
which one to take. A network of timed automaton denotes the asynchronous parallel com-
position of several timed automata, where each automaton keeps track of its current state
and current configuration of clocks. Their execution follows the interleaving semantics, i.e.,
each automaton at every turn takes an enabled transition. In the following, we formally
report the semantics of networks of timed automata using so-called timed transition systems.

Assume a network of timed automata (A1, . . . , An), for some n ∈ N, such that every
Ai = 〈

Qi, q̂i , Ci , τi , Ii

〉
. A configuration is any tuple (σ, μ) where σ [i] ∈ Qi and μ[i] :

Ci → T are a vector of locations and a vector of clock valuations, respectively. For a config-
uration (σ, μ), denote with enabledi (σ, μ, b) = {(s, γ, r, b, t) ∈ τi : σ [i] = s, μ[i] |= γ }
the set of currently enabled transitions for the ith timed automaton. We write μ+d denoting
the array such that (μ + d)[i] = μ[i] + d , for every i ∈ [1, n].

Given any network of timed automata (A1, . . . , An) such that Ai = 〈
Qi, q̂i , Ci , τi , Ii

〉
,

for every i ∈ [1, n], a timed transition system is denoted by the tuple (S, S0, T ) where S

is the set of all possible configurations, S0 ∈ S is the distinguished initial configuration
S0 = (σ0, μ0), where ∀i ∈ [1, n].σ0[i] = q̂i and μ0[i](c) = 0, for all c ∈ Ci . Finally,
T ⊆ S × S is the transition relation defined in Fig. 2. Note that the discrete transition is the
only one moving a single timed automaton, while the others are waiting. The delay transition
moves all the instances, increasing their clock valuations by a same amount of time d .
Finally, the broadcast transition moves an instance sending the message !!m together with
the maximum set of instances capable of receiving the same message through a transition
labeled with ??m.

3.2 Real-time temporal logics

In this section, we report the formal definitions of real-time temporal logics MTL and TCTL
(the interested reader may refer to (Bouyer et al. 2018) for a more complete account on the
subject).
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Given a set of propositions AP, the grammar for producing a MTL formula ϕ is the
following:

ϕ ::= a|¬ϕ|ϕ ∨ ϕ|ϕGI ϕ|ϕFI ϕ

where a ∈ AP denotes some proposition while I ⊆ N ∪ {∞} is a convex interval of natural
numbers. Similarly, by restricting all time intervals I to be [0, ∞), one obtains the linear-
time temporal logic LTL. Missing Boolean operators (∨, →, . . . ) and temporal operators
(UI , . . . ) can be defined in the usual ways.6

The syntax of TCTL formula ϕ is given by the following grammar:

ϕ ::= a|¬ϕ|ϕ ∨ ϕ|E�|A�

� ::= a|¬�|� ∨ �|GI ϕ|FI ϕ

where, again, a ∈ AP denotes some proposition and I ⊆ N ∪ {∞} is a convex interval
of natural numbers. By restricting all intervals I to be [0, ∞), one obtains the well-known
branching-time temporal logic CTL.

Similarly to their untimed counterparts LTL and CTL, the two real-time temporal logics
differ mainly by the semantic structure over which they are interpreted, while MTL for-
mulae are interpreted over sets of infinite traces of state propositions, TCTL formulae are
interpreted over infinite timed trees of state propositions.

We write ρ, t |= ϕ to denote that the MTL formula ϕ holds w.r.t. time trace ρ and some
point in time t ∈ N. The MTL satisfiability relation |= can be defined as follows:

– ρ, t |= a iff a ∈ ρ(t), for a ∈ AP;
– ρ, t |= ¬ϕ iff ρ, t �|= ϕ;
– ρ, t |= ϕ1 ∨ ϕ2 iff ρ, t |= ϕ1 or ρ, t |= ϕ2;
– ρ, t |= GI ϕ iff ρ, t ′ |= ϕ, for all t ′ ≥ t such that t ′ ∈ I ;
– ρ, t |= FI ϕ iff ρ, t ′ |= ϕ, for some t ′ ≥ t such that t ′ ∈ I .

We write σ, t |= ϕ to denote that the TCTL formula ϕ holds w.r.t. a state σ ∈ 2AP, i.e., a
subset of propositions in AP. The TCTL satisfiability relation |= can be defined as follows:

– σ, t |= a iff a ∈ σ , for a ∈ AP;
– σ, t |= ¬ϕ iff σ, t �|= ϕ;
– σ, t |= ϕ1 ∨ ϕ2 iff σ, t |= ϕ1 or σ, t |= ϕ2;
– σ, t |= A� iff ρ, t |= �, for all time traces ρ starting from σ ;
– σ, t |= E� iff ρ, t |= �. for some time trace ρ starting from σ ;
– ρ, t |= a iff a ∈ ρ(t), for a ∈ AP;
– ρ, t |= ¬� iff ρ, t �|= �;
– ρ, t |= �1 ∨ �2 iff ρ, t |= �1 or ρ, t |= �2;
– ρ, t |= GI ϕ iff ρ(t ′), t ′ |= ϕ, for all t ′ ≥ t such that t ′ ∈ I ;
– ρ, t |= GI ϕ iff ρ(t ′), t ′ |= ϕ, for some t ′ ≥ t such that t ′ ∈ I .

Since MTL and TCTL contain LTL and CTL, respectively, they inherit the property of
being not comparable, i.e., it is neither the case that MTL ⊆ TCTL, nor TCTL ⊆ MTL.

In the following, ATCTL denotes the universal segment of TCTL, i.e., the set of formulae
not using the path quantifier E.

6One exception is the “next” operator, that is usually not considered for real-time temporal logics
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Running example Let us assume some shared variable y is used to count the number of
processes in their critical sections. Let us assume the set of propositions AP = {(y ≤
1), (y > 1)} ∪ {(thread end, i), ¬(thread end, i) : i ∈ [1, 5]} describing (i) whether or
not the variable y is either less than or equal to one, and (ii) whether or not the ith process
reached the end of its thread, for i ∈ [1, 5].

The usual mutual exclusion requirement, in this context, can be formalized using the
following ATCTL property: AG≥0(y ≤ 1), meaning that at any possible moment in time,
there will be at most one process in the critical section. The other common requirement, i.e.,
absence of starvation while waiting to enter the critical section, can be expressed with the
following ATCTL formula: AF≥0

∧
i∈[1,5](thread end, i).

In MTL, the mutual exclusion requirement can be expressed as G≥0(y ≤ 1) while the
absence of starvation can be expressed as F≥0

∧
i∈[1,5](thread end, i).

Let us observe that the presented specifications are essentially untimed since they use the
operators G≥0 and F≥0, i.e., they demand that their sub-formulae hold at any (resp. at some)
point in time, no matter how far from the begin of the execution. These properties, though,
will be checked against a model that have both implicit and explicit time constraints, as
explained in Section 5.7.

Let as assume some network of timed automata (A1, . . . , An) and a formula � ∈ MTL.
Let us write (A1, . . . , An) |= � to denote the problem of checking whether or not the
formula � holds in all the time traces ρ induced by (A1, . . . , An).

The model checking problem for MTL is undecidable. However, the model checking
problem is EXPSPACE-complete for MITL, the subset of MTL where intervals are non-
punctual (i.e., U=c is forbidden, for c ∈ T) (Bouyer et al. 2018).

Let as assume some network of timed automata (A1, . . . , An) and a formula � ∈ TCTL.
Let us write (A1, . . . , An) |= � to denote the problem of checking whether or not the
formula � holds in the initial state of (A1, . . . , An).

The model checking problem for TCTL is PSPACE-complete (Bouyer et al. 2018).
Uppaal (Larsen et al. 1997) is a state-of-the-art model checker for networks of timed

automata. It takes as input a network of timed automata and a specifications belonging to
the following subset of ATCTL:

� ::= p | � | ¬� | EG∼cp | EF∼cp | AG∼c(p → AF∼c′q)

for p, q ∈ AP, c, c′ ∈ T, ∼∈ {<,≤,=, ≥,>}. Note that through the usual De Morgan
laws, it is also possible to verify the following universally quantified formulae as well:
AG∼cp := ¬(EF∼c¬p) and AF∼cp := ¬(EG∼c¬p).

3.3 Satisfiability modulo theories

In our approach to software model checking, we make use of satisfiability modulo theory
(SMT). This is a technique that, given a first-order logical formula, searches for a model of
such formula, within a given set of theories. Here we report some core notions of SMT. The
interested reader can find a detailed introduction on the topic in Barrett and Tinelli (2018).

Call signature a tuple 	 = (S,P,F, μ, σ ), where S is a set of sorts, P is a set of predicate
symbols, F is a set of function symbols, and μ : P → S
 and σ : F → S+ are total mappings.

Each function symbol f ∈ F specifies its arity, i.e., a number of accepted argu-
ments, denoted with arity(f ) ∈ N, and a rank σ1 . . . σnσ , denoted with rank(f ), where
n = arity(f ) and {σ, σ1, . . . , σn} ⊆ S. Similarly, each predicate symbol p ∈ P has some
arity arity(p) = n, for n ≥ 0, and rank rank(p) = σ1 . . . σn, for {σ1, . . . , σn} ⊆ S.
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Let us assume a signature 	. In the following grammar, τ generates 	-terms of sort σ

while � generates 	-formulae:

τ ::= x | f (t1, . . . , tn)

� ::= ⊥ | s1 = s2 | p(τ ′
1, . . . , τ

′
n) | ¬ϕ1 | ϕ1 ∨ ϕ2 | ∃x.ϕ1

where x ∈ V is a variable associated with some sort in S; f ∈ F is a function symbol such
that rank(f ) = σ1 . . . σnσ , and terms ti ∈ τ have sort σi , for i ∈ [1, n]; s1, s2 ∈ τ are terms
of the same sort; p ∈ P is a predicate symbol with rank rank(p) = σ ′

1 . . . σ ′
m, and t ′i ∈ τ is

a term with sort σ ′
i ∈ S, for i ∈ [1,m]; finally, ϕ1, ϕ2 ∈ �.

Given a signature 	 = (S,P,F, μ, σ ), a 	-interpretationA maps:

– each sort σ ∈ S to a domain Dσ ;
– each variable x ∈ V of sort σ ∈ S to some element xA ∈ Dσ ;
– each function f ∈ F with rank(f ) = σ1 . . . σnσ to a total mapping f A : Dσ1 × . . . ×

Dσn → Dσ ;
– each predicate p ∈ P with rank(p) = σ1 . . . σn onto a relation pA ⊆ Dσ1 × . . . × Dσn .

Let us define D = ⋃
σ∈S Dσ , i.e., the union of all the domains. Each interpreta-

tion A induces a unique mapping ( )A : τ → D from terms to domain elements, s.t.
(f (t1, . . . , tn))

A = fA(tA1 , . . . , tAn ).
Let us define a satisfiability relation between interpretation A and 	-formulae ϕ ∈ �,

written A |= ϕ, by structural induction as follows:

A �|= ⊥
A |= s1 = s2 ⇐⇒ sA1 = sA2

A |= p(t1, . . . , tn) ⇐⇒ (tA1 , . . . , tAn ) ∈ pA

A |= ¬ϕ ⇐⇒ A �|= ϕ

A |= ϕ1 ∨ ϕ2 ⇐⇒ A |= ϕ1 orA |= ϕ2

A |= ∃x : σ .ϕ ⇐⇒ ∃a ∈ Dσ . A[x �→ a] |= ϕ

where A[x �→ a] denotes an interpretation derived from A and adding a mapping from
variable x (of some sort σ ) onto some term a ∈ Dσ .

A theory is a pair (	,M), where 	 is a signature while M = {A1,A2, . . .} is a class
of models sharing the same signature 	. In this context, examples of theories typically used
are the theory of equality and uninterpreted function symbols, real or integer arithmetic, bit
vectors, and so on.

