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Abstract

Mixtures of truncated exponentials (MTE) potentials are an alternative to dis-
cretization and Monte Carlo methods for solving hybrid Bayesian networks. Any prob-
ability density function (PDF) can be approximated by an MTE potential, which can
always be marginalized in closed form. This allows propagation to be done exactly
using the Shenoy-Shafer architecture for computing marginals, with no restrictions on
the construction of a join tree. This paper presents MTE potentials that approximate
standard PDF’s and applications of these potentials for solving inference problems in
hybrid Bayesian networks. These approximations will extend the types of inference
problems that can be modeled with Bayesian networks, as demonstrated using three
examples.
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1 Introduction

Bayesian networks model knowledge about propositions in uncertain domains using graphical
and numerical representations (Spiegelhalter et al. 1993). At the qualitative level, a Bayesian
network is a directed acyclic graph where nodes represent variables and the (missing) edges
represent conditional independence relations among the variables. At the numerical level, a
Bayesian network consists of a factorization of a joint probability distribution into a set of
conditional distributions, one for each variable in the network. Hybrid Bayesian networks
contain both discrete probability mass functions (PMF’s) and continuous conditional prob-
ability density functions (PDF’s) as numerical inputs. This paper presents a method of
modeling non-Gaussian standard PDF’s in hybrid Bayesian networks and demonstrates that
such a method can extend the applications to which Bayesian networks can be applied.

Poland (1994) proposes using a finite mixture of Gaussians to fit arbitrary continuous
distributions for chance variables in hybrid Bayesian networks. One advantage of using
mixtures of Gaussians is that marginals can be computed exactly using the technique of
Lauritzen and Jensen (2001) because the network can be reduced to a Conditional Linear
Gaussian (CLG) model (Lauritzen 1992, Cowell et al. 1999). CLG models are solved using
operations from multivariate normal probability theory.

Logspline density estimation methods (Kooperberg and Stone 1991) divide sample data
from an unknown density f into subsets, then estimate ¢ = log(f(z)) by a function of the
form é(:ﬂ, 0) = B(x)0. In this estimate, the basis functions, B(z), are cubic polynomials and 6
is a suitably-chosen column-vector of constants. After a normalization step, the correspond-
ing density estimate f = exp{f } is positive and integrates to one. Use of density estimators,
such as logspline or kernel density estimates, in hybrid Bayesian networks presents difficul-
ties because the resulting estimates are neither Gaussian, nor guaranteed to be integrable in
closed form. These limitations prohibit the use of general purpose algorithms for calculating
marginals.

An alternative to using mixtures of Gaussians or other density estimation methods for
approximating continuous chance variables in hybrid Bayesian networks is mixtures of trun-
cated exponentials (MTE) potentials (Moral et al. 2001, Rumi 2003). The class of MTE
potentials is closed under combination and marginalization, and an MTE potential can
always be integrated in closed form, allowing use of the Shenoy-Shafer architecture for cal-
culating marginals. Previous work presents MTE approximations to the normal PDF (Cobb
and Shenoy 2006) and demonstrates that MTE potentials can be used to solve augmented
CLG models (Lerner et al. 2001), where discrete nodes have continuous parents with normal
distributions.

In this paper, we describe MTE approximations for seven standard probability distribu-
tions and a method for approximating any standard PDF. These approximation methods
allow the numerical specification of a hybrid Bayesian network to use parameters for stan-
dard PDF’s which can then be modeled by MTE potentials in the solution phase. The
remainder of this paper is organized as follows. Section 2 contains notation and definitions
used throughout the paper. Section 3 describes a method of estimating parameters for MTE
potentials. Section 4 presents MTE approximations to standard PDF’s. Section 5 demon-
strates inference in hybrid Bayesian networks using MTE potentials. Section 6 provides some
discussion of the approach presented in the paper.
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2 Notation and Definitions

2.1 Notation

Random variables in a hybrid Bayesian network will be denoted by capital letters, e.g.
A, B,C'. Sets of variables will be denoted by boldface capital letters, Y if all variables are
discrete, Z if all variables are continuous, or X if some of the components are discrete and
some are continuous. If X is a set of variables, x is a configuration of specific states of those
variables. The discrete, continuous, or mixed state space of X is denoted by Qx.

MTE probability potentials and discrete probability potentials are denoted by lower-case
greek letters, e.g. a, 3, 7. Subscripts are used for fragments of MTE potentials or conditional
probability tables when different parameters or values are required for each configuration of
a variable’s discrete parents, e.g. oy, (32, 3. Discrete probabilities for a specific element of
the state space are denoted as an argument to a discrete potential, e.g. 6(0) = P(D = 0).

In graphical representations, continuous nodes in hybrid Bayesian networks are repre-
sented by double-border ovals, whereas discrete nodes are represented by single-border ovals.
Continuous nodes that are deterministic functions of their parents are represented by triple-
border ovals.

2.2 MTE Potentials

A mixture of truncated exponentials (MTE) potential has the following definition (Moral et
al. 2001, Rumi 2003).

MTE potential. Let X be a mixed n-dimensional random variable. Let Y = (Yi,...,Yq)
and Z = (71, ..., Z.) be the discrete and continuous parts of X, respectively, with ¢+ d = n.
A function ¢ : Qx — RT is an MTE potential if one of the next two conditions holds:

1. The potential ¢ can be written as

m d c
o(x) = ¢y, z) =ao+ Z a; exp{ Z bZ(J)yj 4 Z bz(d+k)zk} (1)
i=1 j=1 =1

for all X € Qx, where a;,72=0,...,m and bgj), 1=1,...,m, 75 =1,...,n are real numbers.

2. There is a partition €2y, . .., ) of Qx verifying that the domain of continuous variables,
Qyz, is divided into hypercubes, the domain of the discrete variables, )y, is divided into
arbitrary sets, and such that ¢ is defined as

d(x) = ¢i(x) if x € Q, (2)
where each ¢;,i = 1, ..., k can be written in the form of equation (1) (i.e. each ¢; is an MTE
potential on ;).

In the definition above, k is the number of pieces and m is the number of exponential
terms in each piece of the MTE potential. In this paper, all MTE potentials are equal to
zero in unspecified regions.

