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Abstract

In this paper, the task of determining expected values of sample moments, where the sample
members have been selected based on noisy information, is considered. Exact expressions for
expected values of sums of productsof concomitants of selected order statistics are derived. Then,
using Edgeworth and Cornish-Fisher approximations, explicit results that depend on coefficients
that can be determined numerically are obtained. While the results are exact only for normal
populations, it is shown experimentally that including skewness and kurtosis in the calculations
can yield greatly improved results for other distributions.

Keywords. Concomitants of order statistics, Gaussian noise, sample moments, Edgeworth approx-
imation, Cornish-Fisher expansion

1 Introduction

Suppose that (X1,Y1),..., (X, Y;) areAi.i.d. bivariate observations from a continuous population with
c.d.f. F(x,y) and with p.d.f. f(x,y). Further, suppose that the points are ordered by their X variates.
The order statistics of X are denoted as usual by X, 1 <i < A. Following David [4], the Y variate
associated with Xy, is called the concomitant of the ith order statistic and is denoted by Y.,;. We
consider the specia case that the population density is

f(xy) = f(xly)a(y), )

where g(y) is the density of a probability distribution that is without loss of generality assumed to be
standardized to have zero mean and unit variance, and where

2
f(xly) = ﬁexri (—% (%) ) 2

for a > 0. It is the purpose of this paper to obtain approximations for the expected values of the
mean
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and the moments about the mean
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of the sample consisting of those Y-values that are associated with the 1 largest X-values.

The determination of expected values of the moments in Egs. (3) and (4) is arecurring problem
in the theory of evolution strategies [3, 8]. Evolution strategies are powerful heuristics for numerical
search and optimization. At time step t, the state of an evolution strategy includes a set of u> 1
candidate solutions to the problem at hand. A set of A > L new candidate solutions is generated from
the existing set by means of certain operations that have the purpose of introducing variation. Sub-
sequently, the L best of the A candidate solutions thus generated are selected to replace the original
set of candidate solutions in time step t + 1. This form of selection is usualy called truncation se-
lection. Therefore, we refer to the set {Y, .14 :1=1,...,1} asthe truncated sample even though
this form of selection is commonly referred to as Type |l censoring in Statistics. The quality of a
candidate solution is of course determined by that candidate solution’s objective function value. As
real-world optimization problems almost always include sources of noise, it isof particular interest to
consider the case that the observed or measured objective function values X do not properly reflect
the candidate solutions’' true quality ¥. The assumption of Gaussian noise is amost universal in the
optimization literature and motivates the choice of probability density in Eq. (2). The quantity 9 is
referred to as the noise strength and determines the correlation coefficient
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of the bivariate distribution F(X,y).

This paper is by no means the first to consider properties of concomitants of selected order statis-
tics. In related work, Nagaraja[6] considered asymptotic properties of m which he referred to as the
induced selection differential. Yeo and David [9] developed a general expression for the probability
that the |1 objects that are selected include the v < [ objects with the largest Y-values. Nagargja and
David [7] derived limit distributions for the maximum Y-value of the truncated sample for both the
extreme and the quantile cases. A survey of work concerned with all aspects of concomitants of order
statistics has been compiled by David and Nagargja[5].

The remainder of this paper is organized as follows. In Section 2, integral expressions for the
expected values of sums of products of the concomitants of the selected order statistics are derived.
In Section 3, an Edgeworth approximation is used for expressing the distribution of the Y variates,
making it possible to solve all but one of the integrals in the previously obtained expression. Even
though only moments up to the fourth order are considered, there are no restrictions in principle
that would prevent the inclusion of higher-order moments in the calculations. Then, a substitution is
carried out with the goal of expressing the expected values of sums of products of the concomitants
of the selected order statistics in terms of coefficients that can be obtained numerically. In the course
of that substitution, a Cornish-Fisher expansion is used to express the inverse c.d.f. of the X variates.
Finally, in Section 4, expected values of the mean and of moments about the mean of the truncated
sample are obtained. The special cases of the normal distribution — for which the results are exact —
and the y-distribution — for which it is shown experimentally that considering skewness and kurtosis
in the calculations greatly improves the quality of the approximation, are discussed. Appendix A
derives some identities that are used in Sections 2 and 3, and Appendix B contains a Mathematica
program handling the tedious details of the calculations.