A 	-interpretation starting from an empty set of variables is called a 	-model. The
SMT problem is defined as follows: taken a theory (	,M) and a 	-formula ϕ, determine
whether a 	-model A ∈ M exists such that A |= ϕ, and in case of positive answer,
return it. Depending on the chosen theory, the SMT-solving problem can either be decidable
or not. For instance, the theory of real arithmetic with sort R, and functions symbols for
sum, subtraction, and product is decidable (Enderton 1972). On the contrary, the theory of
arrays with sorts A, I , and E (for arrays, indices, and elements, respectively) with function
symbols for read and write operations is in general undecidable whereas its quantifier-free
fragment is decidable (Bradley et al. 2006).

An SMT solver is a tool that, given a formula and a set of theories, returns one of the
following answers: (i) a model for the formula, if it exists, i.e., an assignment of the (sorted)
variables to terms of the theory; (ii) unsat in case such a model does not exist; (iii) unknown
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in case a model cannot be found, but the procedure is not complete and thus cannot exclude
that such a model may exist. We encode the SMT problems using the SMT-LIB v2 language
(Barrett et al. 2017), a standard language for SMT solvers. For our experiments, we use the
solver Z3 (De Moura and Bjørner 2008).

4 Model checking timed properties of Java programs

Software model checking has some theoretical limitations, whose knowledge is essential
to establish which semantics and which extraction rules should be used and under what
assumptions they can be applied.

Let us call untimed state (or simply state) the configuration of the variable values of a

Java program. Given a Java program P and a set of states S, let us write P
?−→ S denoting

the reachability problem asking whether the program P reaches any of the states in S.

Lemma 1 Let P be a Java program with conditions, loops, and recursive types, and S any

set of states. The reachability problem P
?−→ S is undecidable.

Proof First, let us recall that the problem of detecting whether two names are aliases for the
same variable is an undecidable problem for programming languages with conditions, loops,
dynamic storage, and recursive data structures (Landi 1992). As Java falls under the above
conditions, then the aliasing problem is also undecidable for Java. Second, such problem can
be reduced to check reachability of finite state Java programs: just add a fresh variable (let
us say C) initialized to 0 at the beginning, plug-in the code for which the aliasing problem
should be decided (assume variable names are A and B). Then add a check like: if (A ==
B) then C := 1 else C := 2 . The problem of verifying whether the program can reach a
location where C == 1 is decidable if the aliasing problem is decidable, but the latter has
been proven undecidable; thus, the reachability problem is undecidable as well.

The above lemma implies that, under the same assumptions, the model checking prob-
lem, for any reasonable timed or untimed temporal logic capable of expressing reachability,
is undecidable as well.

One may wonder whether by restricting to Java without recursive datatypes, it is possible
to recover decidability for the model checking problem and possibly extending it to timed
formulae. The answer to this question depends on several technicalities, e.g., whether the
clocks are synchronized or not among themselves, or whether we assume a dense time
models vs. a discrete one, and so on.

If not otherwise specified, we assume multi-threaded Java programs where threads can
communicate using synchronous message passing or broadcast.

We call timed state of a Java program the configuration of its variables together with
clock variables, i.e., variables that assume values from a time domain T and that are
increased by some clock ticking action. A clock variable can be used, for instance, to track
the execution time of a Java thread. Assume that the clock variables could be checked to
enable or disable an update of the program variables and could be reset when an update
of the program variables occurs. Under these assumptions, two cases can be considered: if
clock variables, possibly of different Java threads, increase their internal values at the same
rate, we talk about synchronized clocks; otherwise, we talk about skewed clocks.

Given n Java threads P1 . . . Pn, let P
(m1)
1 ‖ . . . ‖P

(mn)
n denote their concurrent execution,

where, for each i, we have mi instances of thread Pi .
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Lemma 2 Let P1 . . . Pn be n Java (finite state) threads connected to form a clique. Let S be
any set of states. Assume the use of synchronized clock variables. The reachability problem

∃m1, . . . , mn. P
(m1)
1 ‖ . . . ‖ P

(mn)
n

?−→ S is decidable for timed states with only one clock
variable and for a continuous time model T = R. Given a timed temporal logic formulae
φ in MTL or TCTL, the model checking problem ∀m1, . . . , mn. P

(m1)
1 ‖ . . . ‖ P

(mn)
n |= φ is

undecidable.

The lemma above can be shown by reducing it to the problem of checking reachability
(resp. to the recurrent state problem) in timed networks with continuous time (Abdulla and
Jonsson 2003).

The next lemma, instead, shows that abstracting programs to systems with skewed clocks
produce models whose model checking problem is undecidable.

Lemma 3 Let P1 . . . Pn be n Java (finite state) threads connected to form a clique. Let S

be any set of states. Assume the use of skewed clock variables. The reachability problem

P1 ‖ . . . ‖ Pn
?−→ S is undecidable.

Proof The undecidability result is proven by reducing the problem of checking the reach-
ability of a hybrid automaton with skewed clocks to the same problem on a Java program.
Assume a number of Java threads equal to the number of clocks in the input automaton.

Assume an additional Java thread whose internal variables simulate the state of the input
automaton.

Now, it is evident that by assuming that multi-threaded Java programs with skewed
clocks can decide the reachability problem, then the same problem can be decided also for
hybrid automata with skewed clocks. The latter problem, though, was proven undecidable
(Henzinger et al. 1998).

Summarizing, we have shown a few aspects of the Java language that make correspond-
ing reachability and model checking problems undecidable.

The same analysis can indeed be replicated with minor efforts on most programming
languages, since very few assumptions are made, and most programming languages satisfy
them. Nevertheless, this analysis provided a motivation for drawing a formal “perimeter”

Fig. 3 Undecidability boundaries
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around the kind of models that we are going to extract from Java programs. In particular,
we appeal to Lemma 1 for abstracting recursive data-types to compound types. Because
of Lemma 2, we prefer to assume a discrete time semantics for Java threads. Because of
Lemma 3, we assume a semantics for Java where all threads increase their internal clock
values at the same rate.

In Fig. 3, we depict a class of undecidable Java programs outside the triangle, as deter-
mined by the statements above. This, on the one side, justifies our design choices when
giving a timed semantics for Java and, on the other side, it conveys the necessity for several
abstraction techniques aiming to produce a model-checkable representation of the original
program.

5 Time-dependent Java programs

Java is used for implementing software systems that have time-agnostic behaviors as well
as time-dependent behaviors. By time-dependent Java programs, we mean Java programs
containing conditional or looping statements guarded by conditions on timestamps, like the
following:

if (now < expected time) { do something(); }
provided that now and expected time are variables with some well-defined meaning
w.r.t. the actual execution time (e.g., now may represent the current wall-clock time, while
expected time may represent a specific point in time).

The Java language does not come with a rich support of time-dependent statements and
datatypes. It is also worth mentioning that the official semantics of the Java language are
provided informally (Dibble et al. 2017; Bollella and Gosling 2000), while all the efforts to
give a formal semantics to the Java language avoided to consider the time-related aspects
of the Java language (e.g., see Bogdanas and Roṡu (2015) and Farzan et al. (2004)). Even
looking at several formal semantics given (mostly a posteriori) for other widely used pro-
gramming language that we are aware of, they only describe the untimed behavior of the
programming language.

This section is devoted to introduce a timed semantics of Java. For the sake of mod-
ularity, such semantics extends the semantics of Java 1.4 given using the K-framework
(Bogdanas and Roṡu 2015), later referred to as KJ. The K-framework, in fact, natively offers
the possibility to define the semantics of programming language in a modular fashion.

The K-framework allows for an operational definition of the semantics of programming
languages. This is done by first defining an algebraic structure, called a configuration, and
later a set of rules rewriting pieces of configurations to different pieces of configurations.
A configuration is a set of labeled cells, each containing algebraic structures representing a
piece of the overall current state of the program. Examples of employed algebraic structures
are lists, mappings, and stacks. Cells may contain sets of cells as well, forming a tree-like
structure. A cell written as 〈List〉foo, for instance, has name foo and contains a term of sort
List. A semantic rule is represented as:

RULE: Bar
〈 α

α′
〉

a
. . .

〈
β

β ′

〉

b
〈γ 〉c REQUIRES cond

where Bar is the (optional) rule name and several cells (e.g., a, b) may synchronously
rewrite their terms (e.g., α in α′ and β in β ′). The term above the cell line is a pattern that,
when it matches the current configuration, it rewrites the cell content with the term below
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the line. A cell with no horizontal line (e.g., c) is expected to match but does not change
during the rewriting. The (optional) REQUIRE clause may contain an additional condition
that enables the rewriting when it holds. Note that rules can make use of variables in their
matching patterns (e.g., in α, β, γ ) as well as in their additional condition (e.g., in cond).
Such variables can be referred to in the terms below the line (e.g., in α′ and β ′) to denote
the matching fragment of the configuration.

In the following, we will make use of cells with self-explanatory names: 〈. . .〉k con-
tains the continuation of the evaluation of the program, 〈. . .〉stack keeps track of the stack
memory of the currently executing method, while 〈. . .〉methodContext tracks the references
that constitute the context of a method during its execution. The sets D and T represent the
domain of time intervals and the domain of absolute time values, respectively. If we imag-
ine the time as a line, then t ∈ T is used to denote a point in the time-line, while d ∈ D is
used to denote the the (positive or negative) displacement of two points in time.

We assume the time semantics for Java is obtained by extending the syntax of Java to
allow the invocation of the following list of time-specific functions:7

– futureT T : T × T → B: returns true if the first point in time is in the future w.r.t. the
second one;

– deadlineT : T → (T → B): it takes a point in time (say t) as parameter and produce a
partial evaluation of the futureT T operators, i.e., it makes t a reference time to be used
for further checks against other points in time t ′. Its formal definition is the following:
deadlineT (t) = λt ′.futureT T (t, t ′);

– diffTT : T × T → D: returns the displacement between any two points in time;
– incT D : T × D → T: increases or decreases a given point in time by some given

(positive or negative) duration;
– addDD : D × D → D,mulDD : D × D → D: adds and multiplies two given durations

to obtain a third one;
– now : ∅ → T: it returns some encoding of the wall-clock time;8

– sleepD : D → ∅: it interrupts the execution of the computation for a given amount of
time;

– sleepUntilT : T → ∅: it interrupts the execution of the computation until a specified
moment in time (if the passed time is in the past, no waiting occurs);

– wait : ∅ → ∅: it interrupts the execution of the computation for an unknown amount of
time;8

– holdsT : (T → B) × T → B: it takes a deadline as first argument and a point in time
as second argument and returns whether the former is met at the specified time.

where B = {true,false} denotes the usual domain of Boolean values.
The time semantics of Java is then obtained by first extending the definition of configu-

rations from the KJ semantics. In particular, we need to keep track of the execution time of
each thread, and a set of rules for interpreting the aforementioned time-specific functions.

7It is well known that Java does not allow a notion of “function,” and in this presentation, we exploit exactly
this fact: we are going to present rules that specify what it means to invoke such functions and such rules will
not introduce any non-determinism w.r.t. the existing rules that describe the invocation of methods.
8The now operator, from a mathematically point of view, is a relation and not a function. The wait operator,
on the other side, is better described in terms of its side effects, than in terms of its domain and codomain.
In programming languages, though, it is generally accepted to call functions even named blocks of code that
return different values for the same input data or that have side effects. We take advantage of this ambiguity
for ease of presentation.
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5.1 Timed configuration

Figure 4 depicts a (subset of the) timed configuration used for giving a time semantics of
Java. Notice that we extended the KJ configuration by introducing new cells: 〈Nat〉time,
〈Nat〉sleep, and 〈List〉deadlines, in each 〈...〉threadData cell. The aim of time is to
count the time units since the moment the thread was created. The cell sleep, instead,
stores after how many time units the thread will be woken up, or −1 if the thread is not
sleeping. Finally, cell deadlines stores a (possibly empty) list of time values, called
deadlines, to keep track of the moment when each of them expires and the impact on the
computation execution time. In the next sections, we present the semantics only for the
interesting functions. All other functions (e.g. deadline, add, ...) can be derived easily.

