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PARTICLE METHODS FOR MAXIMUM LIKELTHOOD
ESTIMATION IN LATENT VARIABLE MODELS

ADAM M. JOHANSEN, ARNAUD DOUCET AND MANUEL DAVY

ABSTRACT. Standard methods for maximum likelihood parameter estimation
in latent variable models rely on the Expectation-Maximization algorithm and
its Monte Carlo variants. Our approach is different and motivated by similar
considerations to simulated annealing; that is we build a sequence of artificial
distributions whose support concentrates itself on the set of maximum likeli-
hood estimates. We sample from these distributions using a sequential Monte
Carlo approach. We demonstrate state of the art performance for several ap-
plications of the proposed approach.

Key words: Latent Variable Models, Markov Chain Monte Carlo, Maxi-
mum Likelihood, Sequential Monte Carlo, Simulated Annealing,.

1. INTRODUCTION

Performing Maximum Likelihood (ML) parameter estimation in latent variable
models is a complex task. First, in many cases, the likelihood for the parameters of
interest does not admit a closed-form expression. Second, even when it does, it can
be multimodal. When the likelihood can be evaluated, the classical approach to
problems of this sort is the Expectation-Maximisation (EM) algorithm (Dempster
et al., 1977), which is a numerically well-behaved algorithm. However the EM
algorithm is a deterministic algorithm, which is sensitive to initialization and can
become trapped in severe local maxima. To avoid getting trapped in local maxima
and to deal with cases where the E-step cannot be performed in closed-form, some
Monte Carlo variants of the EM algorithm have been proposed.

More recently, an algorithm has been proposed to solve, simultaneously, this joint
integration/maximization problem; see (Doucet et al., 2002) or (Gaetan and Yao,
2003; Jacquier et al., 2007) for an independent derivation. The main idea of this al-
gorithm is related to Simulated Annealing (SA) and consists of building a sequence
of artificial distributions whose support concentrates itself on the set of ML esti-
mates. In cases where the likelihood does not admit a closed-form expression, these
artificial distributions are not standard and rely on the introduction of an increas-
ing number of artificial copies of the latent variables. To sample from this sequence
of distributions, the authors of (Doucet et al., 2002) use non-homogeneous Markov
chain Monte Carlo (MCMC) algorithms which they term State Augmentation for
Marginal Estimation (SAME). Although these iterative stochastic algorithms typ-
ically perform better than deterministic EM and its variants (Robert and Casella,
2004, Chapter 5), they can also get stuck in severe local maxima. We propose,
here, original Sequential Monte Carlo (SMC) methods to address this problem. In
this approach, the distributions are approximated by a large cloud of interacting
random samples. The performance of these methods is much less sensitive to ini-
tialization than EM and MCMC algorithms. We demonstrate their efficiency on a
variety of problems.

The remainder of the paper is organized as follows. In Section 2, we formally
introduce the statistical model and a sequence of artificial probability distributions
which concentrates itself on the set of ML estimates. In Section 3, we describe
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two generic SMC algorithms to sample from these distributions: the first algorithm
assumes the likelihood is known pointwise whereas the second algorithm considers
the most general case. Finally in Section 4, we provide a number of example
applications.

2. MAXIMUM LIKELIHOOD ESTIMATION IN LATENT VARIABLE MODELS

Let y € )Y denote the observed data, z € Z the latent variables and 6 € © the
parameter vector of interest. The marginal likelihood of 6 is given by

(1) p(y]0) = / Py, 210)dz

where p(y, z|0) is the complete likelihood. The complete likelihood is known point-
wise but the marginal likelihood might not be tractable. We are interested in the
set of ML estimates

(2) Oz = argmax p(y0).
6co

Instead of an EM approach to maximize p(y|6), we propose an alternative related
to SA. Let p() be an instrumental prior distribution whose support includes the
maximisers of the likelihood function, then the probability distribution

3) my(0) < p () p(y|0)”

concentrates itself on the set of ML estimates as v — oo under weak assumptions.
Indeed, asymptotically the contribution from this instrumental prior vanishes; this
term is only present to ensure that the distribution 7 (6) is a proper distribution
— it may be omitted in those instances in which this is already the case. If we
could obtain samples from a distribution 7., (0) where 7 is large, then the simulated
samples would be concentrated around © ;7. However, Monte Carlo methods such
as MCMC and SMC require that it is possible to evaluate the distributions of
interest up to a normalizing constant: such methodology cannot be applied directly
if p(y|0) does not admit a closed-form expression.