Estimating the parameters of MTE potentials is an open research problem. An iterative
algorithm based on least squares approximation has been proposed to estimate MTE poten-
tials from data (Moral et al. 2002). Moral et al. (2003) describes a method to approximate
conditional MTE potentials using a mixed tree structure.
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2.3 Propagation in MTE Networks

The operations of restriction, marginalization, and combination from (Moral et al. 2001)
required for propagation with MTE potentials in hybrid Bayesian networks are included in
this section for completeness.

2.3.1 Restriction

Restriction—or entering evidence—involves dropping coordinates to define a potential on a
smaller set of variables. During propagation, restriction is performed by substituting values
for known variables into the appropriate MTE potentials and simplifying the potentials
accordingly.

Let ¢ be an MTE potential for X =Y UZ. Assume a set of variables X' = Y'UZ' C X,
whose values x!x" are fixed to values x’ = (y’,z'). The restriction of ¢ to the values (y’,z’)
is a new potential defined on €2x\xs according to the following expression:

¢R(X/:x/)(w) _ ¢R(Y/:y/,z/:z/)(w) = ¢(x) (3)

for all w € Qx\x/ such that x € Qx, xx = woand x!% = x/. In this definition, each
occurrence of X' in ¢ is replaced with x’.

2.3.2 Combination

Combination of MTE potentials is pointwise multiplication. Let ¢; and ¢ be MTE potentials
for X1 =Y, UZ; and Xy = Yo U Zy. The combination of ¢1 and ¢o (denoted by ¢1 @ ¢2)
is a new MTE potential for X = X; U X5 defined as follows

B(x) = ¢y (x' %) - o (x1*2) for all x € Qx. (4)

Normalization is implicit in the definition of combination (in the sense that instead of nor-
malizing every time combination is done, we omit it and normalize just once at the end of
propagation).

2.3.3 Marginalization

Marginalization in a network with MTE potentials corresponds to summing over discrete
variables and integrating over continuous variables. Let ¢ be an MTE potential for X =Y U Z.
The marginal of ¢ for a set of variables X/ = Y’ UZ' C X is an MTE potential computed as

oy 2) = ) <Q (v, 2) dZ”> (5)

YEQv\y/

where z = (2/,2"), and (y’,2z’) € Qx/. Although we show the continuous variables being
marginalized before the discrete variables in (5), the variables can be marginalized in any
sequence, resulting in the same final MTE potential.
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2.4 Shenoy-Shafer Architecture

Moral et al. (2001) shows that the class of MTE potentials is closed under the opera-
tions of restriction, marginalization, and combination. Thus, MTE potentials can be propa-
gated using the Shenoy-Shafer architecture (Shenoy and Shafer 1990), since only restrictions,
marginalizations, and combinations are perfomed.

The Shenoy-Shafer architecture relies on three axioms—consonance of marginalization,
commutativity and associativity of combination, and distributivity of marginalization over
combination—that enable efficient local computation of marginals of the joint distribution of
variables in a Bayesian network. To complete the algorithm, each node in the join tree sends a
message to each of its neighbors that is the combination of its own potential and all incoming
messages—except the message from the receiving node—followed by marginalization to the
intersection with the receiving node. The combination of a node’s own potential and all
incoming messages is the posterior distribution of the variables in the node conditioned on
the evidence. A binary join tree (Shenoy 1997) contains a node for each singleton subset of
variables, so using the algorithm with a binary join tree results in marginals for all variables
in the network.

3 Estimating Parameters for Mixtures of Truncated
Exponentials (MTE) Potentials

This section describes a method for estimating the parameters of MTE potentials which
approximate standard PDF’s.

3.1 Kullback-Leibler (KL) Divergence

When approximating a standard PDF with an MTE potential, we measure the Kullback-
Leibler (KL) divergence introduced by the approximation and minimize this measure in the
process of finding parameters for the MTE potential, subject to certain constraints.

The relative entropy or Kullback-Leibler (KL) divergence (Kullback and Leibler 1951,
MacKay 2003) between a standard PDF fx (z) and its MTE approximation fy () is defined
as

Dir(fx(z) || fx(z /f ) log = E idx. (6)
Define py,, and g; _ as the probability masses of fx(z) and fX(:E), respectively, in the
interval (z;—1,;]. A discrete approximation to the KL divergence statistic over a set of
points x;,2 = 0, ...,n can be calculated as follows:

Digy(fx(@) || fx( prxz B (7)

The function g(z) = log (fx (x)/fx(x)) can be interpreted as the information contained
in z for distinguishing between fx(x) and fx(z). Thus, KL divergence is the expectation
of the information content over the domain S taken with respect to the distribution fx(x).
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By minimizing this expectation when determining parameters for MTE approximations to
standard PDF’s—subject to probability mass constraints—we ensure a small chance of dis-
tinguishing between results obtained from inference with standard PDF’s and corresponding
MTE approximations.

3.2 Estimation Procedure

The numerical representation of a hybrid Bayesian network requires a conditional probability
potential for each variable in the network, given its parents. We first consider the problem of
estimating parameters for an MTE potential approximating a marginal PDF. This technique
can be extended in a straightforward way to estimate the parameters for a conditional MTE
potential by using the mixed tree structure in (Moral et al. 2003).

3.2.1 Partitioning the Domain

To estimate the parameters of an MTE potential for a continuous variable X, a partition
O, ..., of Qx must be determined. Typically, in each interval of the partition, the PDF
to be approximated should show no changes in concavity/convexity or increase/decrease.
For example, the normal PDF with parameters x4 and o2 can be divided into four such
intervals: 1) increasing and convex on (—oo, ;t — 0); 2) increasing and concave on [y — o, f1);
3) decreasing and concave on [u, 1 + 0); and 4) decreasing and convex on [ + 0, +00). To
increase efficiency in the inference process, we may choose to exclude a small amount of
probability density in the tails when approximating a PDF. PDF’s whose basic shape does
not change dramatically when the distribution parameters change, such as the normal PDF,
can be fit by partitioning the domain with respect to changes in increase/decrease only.

Suppose the domain of the continuous variable has been divided into K intervals denoted
Dy, ..., Dg. To estimate parameters for an MTE potential which approximates a standard
PDF within a given interval Dy, we choose a set of points x = (z, ..., x,) by evenly dividing
the portion of the domain of the PDF represented by Dj. A set of points y = (o, ..., Yn) iS
determined by calculating the value of the PDF at each point z;, i =0, ..., n.