5.2 Rules for sleepD and sleepUntilT

The semantics of functions sleepD : D → ∅ and sleepUntilT : T → ∅ is given by the
following rules:

RULE: SleepEnter
〈
functionRef(Sig)(Q) · RestK

sleeping · RestK
〉

k

〈 −1

incT D(N,Q)

〉

sleep
〈N〉time

REQUIRES Sig MATCHES sleepD : D → ∅

RULE: SleepUntilEnter
〈
functionRef(Sig)(M) · RestK

sleeping · RestK
〉

k

〈−1

M

〉

sleep
〈N〉time

REQUIRES Sig MATCHES sleepUntilT : T → ∅

RULE: SleepExit
〈
sleeping · RestK

RestK

〉

k

〈
N

−1

〉

sleep
〈M〉time REQUIRES futureT T (N,M)

where M,N match two time values, and Q matches a duration value.
Here functionRef(Sig) means that a variable Sig matches the signature of a function (more

precisely, of a method), while RestK is a variable introduced for matching the rest of the
continuation to be saved for later use. Rule SleepEnter enters the sleeping state and
sets the timer for exiting the sleep state to a point in time computed by the sum of the
actual time and the passed duration. Rule SleepUntilEnter, on the other side, sets
the timer directly to the passed point in time, independently from the actual time. Note

Fig. 4 Subset of configuration
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that the existing rules take care of evaluating the argument of the sleepD function before
applying this rule, following the standard pass-by-value approach Rule SleepExit exits
the sleeping state when the thread timer reaches (or overcomes) the maximum sleeping time,
carrying on with the rest of the computation.

5.3 Rule for now

The now : ∅ → T function returns the current wall-clock time, as described by the following
rule:

RULE: Now〈
functionRef(Sig)(M) · RestK

return N

〉

k
〈N〉time〈MethodContext〉methodContext

〈
emptyList

(RestK,MethodContext)

〉

stack

REQUIRES Sig MATCHES now : ∅ → T

The meaningful part of the Now rule is the statement return N, which unwraps the value
in the time cell and returns it to the caller. The rule has also to take care of the rest of the
computation (i.e., saving the callee’s code RestK and context MethodContext for later use).
Note that how the computation is recovered after a return exp statement is already specified
by the KJ semantics; thus, it does not require any new rule.

5.4 Rules for holdsT

As already mentioned, deadlineT is the partial evaluation of function futureT T . In our con-
text, deadlines are used for expressing comparisons against a fixed moment in time. By our
own definition, the holdsT function is the only language construct that uses deadlines. The
interpretation of holdsT is defined by the following rules:

RULE: Holds〈
functionRef(Sig)(DL, T) · RestK

return v;
〉

k
〈MethodContext〉methodContext

〈
emptyList

(RestK,MethodContext)

〉

stack

REQUIRES Sig MATCHES holdsT : (T → B) × T → B,DL : T → B,

T ∈ T, v = DL(T)

Intuitively, the main aim of rule Holds is to evaluate an invocation of holdsT to either
true or false, depending on whether the passed deadline (i.e., the evaluation of the first
argument) is in the future w.r.t. the passed time value (i.e., the evaluation of the second
argument).
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5.5 Rules for time ticking

In order to describe the elapsing of time, we provide a rule named Tick which updates the
execution time in every thread configuration. The rule is defined as follows:

RULE: Tick〈
Threads

timeinc(Threads)

〉

threads
REQUIRES invHolds(Threads)

where the term Threads matches zero or more 〈. . .〉thread cells. Auxiliary operators timeinc
and invHolds are defined by means of the following equations:

timeinc(〈〈N〉time . . .〉thread Threads) = 〈〈incT D(N, 1)〉time . . .〉threads timeinc(Threads)

timeinc(ε) = ε

invHolds(Threads) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

true if Threads = ε

invHolds(tail(Threads)) if head(Threads) =〈〈N〉time 〈M〉sleep . . .
〉
thread

and futureT T (M,N)

false otherwise

where N,M match two time values, Threads matches a list of 〈. . .〉thread cells and ε

matches an empty list.
The reasoning of the Tick rule is that time can advance provided that no thread will

remain “asleep” after its 〈. . .〉time timer overcomes its 〈. . .〉sleep timestamp. Notice that
the tick rule invariant does not prevent deadline timers to “expire”, w.r.t. the current time.

5.6 Comparison with real-time software systems

The class of time-dependent Java programs should be considered a superset of the real-
time Java programs. The latter, indeed, is usually defined through combinations of several
terminating tasks, each one having well-defined deadlines. The correctness of a real-time
software is the result of two factors: (i) each task meets some logical requirements, and
(ii) it completes its tasks in time w.r.t. some given deadlines. Deadlines of real-time tasks
are usually set statically, at compile-time, and not computed at run-time. Since the actual
execution time is a fundamental aspect of real-time tasks, and the task deadlines may be
expressed in the scale of milliseconds, real-time tasks are executed using specially designed
schedulers which give priority to tasks whose execution time is closer to their deadlines.
In the case of Java real-time software, special JVMs can be used (often called real-time
JVMs) that guarantee predictable upper bounds for every instruction of the Java language
(the reader can refer to Laplante and Ovaska (2011), Hunt and et al. (2017), and Bollella
and Gosling (2000) for a survey on the topic).

On the other side, we call time-dependent program any software that makes use of dead-
lines, i.e., fixed points in time used as comparisons against timing of events. In this context,
deadlines may be computed at run-time, and the deadlines are not so tight to require a
full-fledged real-time JVM for the execution of the code. The code, though, contains com-
parisons between time values and deadlines, and their evaluation is expected to lead the
software to behave differently, in some meaningful way. In other words, the correctness
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of the software is expected to depend upon the correct handling of the timing of events.
Real-time deadlines can be encoded using our notion of deadlines and time operators, as
follows:

MyTask t = MyTask(par1, ..., parN);

assertTrue(t instanceof java.lang.Thread);

// create a deadline max units from now

Deadline dl = t.setDeadline(max);

t.run();

do {

if (! dl.holds(now())) {

t.interrupt();

throw new TimeoutException();

}

} while (t.isAlive());

Similarly, our time-specific functions now, sleepUntilT , and incT D can be used to encode
a periodic task, i.e., to ensure that a piece of code is executed every d time units, for some
integer d > 0:

MyTask t = MyTask(par1, ..., parN);

assertTrue(t instanceof java.lang.Thread);

while (! t.isFinished()) {

if (t.isAlive()) {

// it took more than the period to complete

throw new TimeoutException();

} else {

t.run();

awake = inc(now(), period);

sleepUntil(awake); // stop current thread, but not t

}

}

5.7 A running example

In the following, we introduce as running example the Fischer’s algorithm for mutual
exclusion, as presented in a classic paper by Lamport (1987).

The algorithm is designed to ensure mutual exclusion when a set of processes, running
on a multi-processor system, gains access to a critical section. The core idea of the algorithm
is that every process, in order to enter the critical section, must announce its intention by
writing its own identifier in a shared variable, i.e., accessible to every processor. Then, every
processor waits some amount of time, and if at the end of the waiting its name in the shared
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Fig. 5 A Java implementation of the Fischer’s algorithm for mutual exclusion

variable has not been overwritten, it assumes that it is the only one accessing the critical
section, and so it enters it. A Java implementation of the Fischer’s algorithm is given in
Fig. 5. On the left-hand side of the code, we report the encoding of the line-of-code (LOC)
of each instruction, for future reference. For convenience, we represent the LOC as a stack
of numbers, and we refer to Section 6 for the technical details about this encoding.

The peculiarity of the algorithm is that it uses time assumptions in place of the usual test-
and-set operation implemented in hardware. More specifically, it assumes that any process
can execute in sequence the //await (line 0.0) and the //announce (line 0.1) steps
in less than DELTA time units. Note that x is the shared variable used to announce the
willingness of a process to enter the critical section, while this.id is a local variable that
stores the identity of the process itself. We declared this.id to be of type String in
order to show, later, how our approach can cope with more complex data-types than numeric
and Boolean types. Variable y is an auxiliary shared variable used to count the number of
processes in the critical section. In Section 3.2, we have shown how to encode the mutual
exclusion requirement as well as the absence of starvation, using real-time temporal logics.

The presented algorithm has both explicit and implicit time constraints. We call explicit
those time constraints that are derived from a careful analysis of the source code, while
we call all the other time constraints implicit. An example of the latter are the assump-
tions on the value of constant DELTA w.r.t. the execution time of the processes. Explicit
time constraints are inferable from the usage of timestamps and the invocation of time-
related methods (e.g., the variable DELTA and the method sleep). The fact that the
Fischer’s algorithm has both kinds of time constraints makes it a good benchmark for our
methodology.

6 Abstraction rules

We begin by introducing rules that encode an (untimed) existential abstraction of Java
threads. Such abstraction produces a finite-state transition system that will be labeled, later
in this section, with time information to produce a network of timed automata. As we will
see in more details later, the produced abstraction of the code will be untimed because, at
this stage, timestamp variables will be treated as regular integer variables, and it will be
existential because it will be the result of solving satisfiability problems of existentially
quantified logical formulas over the program variables.
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6.1 Abstracting time-independent steps

We assume a finite set of concrete variables V = {v1, . . . , vn} and we define the concrete
state space as SS(V ) = dom(v1)× . . .× dom(vn), where dom maps a variable to a set, and
we call dom(v) the domain of variable v.

We assume also a finite set of abstract variables W = {w1, . . . , wm} and we define the
abstract state space as SS(W). We call concrete state and abstract state any item s ∈ SS(V )

and ŝ ∈ SS(W), respectively.
Let us call abstraction function any mapping αi : SS(V ) → dom(wi). A set of abstrac-

tion functions α1, . . . , αm induces an abstraction, i.e., a mapping α : SS(V ) → SS(W)

such that:
α(v1, . . . , vn) = (α1(v1, . . . , vn), . . . , αm(v1, . . . , vn)).

Running example Call P the implementation of the Fischer’s algorithm reported in Fig. 5.
The thread has the variables V = {id,x,y, pc}, where pc is the register storing the thread
program counter, a special purpose variable used to track the currently executed LOC.
Assume that we want to abstract the thread using the following abstraction functions:

α1(id,x,y, pc) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if id = "fie"
1 if id = "foo"

2 otherwise α3(id,x,y, pc) =
⎧
⎨

⎩

0 if y = 0
1 if y = 1
2 if y > 1

α2(id,x,y, pc) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if x = null
1 if x = "fie" α4(id,x,y, pc) = pc

2 if x = "foo"
3 otherwise

While defining the abstraction functions, we are assuming a scenario where a process
identity can either be a literal between "foo" and "fie" or anything else. To this aim, the
abstraction function α1 (resp. α2) compares the values of the local variable id (resp. of the
global variable x) with the allowed identifiers. Note that since every thread is assumed to
have an identifier id, there is no need for checking whether id equals null. Abstraction
function α3 abstracts the number of threads in their critical section, counted by the global
variable y, while α4 traces exactly the flow of the code, i.e., each change in the LOC through
the special variable pc. Please note that, at this stage, while defining the abstraction of a
thread, the abstraction functions are not aware of how many such threads will be in the sys-
tem. Thus, the framework does not allow to specify constraints that involve local variables
of different threads, neither does it need to specify that at any given time all the threads
see the same value for a global variable. These aspects, on the other side, are fundamental
for carrying on the verification task, because, for instance, one should demand that no two
threads share the same identifier in the system. Such details will be presented in Section 8.

Let us call thread the state transition system P = (S, S0, T ) where S = SS(V ) is the
set of configurations that the thread variables can assume, S0 ⊆ S is the set of initial states,
T ⊆ S × S is the transition relation between thread states induced by the thread code.

Given a thread P , let us call an abstraction of P , the transition system P̂ = (Ŝ, Ŝ0, T̂ )

where Ŝ = SS(W), Ŝ0 = {α(s0) | s0 ∈ S0}, T̂ ⊆ Ŝ×Ŝ, such that T̂ = {(α(s), α(t)) | (s, t) ∈
T }.