2.1. Algorithms. To circumvent this problem, it has been proposed in (Doucet
et al., 2002), in a Maximum a Posteriori (MAP) rather than ML setting, to build
an artificial distribution known up to a normalizing constant which admits as a
marginal distribution the target distribution 7., (6) for an integer power v greater
than one. A similar scheme was subsequently proposed by (Gaetan and Yao, 2003;
Jacquier et al., 2007) in the ML setting. We note that closely related approaches
have also appeared in the literature to perform full ML estimation (in the absence of
latent variables) (Robert and Titterington, 1998) and in an optimal design context
(Miiller et al., 2004; Amzal et al., 2006). The basic idea consists of introducing ~
artificial replicates of the missing data and defining

(4) 7y (8, 217) o p(6 Hp (y,2il6),

with z;.; = (2, ..., z;). Indeed it is easy to check that the marginal in 6 of (4) denoted
7 (0) is equal to (3). Note that it is straightforward to modify the distribution
7y(0, z1.4) so that it concentrates itself on the set of the Maximum A Posteriori
(MAP) estimates of § associated with the prior p (§) and the likelihood p (y|0) by
using a different sequence of distributions:

(5) (0, 21.) och p(y, zi]0).
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As it is usually impossible to sample from (0, z1.,) directly, MCMC algorithms
have been proposed in the literature to achieve this. However, using an MCMC
kernel to sample directly from this distribution for a large integer v can be very
inefficient as, by construction, the marginal distribution 7, () is sharply peaked
and the mixing properties of MCMC kernels usually deteriorate as 7 increases.
Such approaches can perform rather well if the likelihood is unimodal but are likely
to fail if it is multimodal. A popular approach, which alleviates this problem to
some degree, is adopted in the SAME algorithm. It consists of sampling from
a sequence of distributions {n,, (0, z1.y,)},~, evolving over time, ¢, such that v, is
small enough for 7., (6, 21.,, ) to be easy to sample from and {7}, is an increasing
sequence going to infinity. However, in practice, this approach suffers from two
major drawbacks. First, in contrast to standard SA, we are restricted to integer
inverse temperatures, {y:},~,. Hence the discrepancy between successive target
distributions can be high and this limits the performance of the algorithm. Second,
a very slow (logarithmic) annealing schedule is necessary to ensure convergence
towards ©psr,. In practice, a faster (linear or geometric) annealing schedule is used,
but, consequently, the MCMC chain tends to become trapped in local modes.

To solve the first problem, we introduce for any real-valued v > 0 the target
distribution

1]

(6) 7T’Y<972"1:|"y'|) O(p(e) yazhﬂe Hp y,Zz\e

where |v] 2 sup{a € Z :a<q}, [y] 2infla €Z :a >~} and ¥ £ v — |v].
Distribution (6) coincides with (4) for any integer +; for general +, the marginal
() of (6) is not equal to 7, (#) but still concentrates itself on ©r7, as v — oo.

To solve the second problem, we propose to employ SMC methods. The sequence
of distributions is approximated by a collection of random samples termed particles
which evolve over time using sampling and resampling mechanisms. The population
of samples employed by our method makes it much less prone to trapping in local
maxima.

3. SMC SAMPLER ALGORITHMS

SMC methods have been used primarily to solve optimal filtering problems; see,
for example, (Doucet et al., 2001) for a review of the literature. They are used here
in a completely different framework, that proposed by (Del Moral et al., 2006).
This framework involves the construction of a sequence of artificial distributions
which admit the distributions of interest (in our case those of the form of (4)) as
particular marginals.

SMC samplers allow us to obtain, iteratively, collections of weighted samples
from a sequence of distributions (7 (2;));>1. These distributions may be defined
over essentially any random variables X; on some measurable spaces (E, £;). Such
sampling is facilitated by the construction of a sequence of auxiliary distributions

(7¢)¢>1 on spaces of increasing dimension, T4 (z1.) = m(xe) [[ Ls(xss1,2s), by
s=1

defining a sequence of Markov kernels {L,}s>1 which operate, in some sense back-
wards in time as, conditional upon a point zs11 in Fs41, Lg provides a probability
distribution over E. This sequence is formally arbitrary but critically influences
the estimator variance. In the present application we are concerned with distribu-
tions over the collections of random variables X; = (Gt, Zt,lthﬂ)' See (Del Moral
et al., 2006) for further details and guidance on the selection of these kernels. Stan-
dard SMC techniques can then be applied to the sequence of synthetic distributions,

{Tehi>1-
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We distinguish here two cases: that in which the likelihood p(y|6) is known
analytically and the general case in which it is not.