3.2.2 Approximation by Nonlinear Optimization

Defining an MTE approximation to a PDF fx(z; ©,,) (abbreviated fx(z)) requires estimat-
ing constants agk, a;x and bgi) in (1) for each interval D,. We assume ©,, is an arbitrary
vector of parameters of a standard PDF and the MTE approximation will be fitted for po-
tential parameter vectors, m = 1,..., M. The formulation in (1) allows an independent term
(apr) and an unlimited number of exponential terms in each interval Dy; however, we will
restrict the MTE potential to three exponential terms in each interval to increase efficiency
during the inference process. Additionally, we assume one MTE potential will be defined for
each configuration of a variable’s discrete parents, so in each exponential term, parameters
bgi) are only defined for j = d+1,...,nin (1). Thus, the parameters to be estimated are ag,
A1k, A2k,03k, b?,j,bgf,j and bgjk)

Define ¢*)(z; 0,1) (abbreviated ¢ (z)) as the initial MTE approximation for PDF fx ()
in interval Dy. To estimate the parameters 0. = {Gomk, G1mk, @2mk, G3mk, bﬁ{,{k, bé{,{k, bgi,)lk} in
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(1), the following general optimization problem is solved for each selected paremeter vector
O, m=1..M:

argmin A
0 > D(fx(@:) || ¢M(x2))
mk
z; €Dy,
subject to Continuity Constraints

Probability Mass Constraints

Non-negativity Constraints.

In words, a discrete measure of divergence between the standard PDF and the MTE approx-
imation is minimized subject to continuity, probability mass and non-negativity constraints.

To speed convergence of the optimization problem, we can implement the technique in
Moral et al. (2002) to choose starting values for the parameters. Alternatively, parameters
for an existing MTE approximation to a different standard PDF over similar intervals of
concavity /convexity and/or increase/decrease can be used as starting values. The parameters
obtained by the nonlinear optimization technique may be sensitive to starting values; thus,
the parameters selected are not guaranteed to be global optima. However, multiple MTE
approximations can be obtained for any PDF, such as those produced by obtaining different
local optima for the same nonlinear optimization problem. For the distributions presented
in this paper, each of these possible approximations corresponds to an extremely small KL
divergence statistic.

To create the approximation to the gamma, beta and lognormal PDF’s in Section 4, the
discrete approximation to the KL divergence statistic is used as follows?,

argmin - Dixi
Dy, log ————
Orm ; " Lo, ®
subject Fx (o) = 6P ()
to fx(@n) = 0¥ (2,,)

/ " (Fx(e) - 99 @) dr =0

zo

¢®) () >0,i=0,...,n,

where py,, and G, 00 are the probability masses between z; and ;1 for fx(z) and ) (x),
X1

respectively. The solution to the above optimization problem is defined as 0. The first
and second constraints ensure that the end points in adjacent regions of the MTE potential
are equal. The first constraint can be relaxed in region D; and the second constraint can be
relaxed in region Dy.

Next, each MTE parameter can be stated as a function of the standard PDF parameters,
®, by solving the following optimization problem:

. M '
arir]zln Z <é7(:l)k B h(®m,AkZ))2 7

m=1
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where Ay; is a vector of parameters for the function h(®,,; Ax;) required to state the ith
parameter of the MTE approximation in interval Dy as a function of the standard PDF
parameters. If we simply want to maintain a table of values for the MTE parameters for
each parameter vector @,,, we can define Ay; = {0} and h(©,,) = éf:l)k form=1,..., M.

The method proposed here requires the PDF to be approximated to have a known func-
tional form. To approximate a PDF from data by an MTE potential, a density estimation
method (such as the logspline method of Kooperberg and Stone (1991)) can first be ap-
plied to the data to determine a partition and provide a functional form, then the nonlinear
optimization method can be applied to create an MTE approximation.

4 MTE Approximations to Standard PDF’s

An MTE potential can be used to approximate any PDF. In this section, we present MTE
approximations to seven standard PDEF’s.

4.1 Uniform PDF

The uniform PDF can be expressed as a trivial case of the MTE formulation in (1) where
the potential is defined over one region and the constant ay = ﬁ, where a and b are the
minimum and maximum values, respectively, of the uniform PDF. All other parameters

a;, 1 =1,...,min (1) equal zero.

4.2 Exponential PDF

Suppose we have a Poisson process with constant rate A per unit of time. Let X denote the
time between two consecutive events. The variable X has an exponential distribution with
parameter A, i.e. fx(x) = X exp{ — Az} for z > 0. This PDF can be expressed as a special
case of the MTE formulation in (1) where the potential is defined over the region (0, c0), the

constant ag = 0 and coefficient a; = \ and bgl) = -\

4.3 Normal PDF

MTE approximations to the normal PDF are presented in Cobb and Shenoy (2006). Consider
a normally distributed variable X with mean p and variance 02 > 0. The PDF for the normal

distribution is
1 { 1 (z— ,u) 2 }
T) = ex - = .
fX( ) 2ro P 2 ( o

The general formulation for a 2-piece, 3-term MTE potential which approximates the
normal PDF is
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(o1 (—0.010564 + 197.055720 exp{2.2568434(2=£)}
—461.439251 exp{2.3434117(%)} + 264.793037 exp{2.4043270(%)})
ifu—3c<z<p
~1(—0.010564 + 197.055720 exp{ — 2.2568434(*)}
—461.439251 exp{ — 2.3434117(%)} + 264.793037 exp{ — 2.4043270(%)})
if p<a<pu+3o

\ .
(8)
In this formulation, the mean, u, of X may be represented by a linear function of its contin-
uous parents, as in the CLG model. Each element 0 L1 1s stated as a function of the standard
PDF parameters. For instance, Aj; = {—0.010564} and ag; = —0.010564 /0.

The KL divergence of the normal PDF (with any p and 02 > 0) and the MTE approx-
imation to the normal PDF is 0.000346. Additional properties of this MTE approximation
to the normal PDF are presented in Cobb and Shenoy (2006). Additionally, three examples
are solved, including an example of a hybrid Bayesian network where a discrete node has a
continuous parent.