2 Sumsof products of concomitants

In Section 4, we will express the moments of the truncated sample in terms of sums of products of
the concomitants of the selected order statistics. Let A= (o,...,ay) be avector of v > 1 positive
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integers o, j =1,...,v, and let

Sh= 2 [.lx] x]v (6)
where the summation ranges over al indices ij = A — u+ LA —p+2,...,A such that ij # iy for
any j # k. Note that for v > , the summation is empty and S, = 0. So asto restrict theindices in $
such that iy < iy < --- <y, let us formally write ma(y1,...,Yy) for the sum of products of powers of
the yi with all permutations of the exponents oy, ..., 0. For example,

T22(Y1,Y2) yzyz
T111(Y1, Y2, Y3) = Y1Yay3
211(Y1,Y2,Y3) = Y3Y2Y3 + YiY3ys + Y1yaYa.

Then we can write
A—v+1 A—v+2 A

Ss= > X Y maMiageYiay)-

i1=A—ptlio=i1+1  iy=iy_1+1
The expected value of a sum of products of the concomitants of the selected order statistics with
exponents prescribed by Aisthus

[ A—v+1 A—v42 A

2 2 2 nA(Y[il:k]a"'vY[ivM)]

i1=A— H+1i27i1+1 iy=ly_1+1
A

o A— V+1 A— V+2
_/ / B 2 (yla"'7yV)g[i1 ..... iv:k](YL---7Yv)dyV---dY1,
i1= 7» pt+1io= l1+1 iv=iy_1+1

where g;;, i, (Y1,---,Yv) denotes the joint p.d.f. of the concomitants Y, 5, k=1,...,v, with 1 <
i1 <ip < --» <iy <A. Using results quoted by Balakrishnan and Rao [2] and by David and Na-
garga[5], that joint p.d.f. can be written as

iiz,..., iv:k](YL---aYV):M/ / / [HQYK Xk|Yk]
—oo J X1 Xv—1 k=

[ﬁ [F(Xk+1) — F(Xk)]ik+1_ik_1] dx, ... dxdxq,

k=0 (ikr1 —ik—1)!

whereitisformally assumed that ip = 0, iy 11 = A+ 1, Xg = —eo, @nd X, ;1 = e, and where F (x) denotes
the marginal c.d.f. of the X variates. Therefore, exchanging the order of integrations and summations
it follows that

S B TSy o e A

A—v+1 A—v+2 [v

2 2 2 H[F(Xk+1) F(Xk)]ik+lik1] dxy ...dxodx.dy, ... dy;.
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Using Identity 1 from Appendix A it follows that

E[Sa] = u'7» ”()/ /nAyl, ,yv/ /Xl /XHLlj[gyk Xk|Yk]

1
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Finally, letting ® and ¢ denote the c.d.f and the p.d.f. of the standardized normal distribution, respec-
tively, and substituting z= ®(y) and exchanging the order of the integrations yields

elsd = BB () [ a1 o) oy Q

with

W= [ [
A(Y) S S A TAlYL-- W)

[ﬁ o(yk)f (xk|yk)] dyy ...dyidx, ...dxdx;. (8)
k=1

That is, up to asingle remaining integration, the problem of computing E[S] has been reduced to that
of computing Ia(y).