3.1. Marginal Likelihood Available. It is interesting to consider an analytically
convenient special case, which leads to algorithm 3.1. This algorithm is applicable
when we are able to sample from particular conditional distributions, and evaluate
the marginal likelihood pointwise.

We note that the details of this algorithm can be understood by viewing it as a
refinement of a particular case of the general algorithm proposed below. However,
we present it first as it is relatively simple to interpret and provides some insight into
the approach which we would ideally like to adopt. Intuitively, one can view this
algorithm as applying an importance weighting to correct for the distributional

mismatch between 7., , and m,, and updating Z ® then @ at each step by

t,1:
applying Gibbs sampler moves which are 7., invariant[.%]
Although the applicability of the general algorithm to a much greater class of
problems is potentially more interesting we remark that the introduction of a latent
variable structure can lead to kernels which mix much more rapidly than those used

in a direct approach (Robert and Casella, 2004, p. 351). Here and throughout, we

write z; = 21.7,,] and Zt(i) —zW to denote the collection of replicates of latent

t# 1: |—'Yt-|
variables associated with the i*" particle at time ¢.

Algorithm 3.1 SMC MML with Marginal Likelihoods

Initialisation: ¢ = 1:

Sample {9@} independently from some importance distribution, v(-).
i=1

, , (@) o my0) K ) _
Calculate importance weights W}~ o U >SwpY =1,
vivy

i=1
for t =2to T do
Calculate importance weights:
N
Wt(l) o Wt(i)lp(ngi)l)%—%—l’ Z Wt(l) = 1.
i=1

if Effective Sample Size (ESS, see (Liu and Chen, 1998)) < Threshold, then
Resample from {W,”, (" 1.

end if N

Sample {(Gt(i), Zt(i)> } ) such that:

28 ~ 7, (1052) and 01 ~ ., (120).

end for

When the marginal likelihood is known, it is unnecessary to introduce a sequence
of distributions ., (0, z;). It can be seen that, as v — oo, this algorithm resembles
a stochastic variant of EM and, indeed, it would be computationally more efficient
to switch from this algorithm to conventional EM updates after some number of
iterations (by employing this approach initially, one hopes to alleviate some of the
difficulties caused by the presence of local optima).

3.2. Marginal Likelihood Unavailable. Algorithm 3.2 introduces the general
framework which we propose. We then show that algorithm 3.1 is a special impor-
tant case within this framework. Finally we present a generic form of the algorithm
which can be applied to a broad class of problems, although it will often be less
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efficient to use this generic formulation than to construct a dedicated sampler for
a particular class of problems.

Algorithm 3.2 A general SMC algorithm for MML estimation.

Initialisation: ¢ = 1:

, Ny N
Sample { (951)7 Zp) } ~ independently from some importance distribution, v(-).

- (9(1’)72(1')) N .
71 \Y1 1 ,ZWl(z):l.

Calculate importance weights le‘) x 620
vl e i=1

fort =2to T do
if ESS < Threshold, then
Resample from {W,",, (6!”,, Zz% )}V,
end if N

Sample { ((‘)Ei), Zt(i)> } ‘

i=1

Set importance weights,
w0 20 n (0027 (00, 210))
wa > o, (09, 20K, ((95?1, Zt(i)l) 7 (9@’ Zt(”)) .

such that (at(“, Z,E“) ~ K, ((0§?1, Zt@1> )

end for

Algorithm 3.1 is a particular case of this algorithm where we move the particles
according to a m,,-invariant Markov kernel given by

Ki((0r—1,2e-1) , (01, 20)) = 7y, (26)01—1)70, (0| 20)
and
Li1((0e, 2t) , (Br—1, 26-1)) = T, (01| 2¢) 75, (20-1[02-1)
leading to the weight expression shown in the algorithm. As the importance weight
depends only upon 6;_1, resampling should be carried out before, rather than after
the sampling step.
In order to understand this choice of kernel, it is useful to consider an alternative

interpretation of the algorithm which targets the marginal distribution (3) directly,
employing Z; as an auxiliary variable in order to sample from the proposal kernel

Ki(01—1,0;) :/M(Zt|9t—1)7w(9t|2t)dzt

which is clearly m.,-invariant. In this case, using the time reversal kernel as its
auxiliary counterpart:
(0 1) Ki(0r—1,0;)
T (Qt) ’

leads to the weight expression shown in the algorithm. This is a well known ap-
proximation to the optimal auxiliary kernel (Del Moral et al., 2006).