4.4 Gamma PDF
4.4.1 Function Characteristics

Suppose we have a Poisson process with constant rate A per unit of time. Let the random
variable X denote the waiting time for r events. The variable X has the gamma distribution
with parameters r and \ where

T

fx(z) = %x“l exp{ — Mz}, >0,

for any A > 0, where I'(r) is the gamma function, defined by

L(r) = /000 t'exp{ —t}dt ,

for any real number r > 0.
For r > 1, the gamma PDF has an absolute maximum where its first derivative equals
zero. The first derivative of the gamma PDF is

f&(:ﬂ) _ exp{ — )\a:}a:rl:z:;[(r —1) —z)] . (9)

The absolute maximum, m, is defined where (9) equals zero, or

m=(r—1)/X. (10)

For r > 2, the gamma PDF has inflection points (changes in concavity) where its second
derivative equals zero. The second derivative of the gamma PDF is
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() = exp{ — Az }z"3N[(r — 211((7;)— 1) —2(r — DaX + 22)\? ‘ (1)

The inflection points are defined where (11) equals zero, or

(r—1) (r—1)

T=" + ;| . (12)
Define d = /(r — 1)/ so that the inflection points are defined as x = m £+ d. The
gamma PDF has two inflection points and one critical point (which is always a maximum)
when r» > 3. When 1 < r < 3, the gamma PDF is a concave down function to the left of the
critical point. When r = 1, the gamma pdf is a special case of the exponential PDF and is a
monotonically decreasing, concave up function. For 0 < r < 1, we approximate the gamma

PDF with the exponential PDF.

4.4.2 MTE Approximation

A 4-piece MTE approximation to the gamma PDF is defined as

¢(r) =

(

Aaor + ar1 exp{biiA(z —m)} + as1 exp{basA(x —m)})
if (m—1414d <z <m—d)N 3 <r <bh))
Ul(m—-2d<z<m-—d) N5 <r<10))
U((m —2.5d <z <m—d)Nn(r>10))
Aagz + ar2 exp{bi2A(z — m)} + aza exp{baaA(x —m)})
if Max[0,m —d] <z <m (13)
A aos + arz exp{bisA(z —m)} + a3 exp{basA(x —m)})
ifm<z<m+d
Aaos + arq exp{buaA(z — m)} + azq exp{bas(x —m)})
if (m+d<z<m+6d)N(l<r<10)
Um+d <z <m+4d) N (r > 10)
[ A exp{ — Az} ifo<r<1.

We set h(©,m) = éf,?k and define a table of constants® for values of r = 1.5, 2.0, 2.5, 3.0,...,
99.5, 100.0. For r > 100 we approximate the gamma PDF with the MTE approximation
to the normal PDF in (8). The MTE approximations to the gamma PDF with parameters
r=06,8 and 11 and A = 1 are displayed graphically in Figure 1 with the parameters and KL
divergence statistics listed in Table 1.
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Figure 1: The MTE approximations to gamma PDF’s with parameters r = 6,8 and 11 and
A = 1 overlayed on the graph of the gamma PDF’s.
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Figure 2: The MTE approximations to chi-square PDF’s with parameters n = 13,17 and
21 overlayed on the graph of the chi-square PDF’s.

4.5 Chi-Square PDF

The chi-square distribution with n degrees of freedom is a special case of the gamma PDF
where r = n/2 and A = 0.5. Thus, the chi-square distribution can be approximated by the
MTE approximation to the gamma PDF in (13). Figure 2 shows MTE approximations to
chi-square distributions with n = 13,17 and 21.

Consider the chi-square distribution with 21 degrees of freedom. The critical values in a
chi—square table for the upper percentile values of this distribution are 32.671 for p = 0.95,
35.479 for p = 0.975 and 38.932 for p = 0.99. Integrating the MTE potential for n = 21 in
Figure 2 over the intervals from [0,32.671], [0,35.479] and [0, 38.932] gives probabilities of
0.9750, 0.9489 and 0.9903, respectively.

4.6 Beta PDF
4.6.1 Function Characteristics

A distribution of a random proportion, such as the proportion of defective items in a ship-
ment, can be represented by the beta PDF. The beta PDF for a random variable X which
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Table 1: Parameters and KL divergence statistics for MTE approximations to the gamma

PDF with A = 1.

13

r
O 6 8 11
aogl -0.002704 | -0.003287 | -0.000668
ai 33.449113 | 55.955116 | 55.952009
b11 2.058104 1.571871 1.324635
as | -92.962972 | -70.339661 | 70.342622
bar 2.650266 1.694115 1.422907
ap2 -2.284046 | -2.375417 | -2.451516
a2 2.712855 2.702941 2.694400
b1o 0.045703 0.028784 0.017576
9o -0.253342 | -0.178522 | -0.117775
bao 0.512581 0.454392 0.420215
aos -1.336838 | -1.368414 | -1.394603
a3 1.704404 1.695418 1.687299
bis3 0.023885 0.018704 0.014568
93 -0.192098 | -0.178001 | -0.167586
bos 0.257974 0.213672 0.172972
a4 -5.991587 | -5.987559 | -6.011745
a4 0.297779 0.262770 0.288893
b14 -0.350223 | -0.320715 | -0.169005
24 5.971677 5.972495 5.907099
boy 0.000216 0.000147 0.000962
Dk, | 0.002095 0.000856 0.000283

represents a random proportion is

a—1 _ B—1
fX(a:):x (1-2) ,0<z<1,

B(a, B)
where B(a, 3) is the beta function, defined by

B(a, 3) = /01 7t =)t ar

for any real numbers o > 0 and § > 0. Thus, @ > 0 and § > 0 are the shape parameters of
the beta PDF.

For most parameters « and 3, the beta PDF has a critical point (either an absolute
maximum or minimum) where its first derivative equals zero. The first derivative of the beta
PDF is

;o (=0 %1~ a)(a — 1) — a( — 1)]
fX('T) - B(a 7 ﬁ) :

The critical point, m, is defined where (14) equals zero, or

(14)
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m=(1-0a)/2-a-p). (15)
The beta PDF is monotonic (thus the critical point does not exist) in the following cases:
e (a<l)N(B>1)
e (B<l)N(a>1)

For some parameters a and (3, the beta PDF has inflection points (changes in concavity),
d*, where its second derivative equals zero, or

4+ (a=1)(a+B-3)E£4/(B—1)(a—1)(a+3-3)
d* = (@1 B-3)(aTA=2) : (16)

The distribution has just one inflection point in the following cases:

a<)n(l<p<2

g<hn(l<a<?2

( )
( )
(I<a<2)n(f>2)
° )

l<p<2)N(a>2

None of the inflection points exist in the following cases:

The behavior of the beta PDF is summarized in Figure 3.

4.6.2 MTE Approximation

For each of the regions defined by the parameters in Figure 3, we could define an MTE
approximation, but the symmetry of the beta PDF allows us to reduce the parameter space.
If £(X) ~ Beta(a, 3), then

fx(w) = fy(1 =), (17)

where £(Y) ~ Beta(3, a).