We use an SMT solver in order to compute the abstract state space SS(W) of the thread
under analysis. In order to do so, we need to know a set of abstract variables W and

Software Quality Journal (2020) 28:695–744714



abstraction functions α1, . . . , αm.9 The questions passed to the SMT solver, in our case, are
first-order logical conjunctions describing (i) some predicates holding on variables V before
executing statement ι; (ii) the same predicates holding on variables V after executing ι; (iii)
the relation induced by ι between the initial and the final values of each variable. The abil-
ity of the SMT solver to decide the received problems obviously depends on whether the
predicates used to build the abstraction function fall into a decidable theory.

The finite-state automaton obtained at the end of the abstraction process is said to be
a predicate abstraction of the original code exactly because the problem of abstracting an
entire piece of code is reduced to deciding a set of logical predicates over the program
variables. The details of how this process is defined are explained in the following.

Building the abstract thread P̂ from a concrete thread P = (S, S0, T ) is quite trivial.
Unfortunately, explicitly representing a concrete thread P would be an infeasible task, when
not impossible (e.g., if the thread variables have unbounded domains). One of the main goals
of this work is to show how to build an abstract thread P̂ directly from the thread source
code, avoiding the intermediate step of enumerating the states and transitions of concrete
thread P . We can rely, instead, on the thread code, i.e., the set of its Java statements and
classes, and the initial state, given by assigning to each variable in the code its initial value.

From now on, assume that the set of concrete (resp. abstract) variables V (resp. W )
contain the special variable pc tracking the current LOC executed by the thread, assuming
such variable has domain dom(pc) = PC, i.e., the set of all possible locations.

In order to take into account nested statements, let us assume that PC is a dotted-
separated stack of natural numbers N and special symbols 	, pushing and popping on the
rightmost position.

We assume every natural number is also a member of PC, i.e., N ⊆ PC, since every
n ∈ N can be interpreted as the stack containing only n on its top. We assume the following
operators over LOCs, inc, push, pop, defined as follows:

inc(pc.n) = pc.(n + 1) push(pc, n) = pc.n

inc(n) = n + 1 pop(pc.σ) = pc

for every pc ∈ PC, n ∈ N, σ ∈ N ∪ 	. For the sake of readability, given any pc ∈ PC and
σ ∈ N∪ 	, we may write pc.inc() (resp. pc.push(σ ), resp. pc.pop()) in place of inc(pc)

(resp. push(pc, n), resp. pop(pc)).
The reason for using such data structure to model the LOC to be executed is that it

reflects precisely the nested structure of the source code in structured programming lan-
guages. Thus, given a statement stmt and its LOC pc, it is easy to compute the next possible
LOC where the thread can jump by executing such statement. If stmt is a variable assign-
ment, the next LOC is pc.inc(). If stmt is an if-then-else block, then the body of the “then”
branch begins at position pc.push(THEN).push(0), while the “else” branch begins at posi-
tion pc.push(ELSE).push(0); if stmt is a while statement, there is only one possible body,
beginning at position pc.push(0); and similarly for the other Java control structures.

Since Java is a deterministic programming language, each statement at a given LOC
can only jump to a new single LOC, depending on the state of the thread. Assuming an
asynchronous thread semantics, a program with n threads has up to n successor states from

9For convenience, at the moment, we assume that the user provides such information to the methodology. It
is easy to conceive that some of it can be inferred from a further step of static analysis of the source code,
mixed with heuristic rules.
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any given state, since in general, the choice of the next thread to run is the only form of
non-determinism in the Java language specification (Dibble et al. 2017).

In the following, for a state s, we may write s.x to denote the value of variable x in s.
We may also write s[x ← z] to denote the (unique) state obtained from s replacing the
current value of x with z, provided that z ∈ dom(x). By definition, for any x �= y, we have
to check that (s[x ← y]).y = s.y while (s[x ← z]).x = z. Given any state s and symbol
σ ∈ N ∪ 	, we will write s.inc() (resp. s.push(σ ), resp. s.pop()) as shorthand for state
s[pc ← inc(s.pc)] (resp. s[pc ← push(s.pc,m)], resp. s[pc ← pop(s.pc)]).

Given an abstraction α and symbol σ ∈ N∪ 	, in the following, we will write SS(α, σ )

to denote the set {s : W = dom(α), s ∈ SS(W), s.pc = σ }. Basically, SS(α, σ ) filters the
abstract state space SS(W) by taking only those states where program counter equals σ .
Since the definition of a (abstract or concrete) state is reduced to checking a finite number
of first-order predicates over the program variables, we will write predicate(s) to denote
the first-order predicate corresponding to state s.

In the following, we assume an SMT solver is invoked through the special function
ISSAT, taking as input a first-order Boolean formula over several possible theories (typically
equality, arithmetic, recursive data structures, . . . ). The output of ISSAT is either true, if a
variable assignment exists that satisfies the given formula, or false otherwise. The ISSAT

operator can be seen as a decidable or semi-decidable oracle, depending on the theory in
which the input Boolean formula is expressed. Let us assume that, for any Java assignment
instruction ι, we are able to compute �ι�SMT, a first-order formula describing the effects
of instruction ι on a given abstract state. Let us call simple Java assignments those assign-
ments that have, in their right-hand side, either a single method call or an arithmetic or
logical expression. Any complex Java assignment that mixes method calls with expressions
in its right-hand side can be pre-processed to be replaced by a sequence of simple Java
assignments with the same behavior. This step may require to introduce a finite number of
auxiliary variables and it can be done using standard techniques. Thus, in the following,
we assume that the Java threads under investigation have been previously pre-processed, if
needed, and contain only simple Java statements.

Next, given two abstract states s and t and a Java assignment instruction ι, we say
that state t is reachable from s via the instruction ι iff ISSAT(predicate(s) ∧ �ι�SMT ∧
indexed(predicate(t))), where indexed(p) returns a copy of the predicate p where every
variable v is replaced by an indexed copy of itself v1. In this case, we add a transition s → t

to the discrete model of the thread under analysis. The problem is thus how to define �·�SMT
and how the latter relates every variable v (taken from predicate(s)) to its indexed copy v1
(introduced by indexed(predicate(t))).

Running example Let us represent a state as the tuple of values assumed by the abstrac-
tion functions α1, . . . , α4 defined earlier. For instance, s = (0, 0, 0, 0.1) is the state
where α1 = 0, α2 = 0, α3 = 0, α4 = 0.1. In this case, predicate(s) would return
the following first-order predicate: id = "fie" ∧ x = null ∧ y = 0 ∧ pc = 0.1,
while indexed(predicate(s)) would return the indexed version of the same predicate, i.e.,
id 1 = "fie" ∧ x 1 = null ∧ y 1 = 0 ∧ pc 1 = 0.1.

Let us assume the states t = (0, 1, 0, 0.2), i.e., predicate(t) = id = "fie" ∧
x = "fie" ∧ y = 0 ∧ pc = 0.2, and u = (0, 2, 0, 0.2), i.e., predicate(u) =
id = "fie"∧x = "foo"∧y = 0∧pc = 0.2. Let us now check whether through
statement x = this.id in line 0.1, the program can reach states t and u from s, both
in line 0.2. First, we need to compute the first-order logic interpretation of the statement.
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The latter, given the abstraction, is: �x = this.id�SMT = (strval(x 1) =
strval(id))∧(id 1 = id)∧(y 1 = y), i.e., the instruction updates the value of string
pointed by program variable x to equal the value of string pointed by id, and leaves all the
other variables untouched (i.e., the indexed version of each other variable equals the corre-
sponding unindexed variable). Next, we submit the following two satisfiability problems to
the SMT solver:

A) ISSAT(predicate(s) ∧ �x = this.id�SMT ∧ indexed(predicate(t)))

B) ISSAT(predicate(s) ∧ �x = this.id�SMT ∧ indexed(predicate(u)))

Note that the major difference between the two SMT problems is that: problem A) has
positive answer if, and only if, variable x in the program can assume value “fie” after exe-
cuting the assignment statement in configuration s; problem B), on the contrary, has positive
answer if, and only if, variable x in the program can be evaluated to “foo” after the same
assigment in the same configuration s. In line with the Java semantics of the assignment
statement, given the configuration s only problem A) has positive answer. Thus we add the

transition s
x=this.id−−−−−→ t to the set of transitions in the abstract model, while we do not add

transition s
x=this.id−−−−−→ u.

Let us emphasize that strval, appearing in our example, is a user-defined SMT
function describing the interpretation of the String.equals method from the Java
library.

Indeed, there are Java data types and operations that do not have a straightforward map-
ping onto the data types and operations supported by the SMT solver. We postpone to
Section 6.2 a more detailed discussion about how the user can provide an interpretation for
such data types and operations. Finally, note that the SMT problem does not require the
value of LOC before and after the current Java instruction since it does not affect the satis-
fiability of the SMT problem itself; thus, the variable pc does not appear in the argument of
ISSAT. The pc variable is tracked separately, to model the control-flow of the program.

Given an abstract state s and an instruction ι, we can compute the set of outgoing tran-
sitions from s when applying ι. We do this by means of several operators, one for each
syntactic category of statements and expressions allowed by Java.

In Algorithms 2–8, we report the pseudocode of the operators that cover the core con-
trol structures of the Java language, viz. sequences of statements, if-then-else, while loops,
method invocations, numerical, and logical expressions. Furthermore, let ReachHandler be
a mapping that associates each syntactic category to a function (e.g., if-then-else statements
are associated with REACHITE and sequences of statements are associated with REACH-
SEQ). Each function returned by ReachHandler takes the current statement stmt , a source
state s, and an abstraction α. The returned value is a pair whose former element is the set
of states reachable from the source state with the passed instruction, while the latter is the
set of transitions in between. The auxiliary function ADDREACTEDGES (see Algorithm 1)
enriches the passed set of states S and transitions T , allowing to react to changes of the
global environment through special broadcast receiving transitions. The reason behind these
transitions will be clarified later, when describing the function REACHTHREAD (see Algo-
rithm 8), which in turn adds in the network of timed automata special broadcast sending
transitions.
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Notice that the REACHITE operator (see Algorithm 4) allows in principle, from the same
configuration, to reach some states in the then-branch as well as in the else-branch. This is
consistent with the existential nature of the abstraction. Notice also that the guard g may
contain statements with side effects. We address this by assuming a straightforward pre-
processing at the parsing stage, rewriting the if-then-else statement to first decompose the
complex guard g to a sequence of (intermediate) variable assignments and methods calls,
and next replace g with a (functionally) equivalent guard g′ without side-effects.

Operator REACHWHILE (see Algorithm 5) abstracts a loop in the code. A key step is
the analysis of the loop guard. First, we build a logical formula intersecting the source
state with the guard of the while loop (predicate(s) ∧ guard(stmt)) and if it is satisfi-
able it unrolls and builds the abstraction of the while body, starting from (abstract) state
s. Next, a second logical formula intersects the source state with the negation of the loop
guard (predicate(s) ∧ ¬guard(stmt)) and, again, if it is satisfiable, a transition is added
towards the first LOC outside the while loop (i.e., s.inc()). Notice that, like for the REA-
CHITE case, due to the existential nature of the abstraction, it is possible that from the
same (abstract) state s, the finite-state automaton may either enter the while loop or skip it,
non-deterministically.