To obtain an algorithm which may be applied to a wider range of scenarios, we
can select (KC;);>1 as a collection of Markov kernels with invariant distributions

corresponding to (m,,)¢>1. We then employ, in algorithm 3.2, proposal kernels of
the form:

Ly 1(0,0:—1) =

Ki—1((0i—1,2e-1), (01, 21)) if [ye-1] =[]
Kt—l((et—la Zt—lr)a ge_tlv Zt,1: [y 1] )) x otherwise
Kt((gtflaztfl)y (9t72t)) = "

0 (2er01100)  TT  a(ze4000)
j=[ve—1]+1
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where it is understood that ¢o(-|f) = 1, and select auxiliary kernels
Ty (Oe—1, Ze—1) K1 ((01—1, Z1—1) , (04, Zi 1.7, 17))
TF’thl((gtv Zt,]-?’V'Yt—l-l)))

As kernel selection is of critical importance to the performance of SMC algo-
rithms, a few comments on these choices are justified. The proposal kernel K; can
be interpreted as the composition of two components: the parameter value and
existing latent variable replicates are moved according to a Markov kernel, and any
new replicates of the latent variables are obtained from some proposal distribution
q. The auxiliary kernel, L;_; which we propose corresponds, to the composition
of the time reversal kernel associated with IC;_;, and the optimal auxiliary kernel
associated with the other component of the proposal.

In this case, as summarised in algorithm 3.3, we also assume that good impor-
tance distributions, ¢(-|f), for the conditional probability of the variables being
marginalised can be sampled from and evaluated. If the annealing schedule is to
include non-integer inverse temperatures, then we further assumed that we have ap-
propriate importance distributions for distributions proportional to p(z|0,y)*, a €
(0,1), which we denote g,(z|6). This is not the most general possible approach,
but is one which should work acceptably for a broad class of problems.

Li1((0¢, Z¢) , (01—1,Z1—1)) =

Algorithm 3.3 A generic SMC algorithm for MML estimation.

Initialisation: ¢ = 1:

, Ny N
Sample { (951)7 Zfl)) } independently from some importance distribution, v(-).
i=1

. . () _ (049,287
Calculate importance weights W; "/ Oz
fort=2to T do s
if ESS < Threshold, then
Resample from {W, ", (6!”,, z% )}V,
end if N
() (@) (4) i) (i)
Sample {(Ht 2y )}2:1 such that <9t ,Zt1 e ﬂ) ~ Ki_q (Gt 1524215 ),
and if [v;] > [7—1], then for j = [v—1] + 1 to [ve), Z\") ~ q(-|6,”) and, if
v A0, 20~ o).
Set importance weights, when [v;] = [v:-1],

i i f_
Wt( )/Wt(f)l o p(y, Zt,l"y[l)% et

otherwise, we have that (note that the final term vanishes when ’yf =0):

7 #
W p(y, Ze 1y, ,110) i py,zt,ﬂet) Py, Z1,1y7100)

< X
W ey Zop 100 2R a(Zeilf) | 4 (Zeaa 190

end for

3.3. General Comments. Superficially, these algorithms appear very close to
mutation-selection schemes employed in the genetic algorithms literature. However,
there are two major differences: First, such methods require the function being
maximized to be known pointwise, whereas the proposed algorithms do not. Second,
convergence results for the SMC methods follow straightforwardly from general
results on Feynman-Kac flows (Del Moral, 2004).