This property allows us to define an MTE approximation for parameters (o, 3) fulfilling
the property a > (3. The MTE approximation will have a different number of pieces,
depending on the critical point and the existence of inflection points, as follows:
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A A L 3
m m
)
dt d+
2 o
m
6} d—- m
d—
1 %
at 0
o
0 1 9
o

Figure 3: Critical and inflection points for the different parameters of the beta distribution.

¢(r) =

\

(a1 + a11 exp{biix} + a21 exp{baiz}

if (O<z<m)Ne<h)NB<a)U(0<z<m)N((l<a<2)N(l<p<a)))

U((l<z<dh)N(I<a<2)n@<))Hu(0<z<d=—)N((a>2)N(1<f <))

U((0<z<)n((@z2)(B<1))u(0<z<)N((B=1)NQ1<a<2)
ag2 + 12 exp{biax} + aze exp{baaz}

if (O<z<m)Nea<h)NB<a)U(0<z<m)N((l<a<2)N(l<p<a)))

U(d—<z<mnN((a>2)n(l<g<a)U(d+<z<hn(Il<a<2)n(f<1l)))
aps + a13 exp{bizz} + az3 exp{basz}

if (m<z<l)Nn((a>2)Nn(1l<pg<2)))U((m<z<d+)N((a>2)N2<p <))
aos + a14 exp{biax} + azq exp{bar}

f(d+<z<)N((a>2)N2<p<a).

(18)

The MTE approximations to the beta PDF with parameters («, 5) = (2,2),(2.7,1.3)

and (1.3,2.7) are displayed graphically in Figure 4 with the parameters and KL diver-
gence statistics listed in Table 2. The MTE parameters for Beta(1.3,2.7) are obtained
from Beta(2.7,1.3) as shown in (17).
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Figure 4: The MTE approximations to beta PDF’s with parameters (o, ) = (2,2), (2.7, 1.3)
and (1.3,2.7) overlayed on the graph of the beta PDF’s.

Table 2: Parameters and KL divergence statistics for the MTE approximations to the beta

PDF.

A (@.59)

Ok (2,2) (2.7,1.3) | (1.3,2.7)
(o1 | —1299.228439 | —5.951668 1.823067
@11 | —545.789594 | 5.573315 —1.029580
b1t —0.177215 0.461387 | —26.000040
as1 1845.018033 0.378353 0.060778
ba1 —0.049140 —6.459391 | —0.529991
(o2 | —1299.228439 |  0.473653 0.473653
(12 | —457.153000 | —6.358482 | —0.453988
b1o 0.177215 —2.639473 2.639473
(22 | 1756.540000 2.729394 1.959340
boo 0.049140 —0.331471 0.331471
ao3 — 1.823067 —5.951668
a3 — —5.26E—12 | 8.840810
b1 — 26.000040 | —0.461387
as3 — 0.035774 0.000592
bas — 0.529991 6.459391

Dy | 26211866 0.000330 0.000330
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4.7 Lognormal PDF
4.7.1 Function Characteristics

A random variable X is lognormal, i.e. £(X) ~ LN(u,0?),ifand only if £(In X) ~ N(u, o?).
A lognormal random variable has the PDF
1 —(Inz — p)?

exp
vV 2mo? 207

fx(z) =

, x>0,

for any o2 > 0.

The lognormal PDF has an absolute maximum where its first derivative equals zero. The
first derivative of the lognormal PDF is

2
) = 22z Lo 1)
xo?\/ 2mo?

The absolute maximum, m, is defined where (19) equals zero, or m = exp{u — o*}.

The inflection points, d*, are defined where the second derivative of the lognormal PDF
equals zero, or

exp

(19)

d* = exp {%(QM — 302+ am>} : (20)

4.7.2 MTE Approximation

To define upper and lower bounds for the MTE approximation to the lognormal PDF,
we use the normal PDF as a benchmark and construct a potential containing the same
probability mass in the lognormal PDF as contained in the normal PDF over the interval
[t — 30, 1+ 30]. This probability mass—which equals 0.9973—is contained in the interval
[ exp{p — 30}, exp{p + 30}] of the lognormal PDF.

A 4-piece, 2-term MTE approximation to the lognormal PDF is defined as

¢(r) =

(x —m) (x —m)} if exp{u—30} <z <d
a2 + a1z exp{bia(x — m)} + ase exp{ba(x —m)} ifd~- <x<m (21)
aos + arz exp{biz(x —m) (x—m)} ifm <z<db

aos + arg exp{bia(z —m)} + agq exp{bos(z —m)} ifd* <z < exp{u+30}.

apr + a1 exp{bi(x —m)} + as exp{ba(z

m)} + ass exp{bas(x —m

The MTE approximations to the lognormal PDF with parameters 4 = 0 and o2 =
0.25,0.50 and 1 are displayed graphically in Figure 5 with the parameters and KL divergence
statistics listed in Table 3.

5 Applications

This section presents three applications of MTE potentials to inference problems in hybrid
Bayesian networks.
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1 2 3 4

Figure 5: The MTE approximations to lognormal PDF’s with parameters u = 0 and o2 =
0.25,0.5 and 1.0 overlayed on the graph of the lognormal PDF’s.

Figure 6: Hybrid Bayesian network for the Bank example.

5.1 Bank Example

A small town has 50 residents and one bank. The number of daily arrivals to the bank (R)
follows a Poisson distribution with rate A = 0.24, i.e. £(R) ~ Poisson (12). Let R denote
a variable for number of arrivals to the bank with the following probability potential

p(r) = palr) = C2QAGON - < < 90,

We assume the maximum arrivals in one day is 20, so the probability potential is truncated.

The service rate of customers (.5) is normally distributed with a mean of 3.0 per hour and
a standard deviation of 0.25, i.e. £(S) ~ N(3.0,0.0625). The time to serve all customers
arriving in one day (7") has a gamma distribution that is conditional on random variables
R and S. The bank manager has established a “soft threshold” of five hours of total daily
service time before hiring an additional teller. Thus, H is a binary, discrete random variable
representing whether or not the bank manager hires an additional teller. The hybrid Bayesian
network for the Bank example is depicted in Figure 6.