Notice also that the loop unrolling of REACHWHILE (see Algorithm 5) always termi-
nates. The reason is that the logical predicates used to define the abstraction functions
indeed partition the set of variable configurations of the thread variables. Provided that no
threads are created in the loop, then the set of states reachable via the loop unrolling remains
finite: imagine that we start with any subset of the (finitely many) states induced by the log-
ical predicates, at every unrolling we either find new (abstract) transitions leading to new
(abstract) states, or we reach a fixpoint of the unrolling operator. In the former case, we
discover a larger set of reachable (abstract) states, which can be unrolled once more. Since
the set of reachable (abstract) states is bounded by the set of all the abstract states (the lat-
ter being finite, as we just said), then the loop unrolling operation in REACHWHILE must
always terminate.
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Assume operators initialStates(S) (resp. finalStates(S)) returning the subset of loca-
tions in S that have no incoming edge (resp. no outgoing edge). Operator REACHCALL

(see Algorithm 6) handles the case of a statement representing the invocation of either a
timed function (introduced in Section 5) or a regular Java method. In the first case, we
assume the untimed behavior is a dummy transition towards a new state where only the pc

variable changes (increasing by one) while the other variables are untouched. In the case
the callee is a regular Java method, then we assume to have an interpretation of it in a
global dictionary that constitute a shared knowledge base (KB). We assume the interpre-
tation of a method should be a timed automaton template describing the behavior of the
method itself. Two cases are possible: if the source code of the callee is available, we invoke
the REACHTHREAD(c, α) on it (see Algorithm 8) to build the timed automaton template
from the code of the invoked method. This obviously creates a mutual recursion between
REACHTHREAD and REACHCALL, and, in order to be well-founded, we must assume that
every function/method call chain in the program code is non-recursive. Otherwise, if the
source code of the callee is not available, then the user is responsible for providing the inter-
pretation in the form of a timed automaton template whose nodes form a bipartite graph:
input nodes have no incoming edges and they are connected to output nodes that have no
outgoing edges. The edges and locations may specify additional time constraints.

In both cases, the locations of the looked up timed automaton template adjust the value
of their pc component to perform a method inlining. They modify the template inserting
the method body in a inner block right after the callee’s value for pc. This is handled by the
procedure shiftLoc.

Finally, the current location s is connected with an edge to every initial location of
the method interpretation, and every final location w of such interpretation is connected
to a location t where all variables keep the same value, with the exception of pc that is
updated to the LOC immediately after the method invocation. This definition simulates the
action of copy-and-pasting the callee method/function body in place of the method/function
invocation in the callee. This heavily relies on the assumption that the verified code is non-
recursive. We emphasize that when modeling a method invocation, we assume the correct
type of the callee instance can be determined. While this is in contrast with the Java vir-
tual method invocation principle, later we explain how additional user inputs and heuristic
functions can help the methodology to solve such ambiguities related to dynamic typing
rules.

In REACHTHREAD (see Algorithm 8), we give a procedure for building an untimed
abstraction of a Java thread, starting from its code and an abstraction. The first step is to
determine the initial abstract state, which is obtained by filtering all the abstract configu-
rations of the attributes composing the abstraction α and keeping those configurations that
fix the local and global variables of the thread to the expected initial value for their data
type. Note that the thread parameters are allowed to assume any value in the initial state.
Here, we consider the set of thread parameters to be composed of the attributes of the class
implementing the thread itself, or the parameters passed to the run method that begins the
execution of the thread itself.

In REACHTHREAD, we use transitions s
!!wa−−→ t to denote a special broadcast send tran-

sition, as meant by networks of timed automata (see Sec. 3.1). The label expresses the fact
that jumping from (the abstract) state s to t , the (global) variable w has been updated to the
new value a. A broadcast transition is well suited for modeling this kind of visible update,
because in this way, every timed automaton in the network is forced to react with a com-

plement transition s′ ??wa−−→ t ′ added by ADDREACTEDGES (Algorithm 1), jumping from
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(abstract) state s′ to t ′, such that t ′ = s′[w ← a]. In particular, note that t ′.pc = s′.pc, i.e.,
the changed state does not reflect the execution of any statement (with consequent change
in the pc value), but it only reflects a change in the global environment, while remaining at
the same LOC.

Let us emphasize that almost all of the REACH-* rules make use of the SMT solver,
through the ISSAT oracle. If we imagine to replace the invocation of ISSAT with an invoca-
tion of a dummy solver, always returning true to every input problem, the same rules would
produce a set of control-flow automata abstracting the code under analysis. In control-
flow automata, locations correspond to LOCs in the code and do not distinguish when the
same LOC is hit twice in the program with very different configurations of the thread vari-
ables. This makes virtually impossible to model check interesting properties of real-world
software, because:

– either the specification is given in terms of the thread variables configurations, or
– the control-flow automata have too many spurious counter-examples, i.e., two consec-

utive transitions in the abstract model falsify the given specification, but would never
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be possible in the actual program, due to some conditional evaluation of the thread
variables that are lost in the control-flow automata.

An example of this limitation will be shown in Section 8.

Lemma 4 The procedure REACHTHREAD (Algorithm 8) always terminates.

Proof We begin by observing that the REACH operators are recursively defined. Any sequence
of recursive calls to REACH-* functions, though, reduces the size of the statement to be
processed, with the exception of REACHWHILE and REACHCALL. If neither REACHWHILE

nor REACHCALL is invoked along the sequence, then the sequence is obviously finite.
In case a REACHWHILE occurs in the sequence, we observe that the set of transitions

produced at each step by REACHWHILE is monotonically increasing (because at every
invocation, we preserve all the previously discovered transitions) and bounded from above
(because the next computed set is always included in the set SS(W) × SS(W), which is
finite due to the employed abstraction).

In case REACHTHREAD invokes (indirectly) REACHCALL, then the latter invokes
REACHTHREAD again. Since we assumed that the verified code is not mutually recursive,
every sequence of method calls in the verified code is finite. This implies that every mutually
recursive sequence of REACHTHREAD-REACHCALL invocations is well defined.

6.2 Modeling complex data-structures

SMT solvers come equipped with several theories based on common data-types (e.g., integer
numbers, real numbers, and bit vectors). Java programs, on the other side, almost always
use data-structures more complex than SMT data-types, for which a theory has not been
developed or is undecidable. The user of our approach and tool, then, needs a way to reduce
an arbitrary Java data type onto an SMT one. To describe (an abstraction of) arbitrary Java
data types, we exploit algebraic data types. Intuitively, a Java class definition is mapped
onto an SMT record, collecting the attributes of the class itself, and a set of SMT functions,
each modeling one of the Java methods. Each of such SMT functions takes as first argument
an instance of SMT record denoting an instance of the Java class we are abstracting. For
instance, the Java class java.lang.String can be abstracted with the following SMT
record type:

(declare-datatypes () ((AbsString (init-AbsString

(strval Int) (size Int)))))

i.e., a record called AbsString with a constructor named init-AbsString, and two
fields value and size, both of types Int. While the meaning of field size is self-
explanatory, it should be noticed that every string literal is associated with a numeric value
by means of a (reverse-lookup) dictionary, i.e., every time a string literal, say "mickey",
appears in the code (at compile time) a fresh integer value (say 1) is generated and associated
with that string. Next, every occurrence of "mickey" in the code is replaced by a record
(init-AbsString 1 6), i.e., a record with value 1 and size 6.

A method such as java.lang.String.equals can then be mapped onto the
following SMT predicate:

(= return (= (strval self )(strval par 0)))
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where return is an auxiliary variable for storing the (boolean) result of comparing the
value of self and par 0, the former abstracting the current instance while the latter is
linked to the (abstraction of) another string used for the comparison. This way of abstracting
Strings is enough for checking equality of strings (it is enough to check that their values
are the same) or to compare the lengths of two strings (by comparing their sizes). On the
other side, it would not be a precise abstraction for different operations on strings, e.g.,
checking whether a string is contained within another.

Example 1 Suppose there is a Java method using the string literals "mickey" and
"scrooge". Suppose the method contains the following conditional instruction: if
(a.equals("mickey")) { ... do something ...} As a first step, such code
is rewritten in the semantically equivalent one:

bool equals_1000 = a.equals("mickey");

if (equals_1000)) { ... do something ...}

Next we have to check whether the guard can be satisfied. This is done through the following
SMT problem:

(declare-datatypes () ((AbsString (init-AbsString (strval Int)

(size Int)))))

(declare-const null AbsString)

(assert (= (size null) 0))

(assert (= (strval null) 0))

(declare-const a AbsString)

(assert (>= (size a) 0))

(assert (implies (= (strval a) 1) (= (size a) 6)))

(assert (implies (= (strval a) 2) (= (size a) 7)))

(declare-const MICKEY AbsString)

(assert (= MICKEY (init-AbsString 1 6)))

; begin encoding of current state

(assert (= a (init-AbsString 1 6)))

; end encoding of current state

; begin encoding guard: a.equals("mickey")

(declare-const equals_1000 Bool)

(assert (= equals_1000 (= (strval a) (strval MICKEY))))

(assert equals_1000)

; end encoding guard

(check-sat)

In the SMT problem, we encode the AbsString data-type, together with some constant
(e.g., the interpretation of null and of MICKEY). Through some assertion, the tool restricts
the set of coherent structures of type AbsString, i.e., those having non-negative value,
and imposing that strings with value "mickey" must have size 6, while occurrences of
"scrooge" must have size 7.
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6.3 Abstracting time-dependent steps

Let us now introduce the notion of programs with timed behaviors. To do so, we assume that
in addition to the underlying set of variables, a finite set of clock variables C exists. We also
assume a family � of terms describing conditions on clock variables: � ::= C ∼ N | C ∼
C | � ∧ �, where ∼ ∈ {≤,<, =,>, ≥}. Terms of � are also known as clock conditions.

Let us call concrete timed program (resp. abstract timed program) a state transition sys-
tem P = (S, S0, T , C, I, G, R) such that (S, S0, T ) is a concrete (resp. abstract) program,
I : S → � maps each discrete state to a clock condition also referred to as time invariant,
G : T → � maps each discrete transition to one (possibly a tautology) enabling clock con-
dition, and R : T → 2C maps each discrete transition to zero or more clock variables to
reset when taking the transition.

We call state sequence any finite or infinite sequence (s0, γ0)(s1, γ1) . . . where si ∈ S is
called the discrete state and γi : C → T is a clock valuation. Given a natural δ ∈ N and
a clock valuation γ : C → T, we will write γ + δ to denote the clock valuation where all
clocks are advanced by the same amount δ. Given a set of clocks X ⊆ C, we will write
γ [X → 0] to denote a new clock valuation γ ′ : C → T such that γ ′(c) = 0 if c ∈ X and
γ ′(c) = γ (c) if c ∈ C \ X.

A timestamp sequence is a sequence t0t1 . . . such that ti+1 ≥ ti , for all i ∈ N, and t0 = 0.
We call timed trace any (possibly infinite) sequence ρ = ((s0, γ0), t0)((s1, γ1), t1) . . . where
(s0, γ0)(s1, γ1) . . . is a state sequence, and t0t1 . . . is a timestamp sequence.

Assume a timed program P = (S, S0, T , C, I, G, R) and a timed trace ρ =
((s0, γ0), t0)((s1, γ1), t1) . . .. Then, the ith step in the trace ((si , γi), ti )((si+1, γi+1), ti+1)

is valid in P if one of the following holds:

– (discrete step) δ = 0 ∧ τ ∈ T ∧ γi |= G(τ) ∧ γi+1 = γi[R(τ)] ∧ γi+1 |= I (si+1)

– (timed step) δ > 0 ∧ si+1 = si ∧ γi+1 = γi + δ ∧ γi+1 |= I (si+1)

where δ = ti+1 − ti and τ = (si , si+1). The trace ρ is a valid trace in P if every step in ρ is
valid in P .

Notice that each (discrete or delay) transition requires that clock evaluation γi+1 satisfies
the clock condition I (si+1). This explains why I (si+1) is also called time invariant of state
si+1.

Since Java does not provide a native type for clock variables, most Java programs keep
track of the passage of time by means of integer timestamps, that are, from time to time,
compared against other timestamps or the hardware clock. We assume, for each thread, a
finite set of clocks C = {alive, sleep} � Cdeadlines, where Cdeadlines contains as many clock
variables as the invocations of the deadlineT operators used in the code. Intuitively, alive

tracks the thread execution time and is always increasing. The single sleepD clock variable
is sufficient to track the actions of entering, staying, and exiting the thread sleeping state,
since each thread cannot have nested invocations of the sleepD function. Finally, since a
thread can only define a finite number of deadlineT operators, a finite number of clocks in
Cdeadlines suffices. The restriction we imposed on the type of verified Java programs ensures
that the number of nested blocks guarded by a deadlineT is known statically. However,
the actual values passed as arguments to sleepD , sleepUntilT , and deadlineT cannot be
determined statically, in general. In the following, we further restrict our setting assuming
that arguments of sleepD , sleepUntilT , and deadlineT are bounded by known intervals.10

10Such bounds could be given by the user or inferred by heuristic functions analyzing the code.
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Fig. 6 A representation of modeling code that puts a thread to sleep (left) or checks for a deadline (right)

We argue that restrictions on such assumption are reasonable when modeling and veri-
fying time-aware software systems. Parameters that affect the actual execution time of the
code are critical for the correct timing of the code itself. Thus, they are usually specified as
configurable parameters or determined at compilation time. In both cases, they can assume
values within known intervals.