There are a number of possible estimators associated with these algorithms. In
those cases in which the marginal likelihood can be evaluated cheaply, the most
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obvious technique is monitoring the marginal posterior of every parameter combi-
nation which is sampled and using that set of parameters associated with the largest
value seen. The only obvious advantage of this method over other approaches might
be robustness in particularly complex models. We note that informal experiments
revealed very little difference in the performance of this approach and the more
generally applicable approach proposed below when both could be used. When the
marginal likelihood cannot readily be evaluated, we recommend that the estimate is
taken to be the first moment of the empirical distribution induced by the final par-
ticle ensemble; this may be justified by the asymptotic (in the inverse temperature)
normality of the target distribution (see, for example, (Robert and Casella, 2004,
p. 203)) (although there may be some difficulties in the case of non-identifiable
models for which more sophisticated techniques would be required).

Under weak regularity assumptions (Hwang, 1980), it is possible to demonstrate
that the sequence of distributions which we employ concentrates itself upon the set
Onrr. Under additional regularity assumptions, the estimates obtained from the
particle system converge to those which would be obtained by performing integrals
under the distributions themselves — and obey a central limit theorem. The variance
of this central limit theorem can be quantitatively bounded under strong regularity
assumptions. All of this follows by a rather straightforward generalisation of the
results in (Chopin, 2004; Del Moral, 2004); details are provided in (Johansen, 2006,
Section 4.2.2).

4. APPLICATIONS

We now show comparative results for a simple toy example and two more chal-
lenging models. We begin with a one dimensional example in section 4.1, followed
by a Gaussian mixture model in section 4.2 and a non-linear non-Gaussian state
space model which is widely used in financial modelling in section 4.3.

For the purpose of comparing algorithms on an equal footing, it is necessary
to employ some measure of computational complexity. We note that almost all of
the computational cost associated with all of the algorithms considered here comes
from either sampling the latent variables or determining their expectation. We
introduce the quantity x defined as the total number of complete replicates of the
latent variable vector which needs to be simulated (in the case of the SMC and
SAME algorithms) or estimated (as in the case of EM) in one complete run of an
algorithm. Note that in the case of SAME and the SMC algorithm, this figure
depends upon the annealing schedule in addition to the final temperature and the
number of particles in the SMC case.

In those examples in which the marginal likelihood can be evaluated analytically,
we present for each algorithm a collection of summary statistics obtained from fifty
runs. These describe the variation of the likelihood of the estimated parameter
values. We remark that, although it is common practice to employ multiple, dif-
ferently replicated initialisations of many algorithms, which would suggest that the
highest likelihood obtained by any run might be the important figure of merit other
factors must also be considered. In many of the more complex situations in which
we envisage this algorithm being useful, the likelihood cannot be evaluated and we
will not have the luxury of employing this approach. The mean, variance and range
of likelihood estimates in the simpler examples allow us to gauge the consistency
and robustness of the various algorithms which are employed.

The following notation is used to describe various probability distributions:
Di(a) the Dirichlet distribution with parameter vector o, N (11, 0?) describes a
normal of mean ;1 and variance 02, Ga (o, 3) a gamma distribution of shape a and
rate 3, and ZG («, ) the inverse gamma distribution associated with Ga («, 3).
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Toy Example: Log Marginal Likelihood
0 T T T T

log marginal likelihood

14 1 1 1 1
-30 -20 -10 0 10 20

6

FIGURE 1. The log marginal likelihood of the toy example of sec-
tion 4.1.

4.1. Toy Example. We consider first a toy example in one dimension for which
we borrow example 1 of (Gaetan and Yao, 2003). The model consists of a Stu-
dent t-distribution of unknown location parameter 6 with 0.05 degrees of freedom.
Four observations are available, y = (—20,1,2,3). The logarithm of the marginal
likelihood in this instance is given by:

4

logp(yl0) = —0.525 > log (0.05 + (y; — 0)°) ,
=1

which is not susceptible to analytic maximisation. However, the global maximum
is known to be located at 1.997, and local maxima exist at {—19.993,1.086,2.906}
as illustrated in figure 1. We can complete this model by considering the Student
t-distribution as a scale-mixture of Gaussians and associating a gamma-distributed
latent precision parameter Z; with each observation. The log likelihood is then:

[0.4751og 2; + 0.0252; + 0.52;(y; — 0)?] .
1

4
log p(y, 2|6) = —

K2

In the interest of simplicity, we make use of a linear temperature scale, vz = t,
which takes only integer values. We are able to evaluate the marginal likelihood
function pointwise, and can sample from the conditional distributions:

(7) (21410, y) = H H Ga (z”

i=1j=1

L 2
0.525,0.025 + (%20)) :