The potential ¢ for S is the MTE approximation to the normal PDF in (8) with u = 3
and 0? = 0.0625. Variable H is a discrete node with a continuous parent and is modeled
with a binary sigmoid function. This sigmoid function is approximated using a general MTE
formulation stated in terms of its two parameters w and g (Cobb and Shenoy 2006). Param-
eter w determines the steepness of the “soft threshold” and ¢ is the offset of the threshold
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Table 3: Parameters and KL divergence statistics for MTE approximations to the lognormal
PDF with p = 0.

0.2

Ok 0.25 0.5 1.0
ap1 | -0.303932 | -0.440613 | -1.130046
arr | 3.036290 | 2.739898 | 2.666958
b | 4.387105 | 4.247658 | 3.856545
az | 0.177082 | 0.309889 | 0.710654
bar | 1.588571 | 1.573502 | 1.530143
ap2 | 5.716321 | 6.282564 | 5.900258
arz | -3.364090 | -3.134446 | -0.290081
b2 | -0.880178 | -0.978911 | -4.780600
age | -1.448109 | -2.423684 | -4.952431
bao | 2.108769 | 1.332677 | 0.298929
apz | -0.267558 | -0.446017 | -0.307309
ayz | -0.778641 | -0.602649 | -0.797981
bis | 1.652415 | 1.415704 | 1.400388
azs | 1.950321 | 1.773100 | 1.763035
bas | 0.528256 | 0.383786 | 0.541464
aps | -0.678707 | -0.698647 | -0.724208
ayq | 1.254983 | 0.886631 | 0.715287
big | -1.624085 | -1.177871 | -0.906293
azq | 0.657170 | 0.705372 | 0.729869
bas | 0.008725 | -0.001153 | -0.000395
D, | 0.000330 | 0.000099 | 0.006467

from zero. In this example, we assume w = —1 and g = 5, so the MTE approximation to the
binary sigmoid function representing the potential fragment for { H = 1,7} in this example
is

0 ift<0
—0.021704 + 0.021804 exp{0.635t} if 0 <t <5
1.021704 — 12.4827 exp{ — 0.635t} if 5 <t <10
1 if t > 10.

() =PH=1|T=t)=

Since the variable is binary, ¥(t) = P(H =0 | T =t) =1—-P(H =1|T =t). The
MTE potential fragments 1y and v constitute the MTE potential ¢ for {H,T'}. The MTE
potential fragment for {H = 1, T} is shown graphically in Figure 7.

The time until all customers have arrived (7') depends on the service time in customers
per hour (S5) and the number of arrivals (R). Thus, £(T | S =s,R=r) ~ I'(r,s), which is
represented by the MTE potential ¥ using the formulation in (13). Solving the problem of
calculating marginal distributions for each variable in the network will require the estimate
of the parameter vectors ka = Qrk for r = 2,..., 20, where ng represents parameters needed
to approximate the gamma PDF with r = 2, etc.
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t=time until r arrivals

Figure 7: The MTE approximation to the sigmoid function representing P(H =1 | T = t)
in the Bank network.

Figure 8: The binary join tree for the Bank example.

5.1.1 Join Tree Initialization

When the conditional probability distributions in hybrid Bayesian networks are approxi-
mated by MTE potentials, we can use any join tree for propagation with no restrictions placed
on the initialization phase. This is in contrast to the architecture of Lauritzen and Jensen
(2001), which requires a strong junction tree so that continuous variables are marginalized
before discrete ones since the algorithm uses properties of Gaussian distributions to achieve
marginalization. In the MTE approach, there are no constraints on the order in which vari-
ables are marginalized. Avoiding the use of a strong junction tree improves the efficiency of
the solution phase because strong junction trees often contain larger cliques.

Other algorithms developed for inference in hybrid Bayesian networks with discrete chil-
dren of continuous parents place special restrictions on the process of initializing the network.
For instance, Lerner et al. (2001) requires a preprocessing phase where all potentials except
those for the discrete children of continuous parents are inserted. The algorithm suggested
by Murphy (1999) requires any logistic or softmax functions to be converted to Gaussian
potentials by using a variational lower bound.

A binary join tree for the Bank example is shown in Figure 8.
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Prob t

0 2 4 6 8 10 12 14
t=time until r arrivals

Figure 9: The prior marginal distribution for 7" in the Bank example.

5.1.2 Computing Messages

The following messages are required to compute the marginal distributions for 7" and H in
the Bank example:

(1) ¢ from {S} to {R,S, T}

(2) p from {R} to {R, S, T}

(3) (p@p®@ V)" from {R, S, T} to {T}

(4) ((p®@ p @I @) from {H,T} to {H}.

5.1.3 Prior Marginals

1. Prior Marginal for T

The message sent from {R,S,T} to {T'} is the marginal distribution for 7" and is

calculated as follows
7(75)2/Q <90($) <Zp(T)-79(S>t)>> ds.

The expected value and variance of the marginal distribution for 7' are computed
as 4.0782 and 3.2859, respectively. The prior marginal distribution for 7' is shown
graphically in Figure 9.

2. Prior Marginal for H
To calculate the prior marginal probabilities for H, the marginal distribution for 7T°
is combined with the conditional MTE potential fragments vy and ;. The joint
potential for {H = 1,7} is calculated as 01(t) = ¥1(t) - 7(t) and the joint potential
for {H = 0,T} is calculated as go(t) = 9o(t) - 7().
The marginal probabilities for H are found by removing 7' from gy and p; by inte-

gration. The marginal probability of the bank manager hiring an additional teller is
P(H =1) = 33.6%.
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Success Accepted
Parameter (P) Units (X)

Figure 10: The hybrid Bayesian network for the Quality Control example.

5.2 Quality Control Example

In a quality control process, a random sample of output is taken and evaluated on whether
or not each unit meets a pre-determined standard. Suppose the prior distribution for the
success parameter P of the binomial distribution (where 0 < p < 1) characterizing the
sample output has a beta distribution which depends on the state of the system (A) with
Q4 = {0 = poor, 1 = average, 2 = good}. A discrete random variable X represents the
number of successes in 5 trials, i.e. £(X) ~ Binomial (5, P). The Bayesian network for this
example is shown in Figure 10.
Assume the following discrete distribution for A:

©(0) = P(A =0) = 0.05,
o(l) = P(A=1)=0.15,
©(2) = P(A=2)=0.80.
The potential fragment for {P, A = 2} is an MTE approximation to the beta PDF with

parameters « = 1.3 and § = 2.7:

pz(?% A= 2) = fP|A:2 (P) =

(—5.951669 + 5.573316 exp{0.461388p} — 0.378353 exp{ — 6.459391p}
if 0 < p < 0.492929

0.473654 — 6.358483 exp{ — 2.639474p} + 2.729395 exp{ — 0.331472p}
if 0.492929 < p < 0.85

1.823067 — (5.26E — 12) exp{26.000041p} + 0.035775 exp{0.529991p}
if0.85 <p<1.