3 Expandingthedistributions

So asto obtain a closed form expression for Ia(y), let us expand the p.d.f. g(y) in term of derivatives
of the p.d.f. of the standard normal distribution. The first terms in the Edgeworth expansion of g(y)
read (Abramowitz and Stegun [1])

_ N i n
9(y) = 0(y) | 1+ S Hes(y) + S Hea(y) + —oHes(y) +.. |, (9)
where y; and 7, are the coefficients of skewness and kurtosis of the distribution, respectively, and
where He,(y) denotes the kth Hermite polynomial. For the sake of brevity, werefrain from considering
higher-order termsin the calculations. Note however that thisis not arestriction in principle, and that
additional terms could be considered.

Introducing new variables ¥ = x/v1+9% k=1,...,v,in Eq. (8) and using Eq. (2) yields
W) = VIt [ [ .. X)X, ..., (10)
A /X6 /X,Vl AKX ) A - O
where Xy = F~1(®(y)) /v/1+ 92, and where
dyy...dy:. (11)

Wb X) = 5 [ [ a0 Lljlgwkm(

From ldentity 2 in Appendix A with the correlation coefficient from Eq. (5) it follows that

yk—\/1+132>dk>
K

o0 _ 2y
5 [ Hemomeo (%) dy = o THe()0(X). (12

Therefore, using Eq. (9) and doing all v integrations in Eq. (11), h(X;,...,X,) isof theform

v

Ja(Xq, .-, %,) = (polynomial in (xg,..., %)) [T o), (13)
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where the coefficients of the polynomial depend on v, y2, and a only. Using this result in Eg. (10),
the remaining integrals can then be solved using Identities 3, 4, 5, and 6 from Appendix A. The final
result is of the form

\Y

la(y) = 2 (polynomial inxp); [6(x0)]" ™' [1 — @(xp)]', (14)
i=0
where again the coefficients of the polynomials depend on i, v», and a only. The calculations are not
difficult but tedious and lengthy. Written out, they occupy far more space than is available here. There-
fore, instead of presenting detailed steps, we have included a Mathematica program in Appendix B
that takes over the task of determining the coefficients of the polynomials in Eq. (14).

The result for Ia(x) obtained thus far does not require any more integrations. However, it does
depend on x, = F~1(d(y))/v/1+ 02 rather than directly on'y. The probability distribution of the X
variates isthe convolution of the distribution of theY variates and anormal distribution with mean zero
and with variance 9%. Therefore, its variance is 1+, its coefficient of skewnessisy/v1+ o -
a®yy, and its coefficient of kurtosis is /(1 +92%)2 = a*y,. Expanding F~1(®(y)) into a Cornish-
Fisher series yields (Abramowitz and Stegun [1])

o FH@v)
V1492
~ y+ Bathiey(y) + LaHes(y) — Lab(@Hesly) + Heu(y)) +

For notational brevity introducing

a =B (- 1) + Lo (- 3y) - Lad (2 - 5y),

it follows that X, = y+d+... and therefore by Taylor expansion around y that

2
1—@(%0>=1—d><y)—¢<y>(d—ﬂ+ )

2
and that
o) =0ty (1-ya+ L HE LY.
Binomially expanding powers of these quantities it follows that
X = YK+ ky<d + @y‘(zd%..., (15)
that

2

[1-006)]* = [1- () k{1 - @) oty) (a5 +..

Y 0 2R )+ (16

and that
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Note that d? = y2a%(y? — 1)2/36+ ..., and that all terms represented by dots consists of higher-order
terms only. Inserting Egs. (15), (16), and (17) in Eq. (14) resultsin

iZ."S )+ 228+ 22800 + LBy +. | o L-ow). @9
where the
) = 3¢5 (oHe(y) (29

k>0

are polynomials in y. The coefficients Q(ﬁ) (k) that have been obtained by straightforward but lengthy
calculations and that can aternatively be arrived at using the Mathematica program in Appendix B
arelisted in Table 1.

Finally, inserting Eq. (18) in Eq. (7) yields

s =52 (3 [ 20w+ B2+ Badw + B .
oY@ L D(y) ] dy.