Assume a one-to-one mapping clock : PC → (C ∪ {ε}) returning either the clock vari-
able sleep if instr(pc) is a sleepD call, or a clock in Cdeadlines if instr(pc) contains
the expression holdsT (deadlineT (v 1), v 2), for some Java variables v1 and v2,11 otherwise
it returns a distinguished symbol ε, denoting “no clock variable.” Let us write insleep(s) iff
instr(s.pc) is a sleepD invocation and indeadline(s) iff instr(s.pc) contains a deadlineT

instruction. Let us assume a mapping bound(pc) ⊆ N for any pc ∈ PC, such that
bound(pc) evaluates to a non-empty convex interval if clock(pc) �= ε; otherwise, it returns
an empty interval.

Intuitively, if the statement at LOC pc has the form sleepD(v i), the interval bound(pc)

is expected to contain the actual value of variable vi . On the contrary, if the statement at the
LOC pc contains the expression holdsT (deadline(v 1),v 2), then the interval bound(pc) is
expected to contain the actual value of every evaluation of the difference v1 − v2.

Figure 6 contains an intuitive explanation of how pieces of programs are translated onto
(pieces of) timed automata. On the left, it shows how to model a call to the sleep func-
tion at some code position pc ∈ PC with its approximated duration interval [a, b] =
bound(pc). This ensures that the control stays in the current state for at least a time units
and will leave in at most b time units.

In the figure, w1, . . . , wn, pc denotes the abstract discrete state where the sleepD call
happens, having the following state invariant: I (w1, . . . , wn, pc) = (sleepD ≤ b).

11Following Section 5, the only meaningful use of such pattern is as guard of a conditional or loop statement.

Software Quality Journal (2020) 28:695–744726



On the right, the figure shows a set of states and transitions simulating the behavior of
a statement of the form: while (holdsT (deadlineT (v 1),v 2)) { ... }, at some position pc and
such that bound(pc) = [a, b]. There, x = clock(pc) represents the (only) clock variable
associated with the deadline statement at position pc in the code. The REACHWHILE rule
can unroll the while loop onto a sub-graph of reachable states and transitions, several of
which are at LOC pc, each re-evaluating the deadline guard. Each such location must decide
whether to enter the body of the while statement or skip it, jumping to a location where
the discrete variables are left untouched, but the LOC changes to the value returned by
incT D(pc).

Assume three operators: CLOCKGUARD : T → � returns a clock constraint to be
checked before taking a transition, CLOCKRESET : T → 2C returns the set of clock vari-
ables to be reset at each transition, and INVARIANT : S → � returns a clock expression that
must be satisfied at every moment in time by the state. Below, we give their definitions, for
any possible states s, t ∈ Ŝ.

INVARIANT(s) =
{
sleep ≤ b if in sleep(s) and bound(s.pc) = [a, b]
true otherwise

CLOCKGUARD((s, t)) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sleep ∈ [a, b] if in sleep(s.pc) and bound(s.pc) = [a, b]
x ≤ b if instr(s.pc) = “if (holds(dl))”∧

t = s.push(T HEN).push(0)∧
x = clock(s.pc)∧
bound(s.pc) = [a, b]

x ≥ a if instr(s.pc) = “if (holds(dl))”∧
t = s.push(ELSE).push(0)∧
x = clock(s.pc)∧
bound(s.pc) = [a, b]

true otherwise

CLOCKRESET((s, t)) =
⎧
⎨

⎩

{sleep} if in sleep(t)
{x} if in deadline(s) and clock(s.pc) = x
∅ otherwise

In Alg. 9, we show the procedure BUILDNTA extending the finite-state representation
of the threads to a network of timed automata. From Lemma 4, it immediately follows that
Alg. 9 terminates as well.

Software Quality Journal (2020) 28:695–744 727



7 Soundness

As shown in Section 4, the Java language has many dynamic features such that common
static analysis problems fall in the undecidable fragment. Any hope for a complete static
and automatic analysis targeting the totality of Java programs is thus doomed to failure.

At this stage, we wish to establish the soundness of our static analysis for Java programs
that fall in a static subset of the language that we refer to as kernel-Java in the following. We
recognize the following characteristics of the Java language that easily lead to intractability,
when doing static analysis:

– threads can be created and destroyed at run-time: several works on parameterized ver-
ification showed that already the reachability problem of a system with an unknown
number of copies of finite-state threads is undecidable (the interested reader can find
an overview on the topic in Aminof et al. (2018) for untimed systems and Spalazzi and
Spegni (2020) for timed systems);

– recursive or mutually recursive method calls can generate an unbounded number of
records in the activation stack;

– when calling a method, the exact reference of the method declaration to be invoked
is determined at run-time, due to the well-known dynamic dispatching: we could gen-
erate an (very large) over-approximation of the program where each callee method
non-deterministically picks any called method with that signature, at every invocation,
but this would cause an explosion of the state-space to be explored;

– the Java language has a rich type system, resulting in an undecidable type-checking
problem (Grigore 2017).

As a consequence, we define kernel-Java to be the subset of Java where, at compilatio time:

– the set of running threads is fixed;
– recursive or mutually recursive method calls are not allowed;
– for each method call, the invoked method body is determined;
– for every object, we can determine its exact type.

The nature of kernel-Java is notably that of a static language (similar to previous efforts,
e.g., Java-light or Bali (Nipkow and Von Oheimb 1998)). Furthermore, any kernel-Java
thread, due to the severe restrictions that we impose on its structure, can be rewritten onto
an equivalent Java thread where method invocations have been replaced by the method body
itself with minor adjustments due to variable renaming in order to simulate the passage of
arguments when invoking the method itself, and receiving the returned value at the end of
the invocation. We also assume that any complex expression appearing as guard of an if-
then-else or while statement, as well as method arguments, is unrolled in the natural way
and their result assigned to auxiliary fresh variables that are then used as guards for the
conditional or loop statement, or passed as arguments to the method, respectively.

In the following, we prove the soundness of our procedure for extracting networks of
timed automata assuming that the original threads have already been translated onto a set of
kernel-Java threads composed of the following Java control structures:

– variable declarations and assignments;
– sequence of statements;
– conditional statements (in the form of if-then-else) guarded by a variable;
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– loops (in the form of while statements) guarded by a variable;
– invocations of methods whose source code is not in the repository.

Since many interesting programs with non-finite and timed behavior still fall in this class,
here we show to what extent timed specifications of the original program are preserved by
the abstraction.

Given a program P , we call execution χ = s0r1r2 . . . an initial kernel-Java configuration
s0 followed by a (possibly infinite) sequence of Java rules r1r2 . . . applied one after the
other. We also write χ0 denoting the initial configuration s0 and χi , for i ≥ 1, to denote the
ith Java rule applied along χ .

A timed trace of program P is, instead, a (possibly infinite) sequence ρ =
(s0, t0)(s1, t1) . . . of program configurations and time values, induced by some execution
χ . More precisely, given an execution χ , the initial configuration is s0 = χ0 and the initial
time value t0 = 0, while the ith configuration, for i > 0, is si+1 = χi(si) i.e., the configu-
ration resulting from applying the Java rule χi to configuration si ; if χi is a tick rule, then
ti+1 = ti + 1, else ti+1 = ti .

We call abstracted method a method for which the user provided an interpretation in the
form of a timed automaton template; otherwise, it is forgotten. Assume a program P , an
abstraction α, and a set of forgotten methods F . We say the pair (α, F ) is a sleep-precise
abstraction of P if no forgotten method contains any invocation of the sleepD function.
Similarly, we say the pair (α, F ) is a deadline-precise abstraction of P if no forgotten
method contains any holdsT expression on a deadline. Intuitively, we call deadline-precise
and sleep-precise those abstractions that do not loose meaningful information about their
deadlines and delays. Note that, when an interpretation of the method is present, either the
REACHTHREAD generated it; thus, it is precise by construction, or the user provided it, in
which case the tool assumes it is precise. Let us write P = (P1, . . . , Pn) to denote the fact
that program P is the composition of threads P1, . . . , Pn. A network of timed automata
nta = BuildNT A(P1, . . . , Pn, α) is a sleep-precise (resp. deadline-precise) abstraction of
P if the pair (α, F ) is a sleep-precise (resp. deadline-precise) abstraction of P .

Let us now introduce a notion of simulation between a program and a network of timed
automata. It will be used later in order to show that our methodology, given a program, does
not produce an arbitrary network of timed automata, but one that simulates the program
behavior.

Definition 1 (Simulation) Given a kernel-Java program P and a network of timed automata
nta, we say that nta simulates P (written P � nta) if there is an abstraction α such that:

– for every configuration s in P , α(s) is a state in nta;

– for every transition s
Tick−−−→ s′, where s and s′ are configurations, there exists a timed

step α(s)
δ−→ α(s′) in nta where δ = 1;

– for every other transition s
r−→ s′, where s and s′ are configurations and r a Java rule

different from Tick, there exists a discrete or broadcast step α(s)
i1,...,in−−−−→ α(s′) in nta.

Given two timed traces ρ = (s0, t0)(s1, t1) . . . and ρ′ = (s′
0, t

′
0)(s

′
1, t

′
1) . . ., we say that

ρ′ corresponds to ρ modulo some abstraction α, written ρ′ = α(ρ), if it holds that t ′i = ti
and s′

i = α(si), for all i ≥ 0.
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Lemma 5 Given a kernel-Java program P and a network of timed automata nta simulating
P (i.e., P � nta), then the following holds:

∀ϕ ∈ MTL. nta |= ϕ ⇒ P |= ϕ

Proof This theorem adapts the well-known simulation theorems for untimed and timed
systems to kernel-Java programs and timed automata.

First of all, let us clarify that P |= ϕ (resp. nta |= ϕ) means that for any timed trace ρ in
P (resp. ρ′ in nta), then the timed trace satisfies the formula, i.e., ρ |= ϕ (resp. ρ′ |= ϕ).

By definition of simulation, given any timed trace ρ of program P , the corresponding
trace ρ′ = α(ρ) is a timed trace as well, since every step in P admits a corresponding step
in nta. Since the satisfaction relation of MTL formulae is defined upon timed traces, one can
check (by structural induction on the MTL formula) that ρ′ |= ϕ implies ρ |= ϕ.

Since this holds for any timed trace, the statement follows.

The following lemma is a straightforward extension of a very similar result on
simulation-equivalent timed systems and ATCTL formulae (Konnov et al. 2017).

Lemma 6 Given a kernel-Java program P and a network of timed automata nta simulating
P (i.e., P � nta), then the following holds:

∀ϕ ∈ ATCTL. nta |= ϕ ⇒ P |= ϕ

Theorem 1 (Simulation) Assume a kernel-Java program P = (P1, . . . , Pn), an abstrac-
tion α, and a network of timed automata nta = BuildNT A(P1, . . . , Pn, α) such that nta

is a sleep-precise and deadline-precise abstraction of P . Then P � nta.

Proof First of all, we focus on relevant parts of configurations of program P : in it
every thread has the following cells 〈Map〉env, 〈Map〉store, 〈Nat〉time, 〈Nat〉sleep,
〈List〉deadlines. Cells env and store are inherited from the KJ semantics; the former
associates variable names with store locations, while the latter associates store locations to
actual values. The other cells have been described in detail in Section 5. We can abstract
away this complexity saying that each thread in the program has a finite set of variables
V tracking the values of variables and time values. Next, the thread configuration s can be
represented with tuples (a1, . . . , an, k1, k2, d1, . . . , dm) if variable vi in configuration s is
mapped (through the store) to value ai , for i ∈ [1, n], the value of cell time is k1, the
value of cell sleep is k2, and the j th element on the list deadlines has value dj , for
j ∈ [1, m]. Since we restricted our analysis to the kernel-Java subset of the Java language,
the set of all program configurations is statically definable and is a subset of SS(V ), where
V = {v1, . . . , vn} is the set of thread variables. Note that the set of thread variables includes
both local and global variables.