\

If the system is in state A = 0, P has a beta distribution with g = 1.3 and a = 2.7. Due to
the symmetry of the beta PDF, the potential fragment for { P, A = 0} is approximated as

po(p, A=0) = fpla=o(p) = p2(1 — p, A =2).

The potential fragment for {P, A = 1} is an MTE approximation to the beta PDF with
parameters o = 2 and § = 2. The numerical details of this potential are omitted. The
potential fragments constituting the potential p for { P, A} are shown graphically in Figure 4
in Section 4.

The potential for {X, P} is

¢($>P):P(X=k|P:p):(2)pk(1_p)5—k.
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0 0.2 0.4 0.6 0.8 i
Figure 11: The marginal distribution for (P) in the Quality Control example.

The marginal distribution for P obtained after propagation is shown graphically in Fig-
ure 11. The expected value and variance of this distribution are 0.6308 and 0.0536, respec-
tively. Marginal probabilities for X are as follows: P(X = 0) = 0.0563; P(X = 1) = 0.1081;
P(X =2)=0.1604; P(X = 3) =0.2068; P(X =4) = 0.2374; and P(X =5) = 0.2310.

Suppose a sample of output from the system is taken and only one unit meets the quality
standard. The potential ¥'(p) = 1(1, p) is calculated and new potential fragments for { P, A}
are determined as

mo(p, A=0) = ¥'(p)-po(p,A=0)
mp, A=1) = ¥'(p)-p(p,A=1)
m(p, A=2) = ¢'(p)-pap, A=2).

The revised probabilities for A given the evidence are determined by integrating these po-
tentials over P and combining them with the prior probabilities for A as follows:

=
=
I
~
N
I
=
I

1
K=t (0) - / mo(p, A =0) dp = 0.1193
0

)
=
I
3
s
I
Naw!
I

1
K=t p(1)- / mi(p, A=1)dp=0.2477
0
1
¥(2) = P(A=2) = K1 p(2)- / 7a(p, A = 2) dp = 0.6330.
0

The normalization constant, K, is the prior probability of the observed evidence, or K =
P(X =1)=0.1081.

The revised marginal distribution for P is shown in Figure 12 and has an expected value
and variance of 0.3735 and 0.0260, respectively.

5.3 Extended Crop Example

A diagram of the hybrid Bayesian network for this example appears in Figure 13. In this
model, the price (P) of a crop is assumed to decrease with the amount of crop (C') produced.
Prices (P) will also be higher if the government subsidizes prices (S = 1). The consumer
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Figure 12: The revised marginal distribution for (P) incorporating the evidence X = 1.

Figure 13: The hybrid Bayesian network for the Extended Crop example.

is likely to buy (B = 1) if the price drops below a certain amount. Both the crop (C)
produced and the subsidy (S) depend on whether the rain conditions are drought (R = 0),
average (R = 1), or flood (R = 2). Additionally, the subsidy (5) is affected by the type
of government policy (X) employed. Profits (Y) are determined as a function of price (P),
crop (C) produced, and the decision of the consumer on whether to buy (B) at the market
price. This example uses a lognormal PDF to model the conditional distribution for price
(P) given crop (C), replacing the normal PDF used in a similar example used by Lerner
(2002).

The parameters of the distributions for the variables in the Extended Crop example are
shown in Table 4. The normal and lognormal PDF’s specified in Table 4 are approximated by
normalized MTE potentials over the region containing a total probability density of 0.9973
in each distribution. For example, the MTE potential for P given {S = 0,1.25 < ¢ < 4.625}
is defined as
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{a.p.7} c.m

R )

Figure 14: The join tree for the Extended Crop example.

e(p,5=0,1.25 < ¢ <4.625) = fp|(s=0,1.25<c<1.625}(D) =

(—0.019835 + 0.008137 exp{0.380496p} — 0.000013 exp{1.008900p}
if 2.718282 < p < 5.000869
0.196410 — 0.302185 exp{ — 0.131877p} — 0.001304 exp{0.348873p}
if 5.000869 < p < 9.487736
0.076381 — (6.967804E — 06) exp{0.605724p} + (1.548315E — 11) exp{1.461563p}
if 9.487736 < p < 14.018645
—0.591615 + 0.365701 exp{ — 0.133531p} + 0.589548 exp{0.000064p}
\ if 14.018645 < p < 54.598150 .

The minimum and maximum endpoints in the domains of the MTE potentials for C' given
R and P given {C, S} are used to divide the domain of the parent variables for the MTE
potential for Y given {B, C, P} into hypercubes, as in the mixed tree approach introduced
by Moral at al. (2003); for instance, the MTE potentials for {C, R} are defined over the
range [co, cs], with ¢4 = ¢o + (3 — ¢p)/3 and ¢ = ¢y + 2 - (¢35 — ¢)/3. The distribution
for Buy (B) given Price (P) is an MTE approximation to the binary sigmoid function with
parameters w = —1 and g = 30 (Cobb and Shenoy 2006).

The marginal distribution for Profit (Y') is calculated by passing messages in the join
tree shown in Figure 14. The message from {R, S, X} to {C,R,S}is 0 = (a @ 3 ®~) ™" for
{R, S}. The message from {C, R, S} to {C,P,S}is ¥ = (0 ® §) " for {C, S}. The potential
fragment ¥(c, S = 1) is shown graphically in Figure 15.

The discrete variable S is removed by summation after the potential ¥ for {C,S} is
combined with the potential e for {C, P, S} as follows:

k(c,p) =9(c, S =0)-e(c,p, S =0)+39(c,S=1)-e(¢c,p, S =1) .

The potential x for {C, P} is the message from {C, P,S} to {B,C,P,Y}. At {B,C,P,Y},
r is combined with the potentials ¢ for { B, P} and n for {B,C, P,Y}. To find the marginal
distribution for Profit (Y), variables C' and P are removed by integration. The potential
fragment for {Y, B = 1} is calculated as

=1 [ (ctr.5 =) [ e -atepy. 5= 1) i) dp

The potential fragment for {Y, B = 0} is calculated similarly, then the marginal distribution
for Y is calculated as
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Table 4: Parameters for the distributions of the variables in the Extended Crop example.