®) m(lz1e) =N (0], 5" ).
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N T Mean Std. Dev. Min Max
50 15 1.992 0.014 1.952 2.033
100 15 1.997 0.013 1.973 2.038
20 30 1.958 0.177 1.094 2.038
50 30 1.997 0.008 1.983 2.011
100 30 1.997 0.007 1.983 2.011
20 60 1.998 0.015 1.911 2.022
50 60 1.997 0.005 1.988 2.008
TABLE 1. Simulation results for the toy problem. Each line sum-
marises 50 simulations with N particles and final inverse temper-
ature 7'. Only one simulation failed to find the correct mode.

where the parameters,

—1 -1
t 4
0
(9) S = 13w = /5 1+Zzta ;
i=1 j=1
(10) 9) Zy Zi (/%@1 Eﬁeﬂ + yTZt> ;

may be obtained recursively. Consequently7 we can make use of algorithm 3.1 to
solve this problem. We use an instrumental uniform [—50, 50] prior distribution over
f. Some simulation results are given in table 1. The estimate is taken to be the
first moment of the empirical distribution induced by the final particle ensemble.

This simple example confirms that the algorithm proposed above is able to lo-
cate the global optimum, at least in the case of extremely simple distributions.
It also illustrates that it is reasonably robust to the selection of the number of
particles and intermediate distributions. Generally, increasing the total amount of
computation leads to very slightly more accurate localisation of the mode. Only a
single simulation failed to find the global optimum — one of those with NV = 20 and
T = 30.

4.2. A Finite Gaussian Mixture Model. To allow comparison with other tech-
niques, and to illustrate the strength of the method proposed here in avoiding local
maxima, we consider a finite Gaussian Mixture model. A set of observations {y; }_,
is assumed to consist of P i.i.d. samples from a distribution of the form:

(11) Y; ~ Zws Nsv )

S

where 0 < ws < 1; Y ws = 1 are the weights of each mixture component and
s=1

{ps,02}9_, is the set of their means and variances. As is usual with such mixtures,
it is convenient to introduce auxiliary allocation variables, Z; which allow us to
assign each observation to one of the mixture components, then we may write the
distribution in the form:

Y;l ({w7/’45aag}a Z7, = Zi) ~ N (/J’zma-i) 9 p(Zz = Zl) - wzr

It is both well known and somewhat obvious, that the maximum likelihood es-
timate of all parameters of this model is not well defined as the likelihood is not
bounded. However, the inclusion of prior distributions over the parameters has
a bounding effect and makes MAP estimation possible (Robert and Titterington,
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1998). We consequently show the results of all algorithms adapted for MAP esti-
mation by inclusion of diffuse proper priors (see, for example (Robert and Casella,
2004, p. 365)) , which are as follows:

w ~ Di(0)

Xi+3 6
2 07 v =
7 g( 2 ’2)
pilo? ~ N (i, 07 /N:)

with 4, A; and §; are hyperparameters, whose values are given below.

It is straightforward to adjust our algorithm 3.1 to deal with the MAP, rather
than ML case. For this application it is possible to sample from all of the necessary
distributions, and to evaluate the marginal posterior pointwise and so we employ
such an algorithm.

At iteration t of the algorithm, for each particle we sample the parameter es-
timates, conditioned upon the previous values of the latent variables according to
the conditional distributions:

w ~ Di (3(0 = 1) + 1+ n([)) +v*An([])
1ilo? ~ N (’Yt)\ioéi +7 ([ne))i + 7" A7 () o} >
o Yehi + 0 (e ]); + vt An ([vel); " vedi + 0 ([ve)); w*An ([vel); )
where we have defined the following quantities for convenience:

i P
n(i); = ZZHJ‘(Zz,p) An (i), =n(i); —n(i—1),

=1 p=1
i P
Y, =Y 1(Zip)y; AY(i); =7 (1); —7((E — 1)),
=1 p=1
7 P
?(Z)J :Zzﬂj(zl,p)y? A?(i)j :;(i)j_?(i_l)j7
=1 p=1

and the parameters for the inverse gamma distribution from which the variances
are sampled from are:

i + 1) +n([ve)); +v*An ([])
2
By = 5 (w8 + Na?) + 9 (L) + 0t AP (), —

% (A@ (g)z + Aiai)2 # (Ay(hﬂ)l + )\iai)Q

i+ An(g), TN+ An ([ve])s

A= L1

g=1

Then we sample all of the allocation variables from the appropriate distributions,
noting that this is equivalent to augmenting them with the new values and applying
an MCMC move to those persisting from earlier iteration.