Since we assumed ta to be a sleep-precise and deadline-precise abstraction of P , there
must exist a set of forgotten methods F such that the pair (α, F ) is a sleep-precise and
deadline-precise abstraction of P . By definition of α, its codomain is an abstract state-space
SS(W) containing the abstract states of ta, satisfying the first requirement for a simulation.

Now, let us take any step ((a1, . . . , an, k1, k2, d1, . . . , dm), t)
r−→ ((a′

1, . . . , a
′
n, k

′
1, k

′
2,

d ′
1, . . . , d

′
m), t ′) pushing the program configuration (a1, . . . , an, k1, k2, d1, . . . , dm) at time

t to a new configuration (a′
1, . . . , a

′
n, k

′
1, k

′
2, d

′
1, . . . , d

′
m) at time t ′, after applying the timed

semantic rule r .
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In the case rule r is the TICK rule, then t ′ = t + 1. By definition, ai = a′
i , for i ∈ [1, n],

and k′
1 = k1 + 1, k′

2 = k2 + 1, and d ′
i = di + 1, for i ∈ [1,m], i.e., all time values advanced

by one time unit. On the template automaton side, a delay transition with δ = 1 causes the
step: α(a1, . . . , an, k1, k2, d1, . . . , dm)α(a1, . . . , an, k1 + 1, k2 + 1, d1 + 1, . . . , dm + 1),
satisfying the second requiring for a simulation.

In the case rule r is not the TICK rule, then t ′ = t , and r is the interpretation of some
statement ι of kernel-Java. Next, reasoning by cases, one shows that the concrete step in
the kernel-Java program P is mimicked by an enabled abstract transition in the network of
timed automata nta.

Consider the case when r is the rule LocalVarDec. Such rule is applied if there exists a
thread whose code is currently declaring a local variable in kernel-Java. The rule consumes
the current statement (a variable declaration, indeed), then it updates the env cell by linking
the variable name v to a fresh address L in the store cell, it sets address L in the store cell
to point to the initial value for its type (unruled(type(T))), and finally it increases a counter
in the cell nextLoc, responsible for generating fresh addresses at each lookup. Since in
kernel-Java we assumed that variable initialization in variable declarations is moved into a
subsequent assignments, we do not have to cover that case. Since we restricted to a static
subset of the language, we assume a fixed environment and store, where all the names and
addresses are initialized to the default abstract value for the given type. Thus, it is enough
to stutter in the abstract state (α(a1, . . . , an), k1, k2, d1, . . . , dm) in order to simulate this
kernel-Java transition.

Consider the case when r is the rule Assign. Such rule is applicable when a
kernel-Java thread assigns an r-value w to the location in the store corresponding to
variable vi . Since we are working with kernel-Java, the r-value was obtained by look-
ing up a variable, an object field, or is a literal written in the right-hand side of the
assignment statement itself. Note that in kernel-Java, the r-value must be of some basic
type T1, while the location has some type T2. In this case, rule r first checks that
type T1 is a sub-type of T2, and next it assigns the r-value to the specified location.
In our approach, REACHASSIGN tests whether some abstract state t exists such that
ISSAT(predicate(s) ∧ �stmt�SMT ∧ indexed(predicate(t))), where stmt is the assign-
ment statement interpreted by rule Assign. Since, by construction, REACHASSIGN tests such
property for every possible (abstract) state t in the state-space, and since by assumption

(a1, . . . , ai , . . . , an, k1, k2, d1, . . . , dm)
Assign−−−→ (a1, . . . , a

′
i , . . . , an, k1, k2, d1, . . . , dm),

where a′
i = w, and s = (α(a1, . . . , ai , . . . , an), k1, k2, d1, . . . , dm), then at least one such t

must exist, viz. t = (α(a1, . . . , a
′
i , . . . , an), k1, k2, d1, . . . , dm) and transition s

(vi=w)!!−−−−→ t

is enabled in the thread. Note that, following the definition of timed automaton tem-
plate given in Section 6.3, the symbol (vi = w)!! denotes that the current transition is a
sending-broadcast transition. By construction, if vi is a global variable, all timed automaton
templates have, for any location, an internal transition labeled with (vi = w)?? and react
to the change of a global variable, updating their location accordingly. This ensures that
any side effect of the Java Assign rule is simulated by the corresponding timed automaton
transition.

Consider the case when r is the rule IfTrue. This rule has been applied because
one kernel-Java thread executed the conditional statement whose guard was a variable
that evaluated to True (remember that in kernel-Java we only consider if-then-else state-
ments whose guards are variables). In this case, the next thread instruction would be
the body of the then branch (that will be either a block or a single statement). Thus,
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it must be that (a1, . . . , an, k1, k2, d1, . . . , dm)
IfTrue−−−→ (a′

1, . . . , a
′
n, k1, k2, d1, . . . , dm) and

that ISSAT(v1 = a1 ∧ . . . ∧ vn = an ∧ guard(stmt)).
Call s = (α(a1, . . . , an), k1, k2, d1, . . . , dm). Our assumptions imply that ISSAT(s ∧

guard(stmt)) holds; thus, the procedure REACHITE adds the transition s → t , for t =
(α(a′

1, . . . , a
′
n), k1, k2, d1, . . . , dm) to nta. A symmetric reasoning is applicable in the case

of the rule IfFalse.
For the other constructs of the Java language, by very similar arguments, we can show

that kernel-Java rules are mimicked by abstract transitions computed by our methodology.

Theorem 1, Lemmas 5 and 6 yield the following results.

Corollary 1 Assume a kernel-Java program P , a network of timed automata nta that is a
sleep-precise and deadline-precise abstraction of P . Then nta |=NT A ϕ ⇒ P |=kJ ϕ, for
any ϕ in MTL ∪ ATCTL.

8 Experimental validation

We have implemented in a prototype tool the interactive abstraction and verification method-
ology presented in Section 6. In the tool, the user specifies the set of threads he/she wants to
abstract and a set of first-order predicates over program variables. He/she also specifies the
temporal properties that should be checked and any additional temporal constraints that are
known from the real-time assumptions of the environment where the threads are supposed
to run. The overall task can be seen as the combination of several static analyses sub-tasks.
A graphical overview of the interaction model implemented by the tool is given in Fig. 7.

Fig. 7 Our methodology at a glance
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The parsing step consists in extracting an intermediate representation of the entire Java
project. We exploit the Eclipse JDT parser for Java 8 to produce a reduced abstract syntax
tree (AST) from the code, and we store it into a no-sql database for saving time when the
methodology is used interactively by the user.

The successive phase traverses the AST and along the way it annotates timestamp vari-
ables. Inspired by Liva et al. (2017), and using a list of common Java methods manipulating
timestamps as well as Java types used to represent time values, we label as timestamp vari-
ables those variables in the program that are used as timestamps along the program (e.g.,
because they store the result of method java.lang.System.currentTimeMillis,
or because they are passed as input to the java.lang.Thread.sleep method).

We expect that the list of Java methods and types used to identify timestamps in a
program can be maintained in a centralized way, together with the implementation of the
methodology itself. Furthermore, users can add custom types and methods and extend this
list. Ideally, finer implementations of the methodology can allow communities of users to
share their customizations, and the knowledge acquired along the analysis of Java software.

The next step focuses on extracting discrete states and transitions representing the pro-
gram discrete behavior. To this aim, we require the user to provide a set of first-order
predicates over a subset of the program variables. Through them, it is possible to abstract
each concrete configuration of the program variables onto a single first-order predicate. If
one or more variables have no associated predicate, we assume they can be assigned any
value. The predicates specified by the user can look at a single thread variable (e.g., x < 0,
x ≥ 0), or they relate the concrete values of multiple thread variables at the same time (e.g.,
x < y, x ≥ y). Successively, each instruction ι of the program is interpreted as a first-
order predicate α(ι)(s, t), relating the abstract state of variables before executing the given
instruction (s), to the abstract state of the same variables after executing it (t). Notice that,
in general, it is not possible to give a first-order interpretation of any arbitrary Java instruc-
tion.12 For this reason, this step employs a set of rules that can be extended over time to
detect relevant patterns appearing in Java programs. In case that none of the rules applies to
the Java instruction under analysis, we map the instruction onto the tautology binary pred-
icate α(ι) = �, relating any source configuration to any target configuration. This ensures
that every abstract transition α(ι) is an existential abstraction (as seen in Section 6) of the
concrete instruction ι, for any ι. To check that there can exist a transition α(ι) from s to t ,
we use Z3, a state-of-the-art SMT solver (De Moura and Bjørner 2008).

The successive phase extracts timing information encoded in the program. This is
achieved by identifying a suitable set of clock variables tracking the time relations between
events as they are handled by the program. Since the final model will be a network of timed
automata, this consists in inferring:

– the clock variables of each timed automaton,
– the clock constraints enabling the transitions of each timed automaton, and
– the discrete transitions resetting the clock variables.

This stage takes advantage of the timestamp annotations added in the previous stage,
together with additional clock annotations added by the user.

We implement a final state-space optimization step similar to large-block encoding
(Beyer et al. 2009). In it, sequences of transitions that do not branch and differ only for the
value of the program-counter are collapsed into a single transition.

12Think for example to the invocation of a recursive method on some arbitrary input.
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This simple optimization is already proven to be very helpful in reducing the size of the
extracted timed automata.

The network of timed automata that results from applying our methodology can be used
for several purposes, e.g.:

– for model checking safety and security policies against some logical properties
provided by the user (e.g., using Uppaal (Larsen et al. 1997));

– for simulation purposes (e.g., using Uppaal); and
– as a documentation, giving a high-level view of the code (e.g., for software (re-)

engineering purposes).

Let us emphasize that the methodology is designed to be interactive: if the user finds the
network of timed automata that has been returned not to be precise enough for checking the
desired security policy, he or she can change the list of abstraction functions and generate
a more refined discrete component, or alternatively add more detailed clock information
about the time handling of events by the program itself.

We studied the methodology using our prototype tool on three use cases: a Java imple-
mentation of the Fischer’s algorithm, presented in Fig. 5, and the code taken from two
reported time bugs of two different open source projects, namely Apache Kafka and Alluxio.

Fischer’s algorithm. For this case study, we used the following predicates for abstracting
the configuration of variables in the program:

– x = 0, x = 1, x = 2, x > 2
– y = 0, y = 1, y > 1
– id = ‘foo’, id = ‘fie’

We instructed the tool to model check the Fischer’s algorithm in a system with two
threads, say p and q. We also specified, through the tool language, a time constraint that
cannot be inferred from the source code, viz. that it takes less than DELTA time units to
go from LOC 0.0 to LOC 0.1 (see Fig. 5), i.e., from testing x != null to setting x =
this.id. Such constraint is a known physical requirement for the Fischer’s algorithm to
ensure mutual exclusion (Lamport 1987). Next we model checked the ATCTL specification
given in Fig. 8.

Formulae is foo and is fie check that an arbitrary process, say p, can either assume
the identifier “foo” or “fie.” Formula p q diff checks that the two threads, p and q, can
assume different identifiers. Formula good checks that the shared variable y may assume
value 1. Formulae mutex and mutex2 are alternative encodings of the mutex property.
Formula nstarve encodes the usual property of absence of starvation, where a generic
thread p is checked to eventually reach LOC 4, the location in which the thread terminates.

Based on the given abstraction predicates, the tool generates a timed automaton template
with 235 locations and 1154 edges. Two clock variables are extracted, viz. C PROG and
C CONSTRAINT: the former is used to ensure that the sleep time is exactly DELTA time

Fig. 8 ATCTL specification for Fischer’s algorithm
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units, while the latter is used to bound the time between testing for variable x and resetting
it in less than DELTA time units.