The remaining integration usually cannot be done anaytically. Instead, we choose to define coeffi-
cients

s = (=1 (ij) | HedomI @)1 - oy dy (20)

that can be computed numerically without difficulties. With these coefficients it follows

€S- By 3 3 (1800 + 2w+ 2B w + SLeg @

for the expected value of the sum of products of the concomitants of the selected order statistics with
exponents prescribed by A.

4 Expected values of moments of the truncated sample

The mean and the moments about the mean of the truncated sample can be expressed in terms of
the Sa simply by multiplying out Eqg. (4) and rearranging terms. It is easily verified that
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In some situations, it is also useful to know the expected value of the square of the variance of the
truncated sample. Squaring Eq. (4) and multiplying out, it follows that

1 —2u+3 -3 24
m5 = (= )54 Pla SB—FZ%SZZ_LWFSZH—FFSHH'

Thus, using Equation (21) and the coefficients from Table 1, expected values of the mean and of the
moments about the mean of the truncated sample can easily be determined. For the special case that
the distribution of theY variate is normal, the results read

E[my] = ah;;}
_ k-1 11
E[my] = [1 22(h20 hM)]

It C [h12—3h21+2h30}

(L—1) (2 —3u+3) 2,120 2 2,0
E[mu] = 5 (6 12a2(h% — i) + & (i} — 27+ 3nY) |
1) (u—2)(u—3
gl )(“u3 J1=3) [1-202(W) — i) + &t () + 22 — 200 +ht)
(n—1)2 2120 wlly | 4413 22 2.0
E[mg] = 5 [6—12a (N9 — by +at(hs — 22 + 3h20)

n (H— 1)(“;32)@1— 3) 1_ 2a2(hﬁj§3 _htY
Note that those results are in fact exact for the case of anormally distributed population.

If the population is not normal, the approach pursued is merely an approximation. Asthe resulting
expressions taking skewness and kurtosis of the population into account are rather long, we refrain
from writing them down explicitly. However, they can be obtained easily from Table 1. So asto verify
that the approach yields good results for distributions other than the normal, we considered the case
of a standardized y2-distribution. This choice of distribution to consider is motivated by problems
in the theory of evolution strategies, where optimization in high-dimensional search spaces requires
considering variables that are sums of independent components that can in a first approximation be
assumed to have normal distribution. As the jth cumulant of the standardized y¢-distribution is of
order n'~1/2 with respect to n, the error in the approximation of the expected values of the moments
of the truncated sample is of order O(n1/2) if the expansions in Section 3 are cut off after the first
term, it is of order O(n1) if the coefficient of skewness y; isincluded, and it is of order O (n~3/?) if
moments up to the fourth order are considered. The results for n= 10 and for p= 3 and A = 10 are
illustrated in Fig. 1. In that case, the coefficient of skewnessisy = 1/0.8, the coefficient of kurtosis
isy, = 1.2. The value of n = 10 is rather small, and more exact results are achieved for greater n.
Nonetheless, it can be seen that including the skewness and the kurtosis of the population distribution
in the calculations substantially improves the quality of the results, and that especially the values
computed for the first and second moments very closely reflect the measured values.
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Figure 1. Expected values of the mean my and of the moments about the mean mp, mg, and my of
truncated samples as functions of the noise strength . The distribution from which the\ = 10 sample
members are drawn is a standardized 2, -distribution, the size of the truncated sample isp = 3. The
Ccrosses represent measurements from computer experiments, the lines have been obtained using the
aoproximation from Section 4. The solid lines result from considering the coefficients of skewness
as well as kurtosis, the dashed lines from considering the coefficient of skewness only, and the dotted
lines represent the case that only the variance of the distribution is taken into account.