Variable Distribution given parent state(s) or region
a  Policy (X) (0.5,0.5)
#  Rain (R) (0.35,0.6,0.05)
v Subsidy (S) | R=0, S=0 (0.4,0.6)
R=0, S=1 (0.3,0.7)
R=1, S=0 (0.95,0.05)
R=1, S=1 (0.95,0.05)
R=2, S=0 (0.5,0.5)
R=2, S=1 (0.2,0.8)
9 Crop (C) | R=0 N(3,0.5)
R=1 N(5,1)
R=2 N(2,0.25)
e Price(P) | S=0, 125<¢<4.625 LN(2.5,0.25)
S=0, 4625<c<8 LN(2.0,0.25)
S=1, 125<c¢<4.625 LN(3.0,0.5)
S=1, 4625<c<8 LN(2.75,0.5)
¢ Buy (B) P w=-—1,9g=30
n  Profit (Y) [B=0, c,<c<cun N(—0.5 - =Eotl —1,100)
forn=20,1,2
B=1, (ca<c<cp1N
P <P < puer) | N((P2t —0.5) - (test) —1,100)
form=0,1,2and n=20,1,2

oy)=v(y,B=0)+v(y,B=1) .

The marginal distribution ¢ for Y is shown graphically in Figure 16. The tri-modal shape
of the distribution occurs because crop produced varies under the three rain scenarios.
Suppose evidence exists that P = 32. The marginal distribution for Y can be updated
as follows. The message {C, P, S} to {B,C, P, Y} remains the potential x for {C, P}. At
{B,C, P, Y}, the evidence restricts the combination of the potentials x, ¢, and 7 as follows:

Moy, B =0) = (e 32) - (32, B = 0) - n(e,32,5, B=0) |
)\(C,y,B = 1) = "4'(67 32) ’ C(32>B = 1) ’ 77(67 32,y, B = 1) .

The marginal distribution for Y considering the evidence is calculated as
p) = | NewB=0)+ Ny B=1) de
Qo

After a normalization step, the marginal distribution for Y appears graphically as shown in
Figure 17.
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Figure 15: The potential fragment (¢, S = 1) sent in the message from {C, R, S} to
{C,P,S}.
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Figure 16: The marginal distribution of Profit (V') in the Extended Crop example.
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Figure 17: The marginal distribution of Profit (Y') considering the evidence P = 32.
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6 Discussion

We have described a method of estimating the required parameters for MTE potentials which
approximate standard PDF’s and have presented MTE approximations to seven standard
PDEF’s. This technique can also be extended to estimate any arbitrary PDF from data. Three
examples of inference in hybrid Bayesian networks which use these MTE approximations were
presented.

The approach presented in this paper allows hybrid Bayesian networks to be constructed
in cases where variables are known to follow a standard probability distribution. The pa-
rameters specified for the standard PDF can be used to construct an MTE approximation to
use in the solution phase. For instance, a stock price at a given time will have a lognormal
distribution if it follows a Geometric Brownian Motion stochastic process. The parameters
can be obtained from an expert, or via Maximum Likelihood estimates. CLG models provide
the only current method of specifying such a model; however, CLG models only allow nor-
mal PDF’s and impose restrictions on construction of the network. In principle, the MTE
approach could apply to the problem of inference in hierarchical Bayesian statistical models,
but actual application needs to be verified in practice.

The proposed technique for approximating continuous PDF’s can be used for any multi-
variate probability model regardless of the topology and size of the Bayesian network if we
can approximate each conditional PDF by an MTE potential. In the case where a continuous
variable, say X has several continuous parents, say {Y, Z}, then we may have to fit a MTE
approximation for the conditional density fx|, ., which may be a three dimensional surface.
The MTE approach can be considered an “exact” method since the MTE approximations
are very close to the exact densities, and there are no errors introduced during the inference
process. Like all exact methods, it is not always tractable for models in which the clique
sizes are large. A non-commercial implementation of Bayesian networks which uses MTE
potentials is available at: http://leo.ugr.es/~elvira (Elvira Consortium 2002).

Other approaches for approximate inference in hybrid Bayesian networks include dis-
cretization of continuous variables and Markov Chain Monte Carlo (MCMC) methods. Com-
pared to discretization, the MTE approach gives us a much better approximation, assuming
we use the same number of pieces in the MTE approach as the number of bins in the dis-
cretization approach. Consequently, for a fixed specified accuracy, MTE would require far
less time than discretization since we could use fewer pieces in the MTE approximation com-
pared to the large number of bins that would be required by the specified accuracy. Rumi and
Salmeron (2005) describe propagation methods for MTE potentials that calculate approxi-
mate messages, thereby reducing the solution time. Compared to discrete approximations,
they find that using MTE potentials results in a favorable tradeoff in space/accuracy (with
accuracy measured through comparisons of the marginal distributions after propagation).

The Monte Carlo methods on the other hand are always tractable, but the quality (vari-
ance) of the approximate inference depends on the sample size. In fact, computing the quality
of the approximation itself can be difficult, as can detecting a steady state solution. Conver-
gence of MCMC methods can be problematic for networks which have zero probabilities in the
joint state space. Software implementations are available which use discretization and Monte
Carlo methods to solve Bayesian networks. BUGS (http://www.mrc-bsu.cam.ac.uk/bugs)
is a package which uses the Markov Chain Monte Carlo (MCMC) approach, whereas Age-
naRisk (http://www.agena.co.uk) employs the dynamic discretization scheme of Kozlov
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Notes

YBarry R. Cobb, Virginia Military Institute, Department of Economics and Business

OPrakash P. Shenoy, University of Kansas, School of Business

ORafael Rumi, Universidad de Almeria, Departamento de Estadistica Y Matemética Aplicada

!The term potential was introduced by Lauritzen and Spiegelhalter (1988) to describe conditional prob-
ability tables since the values in a conditional probability table do not sum to one, but to the sum of the
number of states of parent variables. The term fragment was introduced by Demirer and Shenoy (2005) to
describe a portion of a potential that is defined over a subset of the domain of the parent variables.

2For approximations presented in this paper, we use Microsoft Excel Solver, which implements the Gen-
eralized Reduced Gradient (GRG2) nonlinear optimization method (Lasdon and Waren 1978).

3A table containing these parameters is available in (Cobb 2005).
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