Our tool is able to find a counterexample for all the properties shown in Fig. 8, but
mutex2. In particular, for the mutex formula, it is enough that both processes start with
the same name (e.g., “foo”) in order to have two processes at the same time in the critical
section. Instead, the more stringent formulation of the mutex property, viz. mutex2 holds.
It is a natural assumption that two threads do not share their identifier, but at the same time,
this assumption cannot be inferred from the code, but must be provided by the user as part
of the specification (see specification mutex2). In order to test the actual correctness of
the extracted network of timed automata, we checked that known bugs in the Java code are
correctly identified by our tool. To this aim, we performed two tests that we expect to falsify
the specification:

– in the first test (V1), we kept the verification script and we changed the Java code to
increment the shared counter y when pc = 1, but we commented out the line where
the same variable is decremented (i.e., at location pc = 2 in Fig. 5);

– in the second test (V2), we kept the Java code but we relaxed the time assumptions
under which the system should be verified, i.e. dropping the assumption that testing the
value of variable x and setting it should require strictly less than DELTA time units.

The tool is able to discover two different counterexamples for the mutex2 property in
(V1) and (V2): in the former, the counterexample involves 17 Java instructions showing that
one thread enters the critical section, but due to the fact that now y can only be increased,
the state where y > 1 is reached, which in turn falsifies the specification. On the contrary,
in (V2), a more critical bug is reported, due to the fact that the following interleaving is
possible:

– p1 tests that x = null (pc = 0.0)
– p2 tests that x = null (pc = 0.0)
– p1 sets x = "foo" (pc = 0.1) and then starts sleeping (pc = 0.2)
– p1 ends sleeping (pc = 0.3), checks that this.id.equals(x) (pc = 1), and

increment variable y (pc = 2)
– p2 sets x = "fie" (pc = 0.1), then starts sleeping (pc = 0.2), it ends sleeping

(pc = 0.3), checks that this.id.equals(x) (pc = 1), and increment variable y
(pc = 2).

At the end of this path, the automaton reaches a state where y > 1 holds.
Our tool finds a correct counterexample for nstarve, where a process, say p, repeat-

edly obtains access to its critical section, while the other, q, cannot progress. This is a known
limitation of the Fischer’s algorithm for mutual exclusion (Lamport 1987).

Let us observe that, as we anticipated in Section 6, in the case we abstract the code
under analysis with a (set of) control-flow automata, the core specification of the Fis-
cher’s algorithm, i.e., mutex2, would be falsified by a spurious counter-example, due to
the concatenation of two transitions from subsequent LOCs even though the conditions on
the thread variables would never allow such jumps in the real code. Indeed, we know that
the Java implementation of the Fischer’s algorithm satisfies specification mutex2. This
issue should not be confused, though, with the falsification of specifications mutex and
nstarve, described previously: the former is falsified because of lack of information, i.e.,
the system cannot infer from the code that two threads will never share the same identifier;
the latter is falsified because it is known that the Fischer’s algorithm can, in principle, cause
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Fig. 9 Example of real-time Java code containing a security bug

two threads to loop infinitely while trying to get access to their critical sections. In practice,
this is an accepted behavior because “such starvation is unlikely to occur” (Lamport 1987).

Apache Kafka. A second verified piece of code is reported in Fig. 9. In this example, the
method is the core of a Java thread of the Apache Kafka project, a popular distributed
streaming platform allowing to implement a publish-subscribe service to streams of data.

The method poll implements a poll mechanism, where a server is checked period-
ically, and if it is not in a “ready” state, the ensureCoordinatorReady operation
is invoked. This method contained a bug13 appearing when the parameter timeout
assumes a negative value, or a big enough value, such that expression now + timeout
evaluates to a value smaller than now (e.g. due to integer overflows). In this case, the
presence of a bug can be detected by analyzing a single thread running that piece of code.
By using our prototype tool, the user can specify that two abstract variables should be
used, viz. is ready and coordinator known. Then, the user specifies the follow-
ing first-order interpretation of method ensureCoordinatorReady(): (assert
(= is ready 1 true)), while method coordinatorUnknown is abstracted as
follows: (assert (= return coordinator known)), where return
is an auxiliary SMT variable used to store the result of the method invocation. All
other methods are abstracted with a first-order tautology, meaning that they have no
effect on the variables is ready and coordinator known. Finally, the user speci-
fies that he/she wants to verify a system with only a single instance of the poll timed
automaton template. The tool automatically recognizes two timestamps, viz. deadline
and now. The number of states in the timed automaton template is 204 states, i.e., 4

13Bug: https://issues.apache.org/jira/browse/KAFKA-4290.
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Table 1 Summary of experimental data

SMT queries Locations Edges Clocks Specs Time Memory

Fischer 10,044 235 1154 2 7 2 min 54 s 100.1 MiB

Fischer buggy 8100 217 1064 2 7 2 min 07 s 96.1 MiB

Kafka 7140 204 612 1 1 8 s 45.2 MiB

Alluxio 22,342 684 4873 1 1 1 min 32 s 77.3 MiB

configurations of the two boolean variables is ready and coordinator ready,
times the 17 values of the program-counter register, times the 3 possible abstract val-
ues of parameter deadline: deadline < 0, deadline = 0, and deadline
> 0. The timed automaton contains one clock variable now used to track the differ-
ence between timestamps deadline - now, while the timestamp deadline yields
a constant parameter with the same name that is added to the timed automaton tem-
plate. The correctness requirement can be encoded with the following ATCTL formula:
AF≥0(is ready = true). The counterexample found by Uppaal is the following:
(σ, pc = 0) → (σ, pc = 1) → (σ, pc = 2) → (σ, pc = 3), where σ := deadline <

0 ∧ is ready = false ∧ coordinator ready = true. A simple code inspection
allows to understand that such counterexample is not spurious, i.e., it is not added by the
abstraction process, but it can happen with concrete executions of the method.

Alluxio. A third test bench experiment is conducted on the acquire method of
class alluxio.resource.DynamicResourcePool of the Alluxio project. The
method acquire accepts a timeout parameter that expresses the maximal amount of
time that the caller is willing to wait for acquiring a resource. The method implements the
acquisition with a while (true) { ... } loop that iterates until either the resource
is acquired or it times out throwing an exception. A variable endTimeMs contains the
expiration date that is used to verify whether the request times out. It is computed as
the sum of current time and the timeout parameter. Since there is no check that the lat-
ter receives a negative value, it can happen that the acquire method never actually
attempts to acquire the resource. Thus, the method wrongly returns the timeout exception
without waiting for the resource to be available.14

In this case, the extracted timed automaton template counts 259 states, 381 transitions,
and 1 clock variable. The checked specification is AF≥0(is healthy = true) and it is
falsified by a counterexample assigning a negative value to the input parameter.

Methodology evaluation. In Table 1, we show some data collected from the experimental
validation. Even though the limited number of case studies does not allow us to make a
quantitative evaluation of the methodology, they already provide a qualitative feedback
about how practical it is, when applied to real-world software projects. First of all, one
of the strengths of the methodology, i.e., the fact that the user can specify the abstraction
predicates using a high-level language, proves itself helpful to model check the correct-
ness of the algorithms . In the considered case studies, we already knew which bugs were
present and we used such knowledge as a validation mechanism for testing the correct
implementation of the tool (Spalazzi et al. 2018; Liva et al. 2018). In Fisher’s algorithm,
we also benefit from being able to test different encodings of the same mutual exclusion
requirement. Indeed, once the mutex specification is falsified (due to not knowing that

14Bug: https://github.com/Alluxio/alluxio/pull/7320
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two threads will never assume the same identifier), it is quite immediate to formulate an
alternative specification of the same property containing a condition to eliminate spurious
paths (the formula mutex2). While the methodology is general and seems applicable
in a large range of software systems, the tool implementing it is still immature, from
an engineering point of view. Several extensions could be implemented to make it more
usable and helpful when checking real-world software projects (e.g., inferring predicates
over variables by inspecting the guards of conditional statements or loops; allowing the
user to define his/her own SMT interpretations of Java data-types; . . .). At the moment,
the syntax of the scripting language accepted by the tool to accomplish a software model
checking task requires the user to provide detailed information about the code. On the
other side, it is well known that a completely automatic tool for software model checking
cannot exist. However, the process of providing this information requires less work than
building a network of timed automata from Java code by hand, not considering the fact
that similar engaging and repetitive tasks are error-prone when conducted by hand. More
importantly, the user is driven by the tool to think at the code under analysis from a high-
level abstract perspective, e.g., specifying logical predicates over variables or the number
of threads in the system to be checked. The user is also helped in identifying those tem-
poral constraints that are not written explicitly in the source code but are assumptions on
the physical system that will actually run the code under analysis.

This is what we demonstrate in our experimental validation. We postpone a more
detailed analysis of the applicability of the methodology and our tools with a larger
number of time-dependent software projects and software developers to future work.

9 Conclusions

In this paper, we proposed a framework to extract timed automata from Java source code
with temporal behaviors to formally verify time-dependent specifications. In sum, we make
the following contributions:

First, the formal semantics of Java (Bogdanas and Roṡu 2015) has been extended in an
original way by taking temporal aspects into account.

Second, the approach that has been followed is based on the idea of extracting (by means
of predicate abstraction) an abstract timed automaton for each thread in the source code.
This is an improvement with respect to the related work on timed automata usually
dealing with control flow abstraction. However, our framework needs more experiments
with a large number of time-dependent software. An aspect that the current rules do not
take into account is represented by “implicit clocks” (e.g., when the program performs a
comparison between a timestamp and the current time). Intuitively, some heuristics are
required to detect such situations and insert appropriate clock constraints. A precise for-
mulation of such heuristics is part of our future work. Another aspect worth to investigate
in the future is the opportunity of applying some kind of abstraction to clock variables as
well (Daws and Tripakis 1998; Dierks et al. 2007; Konnov et al. 2017), thus extending
the abstraction and verification framework also to recursive methods including deadline state-
ments. In this respect, counter abstractions seem to be promising (Konnov et al. 2017).

Third, a theoretical analysis of the currently proposed extraction rules confirmed that
the resulting abstraction is an over-approximation of the concrete software and, thus,
preserves properties expressed in MTL or TCTL (Corollary 1). More research is required
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to understand how to integrate (possibly automated) abstraction-refinement techniques
to remove spurious counterexamples, and thus push further the verification task.

protocol as running example. This algorithm is well known to the community of timed
automata, but, unlike previous works (e.g., see Salah et al. (2006)), in this work, the timed
automata that model the algorithm were extracted from its Java implementation rather
than manually derived from its theoretical formulation. Furthermore, the framework has
been validated with two real-world Java applications, viz. Apache Kafka and Alluxio.
In both cases, we were able to reproduce bugs related to a “bad” time handling, after
inferring a desired timed specification for the considered threads as well as providing
some interpretation of invoked libraries and of used data-structures. The main purpose
of this two case studies was to show that the approach can scale to cover real-world
projects and bugs. At the same time, the amount of information to be specified for driving
the experiments suggests us that more work needs to be done in order to implement
finer heuristic and static analysis algorithms, so that more pieces of information could be
inferred automatically, without user intervention.

The interest in Java software whose behavior is time-dependent is ever greater, as wit-
nessed by the Java Community Process (JCP) which has recently promulgated specifications
for a real-time version of Java (and of the corresponding Java Virtual Machine) (Dibble and
et al. 2006; Hunt and et al. 2017). Formally modeling these problems means not only having
a model of the code but also a model of the scheduling algorithms. At present, the proposed
framework does not take into account real-time scheduling, but, given the growing interest,
we plan to address this issue in our future work.

Furthermore, slicing techniques have been proved an efficient and scalable solution for
software model checking (Corbett et al. 2000). Our approach is compatible with slicing and,
we believe, the integration of slicing with our tool will in future improve its scalability.

Finally, as remarked above, we have have already planned to experiment our framework with
a larger number of real-world Java applications and report the results in a follow-up paper.
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