A Some useful identities

Identity 1. For integer v > 0 and for any integers g and A with v < p < A and rea numbers K,
k=12,...,v, theidentity

A—v+1l A—v+42 A v I:k+l_|:k]ik+17ikfl

> Y 3 I

— 1, — |
i1=A—p+-lio=i1+1  iy=iy—1+1k=0 Ik+1 i 1)

. 1 / 2711 - Z¥Vdz

whereformally =0, F, ;1 =1,ip=0,andiy;1 =A+ 1lare assumed, holds.

Identity 2: For non-negative integer k and real numbers pand G, the identity

/_Z He(X)o(x)0 (%) dx = WH@ ((ng)m) ) ((1+§2)1/2>
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holds.

Identity 3: For non-negative integer k and real number z, the identity
o 1-d(2) ifk=0
| Hadx)o(dx =
z He-1(2)¢(z) ifk>0
holds.
I dentity 4: For positive integer k and real numbers zand B # 0O, the identity

/ Hex(x)[9(x)]Pdx

[9(2)]° ifk=1

sHeca@lo@) Ltk [“Hec alogPax itk 1

holds.

Identity 5: For non-negative integer k and real number z, the identity

/Z " He ()09 [1 - D(x)]dx

%[1—(1)(x)]2 ifk=0

Hec 1(20(2[L-®(@)] - | Hec1([0(Pdx if k>0

holds.

Identity 6: For positive integer k and real number z, the identity

| e 16091212~ @]

[ S@PIL- @) -3 /Z RCRE k=1
= %Heﬂ(zm»( PIL-2()] - / Hex 19 [0(x)%dx
ifk>1
/ He_2(X)[0(X)]2[1 — D(x)]dx

holds.

Proofs:  All identities are shown by induction. The proof of Identity 2 relies on the use of quadratic
completion of the argument of the exponentia function. The proofs of Identities 3-6 are straightfor-
ward if integration by parts and the properties

%H@(X) = kHex 1(x)
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and
Hec1(X) = xHex(X) — kHex—1(x)
of Hermite polynomials are used.
The proof of Identity 1 isabit moreinvolved. Let uswritelhs,; (v) and rhs,, (v) for the left and
right hand sides of Identity 1, respectively, and let p < A. Then,
- Fl]xfiFli—l
'NSu2(2) i:kzwl R —)(i— 1)

_iw

&0 DIG-Dr

According to Egs. 6.6.4 and 26.5.1 in [1] it follows in terms of the incomplete regularized Beta func-
tion that

Ih8.0(1) = =571 (- b

1 Fi
D=1 /o 2L -4
=rhs;,(1),

and the validity of the identity for v = 1 has been shown.

For the inductive step, let us now assume that the identity holds for a particular value of v and al
values of pand A that satisfy v < 1 < A. To show that the identity holds for v+ 1, let pand A satisfy
v+ 1 < pu< A. Theleft hand side of the identity then reads

A—v  A—v+41 A v+1 [Fk+1 _ Fk]ik+1—ik—1

hs,(v+)= Y Y Y

W
o Limdl vy 1keo (ke —ik—1)!

?

whereFo =0, F,12=1,ip=0,and iy;2 = A+ 1. Theinnermost sumis
& Y [Foa—Rder
iv+1§V+1 k=0 (ik+l —ik—=1)!

LR —Rericl] 2 (1= Fypq MRy — Ryl

(k2 —le=Dt iv+1§V+l (A—iv42)!(iv4a =iy — !
R — Rl it Aot - Ry [R g - R

(== | 5 (A—iy—1— ]!
[Fei1— Fk]ikﬂfikfl_ [1— Fy i1

k=0 (i1 — ik —1)! ] (A —iy—1)!
ﬁ P — Fk]ik“*ik*l

k0 Ik+1—lk—l)!