As a final remark, we note that it would be possible to use the proposed frame-
work to infer the number of mixture components, as well as their parameters — by
employing Dirichlet process mixtures, for example.

4.2.1. Simulated Data. We present results first from data simulated according to
the model. 100 data were simulated from a distribution of the form of (11), with
parameters w = [0.2,0.3,0.5], u = [0,2, 3] and 0% = [1, i, %] The same simulated
data set was used for all runs, and the log posterior density of the generating
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N T X Mean Std. Dev. Min Max
25 25 1325 -154.39 0.55 -155.76  -153.64
25 50 2125 -153.88 0.13 -154.18 -153.59
50 50 4250 -153.80 0.08 -153.93 -153.64
100 50 8500 -153.74 0.07 -153.91 -153.59
250 50 21250 -153.70 0.07 -153.90 -153.54
1000 50 85000 -153.64 0.04 -153.71 -153.57
100 100 20300 -153.73 0.08 -153.92 -153.61

TABLE 2. Summary of the final log posterior estimated by 50 runs
of the SMC Algorithm on simulated data from a finite Gaussian
mixture with varying numbers of particles, N, and intermediate
distributions, 7.

Algorithm Init. T X Mean Std. Dev. Min Max
EM Prior 500 500  -169.79 8.50 -181.16 -160.70
EM Hull 500 500  -158.06 3.23 -166.39 -153.85
EM Prior 5000 5000 -168.24 8.41 -181.02 -153.83
EM Hull 5000 5000 -157.73 3.83 -165.81 -153.83

SAME(6) Prior 4250 8755 -155.45 0.82 -157.56 -154.06
SAME(6) Hull 4250 8755 -155.32 0.87 -157.35 -154.03
SAME(50) Prior 4250 112522 -154.91 0.81 -156.22 -153.94
SAME(50) Hull 4250 112522 -155.05 0.82 -156.11 -153.98

TABLE 3. Performance of the EM and SAME Algorithm on sim-
ulated data from a finite Gaussian mixture. Summary of the log
posterior of the final estimates of 50 runs of each algorithm.

parameters was -155.87. Results for the SMC algorithm are shown in table 2 and
for the other algorithms in table 3 — two different initialisation strategies were
used for these algorithms, that described as “Prior” in which a parameter set was
sampled from the prior distributions, and “Hull” in which the variances were set
to unity, the mixture weights to one third and the means were sampled uniformly
from the convex hull of the observations.

Two annealing schedules were used for the SAME algorithm: one involved keep-
ing the number of replicates of the augmentation data fixed to one for the first
half of the iterations and then increasing linearly to a final maximum value of 6;
the other keeping it fixed to one for the first 250 iterations, and then increasing
linearly to 50. The annealing schedule for the SMC algorithm was of the form
v = Aeb® for suitable constants to make v; = 0.01 and 47 = 6. This is motivated
by the intuition that when ~ is small, the effect of increasing it by some amount
A~ is to change its form somewhat more than would be the case for a substantially
larger value of y. No substantial changes were found for values of v greater than
6, presumably due to the sharply peaked nature of the distribution. Varying the
forms of the annealing schedules did not appear to substantially affect the results.
Hyperparameter values were shared across all simulations, with 6 = 1, \; = 0.1,
G; = 0.1 and o;; = 0.

Several points are noticeable from these results:

e The SMC algorithm produce estimates whose posterior density uniformly
exceeded that of the generating parameters (and the SAME algorithm fre-
quently produced such estimates). Whilst this provides no guarantee that
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N T X Mean Std. Dev. Min Max
25 25 1325 -44.21 0.13 -44.60 -43.96
50 25 2650 -44.18 0.10 -44.48 -43.95
25 50 2125 -44.14 0.10 -44.32  -43.92
50 50 4250 -44.07 0.07 -44.22  -43.96
100 50 8500 -44.05 0.06 -44.18 -43.94
250 50 21250 -44.00 0.05 -44.10 -43.91
1000 50 85000 -43.96 0.03 -44.02  -43.92
100 100 20300 -44.03 0.05 -44.15 -43.94