Il
1T
¥ f:||
)

1T
T
~ O

)

where the third step follows from the binomial theorem and where in the last line K1 = 1 and
iy+1 = A. It thus follows that

A—v  A—v+1 A—1 v _ ikr1—ik—1
lhs, v+ =Y Y - Y H[Fk.” i

— L, — |
i1=A—p+liz=i1+1  iy=iy_1+1k=0 (Ik+l 13 l)'

=lhs,_1-1(v).
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Asv < p—1< A—1and astheidentity holds for v it follows that

|hS1J7h(V + l) = rhﬁJ—Lk—l(V)
1 R B
:(%—u—l)!(u_v)!/o Z W 12" Vdz

=rhs,,(v+1)

and the validity of the identity has been shown. O

B Mathematica code

This section contains the Mathematica code used to compute the coefficients in Table 1. Let us first
define Hermite polynomials:

Hermitelk , x ] := Simplify[HermiteH[k, x/Sqrt[2]]/Sqrt([2] k];

Thisis necessary as Mathematica's built-in definition HermiteH differs from our definition. So asto
compose the integrand in Eq. (11) we define

MakePi[A ] :=
Apply[Plus,
Map [Apply [Times, MapIndexed[y[First[#2]]"#1 &, #1]] &,
Permutations[A]]];

where A stands for the exponent vector A, to compute ma (Y, - ., Yy) and subsequently

MakeIntegrandl[A ] :=
MakePi [A] #*Product [1 + gl*Hermite[3, y[i]] + g2*Hermite[4, yI[i]]
+ gl™2*Hermite[6, y[i]]/2, {i, 1, Length[A]l}];

to obtain theintegrand. Here, g1 and g2 stand for v, /6 and 2/ 24, respectively. Notethat for smplicity
we have omitted the terms involving exponential functions from the integrand and that therefore we
will need to give integration rules that take that into account.

Before implementing the proper integration routines, let us define a useful routine for expanding
polynomials in terms of their Hermite basis:

HermiteExpand[expr , x ] :=
ToHermite [Expand [expr]
/. {(g1"i_/; 1»2)->0, gl™i .*g2"j .->0, g2°i ->0}, x];

ToHermite [exprl +expr2 , x ] :=
ToHermite [exprl, x]+ToHermite[expr2, x];
ToHermite[expr , x ] :=
expr*He [0, x] /; Not[MatchQlexpr, a .*x"k .]];
ToHermite[expr . x "k ., x ] :=
expr*He [k, x] + ToHermite [Expand[expr* (x"k-Hermitelk, x])], x];

HermiteExpand both expresses powers of the y[i] as linear combinations of Hermite polynomials
and it eliminates terms involving higher-order cumulants. Note that we use He rather than Hermite
as we do not want Mathematica to reverse the effect of applying ToHermite. Writing x[i] and y [1]
for the X and the y;, respectively, the v-fold integration leading to the representation given in Eg. (13)
isthen handled by
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Integratel[A , 0] := A;
Integratel[A , i ] :=
Integratel [Intl [HermiteExpand[A, yI[il]l, yI[il, xI[i]ll, 1i-11;

Intl[exprl +expr2 , y , X Intl[exprl, y, x]+Intl[expr2, vy, x];

Intllc_ expr , y , x ] := ¢ Intllexpr, y, x] /i FreeQlc, vl;
] =
Intl[Helk , v 1, v, x ] := a"(k+l) Hermitelk, x] glx];

where Int1 implements the integration rule Eq. (12) taking into account that the terms involving
exponentia functions had been left out, and where the second argument of Integratel needsto bev
initially. Here and in what follows, £ [y] and g[y] stand for 1 — ®(y) and ¢(y), respectively. The
integrand in Eq. (10) isthen simply given by:

MakeIntegrand2[A ] := Integratel [MakeIntegrandl[A], Length[A]];

where again A stands for the exponent vector A. The v-fold integration in Eq. (10) is done by

Integrate2[A , 0] := A;
Integrate2[A , 1] :=

Integrate2 [Int2 [HermiteExpand [A, x[i]], x[i], x[i-1]1, 1i-1];
Int2[c_expr , v, x ] := c Int2[expr, vy, x] /; FreeQlc, vyl;
Int2[exprl +expr2 , y , x ] := Int2[exprl, y, x]+Int2[expr2, y, x];
Int2[HelO0, v ] gly 1, v, x 1 := £[x];
Int2[He[0, v ] fly ] gly ], v, x 1:= £[x]"2/2;
Int2[He[l, v ] gly 1"b ., v, x ] := glx]"b/b;
Int2[Hell, y 1 fly ] gly 172, v, x ] :=

flxlglx]"2/2-Int2[He [0, y] glyl”3, vy, x1/2;
Int2[Helk , v 1 gly 1, v, x 1 := Hermite[k-1, x]gl[x];

Int2[Helk , v 1 gly 1’0 ., v, x] :=
(Hermite [k-1, x]1glx]"b/b
- (b-1) (k-1)Int2[He[k-2, vyl glyl"b, v, x1/b) /; k>=2;
Int2[Helk , vy 1 fly ] gly ], v, x 1] :=
Hermite [k-1, x]flx]g(x] - Int2[Helk-1, vyl glyl”2, y, x] /; k»>=1;
Int2[Helk , v 1 fly 1 gly 172, v, x 1] :=
(Hermite [k-1, x]f[x]lglx]~2/2
- (k-1)Int2[He[k-2, y] flyl glyl"2, y, x]/2
- Int2[He[k-1, y] glyl"3, y, x1/2) /; k>=2;

where Int2 implements the integration rules given by Identities 3, 4, 5, and 6 from Appendix A and
where the second argument of Integrate2 needsto bev initialy.

Theresult of the steps so far isthe representation of Ia(y) given by Eq. (14). To do the substitution
prescribed by Egs (15), (16), and (17) we define:

Substitution[c ] := ¢ /; FreeQlc, x[0]];

Substitution[exprl +expr2 ] :=
Substitution[exprl] + Substitution[expr2];

Substitution[exprl *expr2 ] :=

14



Substitution[exprl] * Substitution[expr2];
dl = g1 a"3(y"2-1)+92 a"4(y"3-3y)-gl”2 a"6(2y"3-5y);
d2 = gl™2 a"6(y"2-1)"2;

Substitution[x[0] "k _.] :=
v’k + k y*(k-1)d1 + k(k 1)y
Substitution[f[x[0]]"k .] :=
flyl"k - k £ly]l”~ (k- 1) [yl (d1-y*d2/2) + k(k-1)fly]l~(k-2)glyl~2 d2/2;
Substitution[g[x[0]]"k .1 :=
glyl "k (1 - k(y*di- (y 2-1)d2/2) + k(k-1)y~2d2/2);

" (k-2)d2/2;

Finally, the representation of Ia(y) given by Eq. (18) can be obtained by:

MakeSum[A ] :=
HermiteExpand [
Substitution[Integrate2 [MakeIntegrand2[A], Length([A]]]/a"Length[A],

vl;

where the division by a” reflects the factors v/1+ 92 in Eg. (10).
So as to print the coefficients in table form appropriate for entering them in Table 1, let us define;

MakeTable[A ] :=
(
table = Table[0, {i, 4}, {3, 3}, {k, 8}1;
Map[(i := Switch[#, gl2* , 4, g2* , 3, gl* , 2, _, 1];
j o= # /. {_ flyl "k . :>k+l, _:>l};

k :=# /. Helk , yl:>k+l;
v := DeleteCases[#, gl"2 | g2 | gl
| £lyl"k_. | glyl"k_. | Helk_, yll;
table = ReplacePart[table, table[[i, j, kll+v, {i, J, k}1) &,
MakeSum[A]];

table // TableForm
);

Calling for example MakeTable [{2,1,1}] then arranges the coefficients in a table with &j*(k) in
row k and column j.
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