TABLE 4. Summary of the final log posterior estimated by 50 runs
of the SMC Algorithm on the galaxy dataset of (Roeder, 1990)
from a finite Gaussian mixture with varying numbers of particles,
N, and intermediate distributions, T

the global optimum has been located it does provide some encouragement
that the parameter estimates being obtained are sensible.

e For a given computational cost, the SMC algorithm outperformed SAME
in the sense that both the mean and maximum posterior is substantially
increased.

e Whilst, as is well documented, the EM algorithm can perform well if
favourably initialised, neither of the initialisation strategies which we em-
ployed led to a large number of good performances. Furthermore, it can be
seen that taking the best result from 50 runs of the EM algorithm lead to
poorer performance than a single run of the SMC algorithm with a lower
cost:

— 50 runs of the EM algorithm with 500 iterations has cost slightly higher
than a single run of the SMC algorithm with N = 250, 7 = 50 and the
best result produced is significantly inferior to the poorest run seen in
the SMC case;

— 50 runs of the EM algorithm with 5000 iterations has a cost more than
10 times that of the SMC algorithm with N = 250,7 = 50 and the
best result produced is comparable to the worst result obtained in the
SMC case.

This provides us with a degree of confidence in the algorithms considered and
their ability to perform well at the level of computational cost employed here, and
the next step is to consider the performance of the various algorithms on a real
data set.

4.2.2. Galazxy Data. We also applied these algorithms, with the same hyperparam-
eters to the galaxy data of (Roeder, 1990). This data set consists of the velocities
of 82 galaxies, and it has been suggested that it consists of a mixture of between 3
and 7 distinct components — for example, see (Roeder and Wasserman, 1997) and
(Escobar and West, 1995). For our purposes we have estimated the parameters of a
3 component Gaussian mixture model from which we assume the data was drawn.
Results for the SMC algorithm are shown in table 4 and for the other algorithms
in table 5.

We are able to draw broadly the same conclusions from these results as we were
from those obtained with simulated data: the SMC algorithm performs more con-
sistently than the alternatives and provides better estimates at given computational
cost. It may be possible to fine tune all of the algorithms consider to improve their
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Algorithm Init. T X Mean Std. Dev. Min Max
EM Hull 500 500  -46.54 2.92 -54.12  -44.32
EM Hull 5000 5000 -46.91 3.00 -56.68 -44.34

SAME(6) Hull 4250 8755  -45.18 0.54 -46.61 -44.17
SAME(50) Hull 4250 112522 -44.93 0.21 -45.52  -44.47

TABLE 5. Performance of the EM and SAME Algorithm on the
galaxy data of (Roeder, 1990) from a finite Gaussian mixture.
Summary of the log posterior of the final estimates of 50 runs
of each algorithm.

performance (including the SMC algorithm) but these results illustrate that a rea-
sonably straightforward implementation of the SMC algorithm is able to locate at
least as good a solution as any of the other algorithms considered here, and that it
can do so consistently.

4.3. Stochastic Volatility. In order to provide an illustration of the application
of the proposed algorithm to a realistic optimisation problem in which the marginal
likelihood is not available, we take this more complex example from (Jacquier et al.,
2007). We consider the following model:

Zi =a+ 5Zi,1 + oy U; Zl ~ N ([1,0,0'(2))

Z;
Y; = exp <2> €;

where u; and €; are uncorrelated standard normal random variables, and 6§ =
(a,0,0,). The marginal likelihood of interest, p(f|y), where y = (y1,...,¥s500)
is a vector of 500 observations, is available only as a high dimensional integral over
the latent variables, Z and this integral cannot be computed.

In this case we are unable to use algorithm 3.1, and employ a variant of algorithm
3.3. The serial nature of the observation sequence suggests introducing blocks of the
latent variable at each time, rather than replicating the entire set at each iteration.
This is motivated by the same considerations as the previously discussed sequence
of distributions, but makes use of the structure of this particular model. Thus,
at time ¢, given a set of M observations, we have a sample of | M~;] volatilities,
| 7| complete sets and | M (v — |v:])] which comprise a partial estimate of another
replicate. That is, we use target distributions of this form:

[vel

pe(a, 6,0, 2) op (o, 8, 0) H p(y, 21| a,6,0)| p (yl:M(%—L%J)a Zi:iM(%—L’nJ)’ a,d, 0) ’
i=1

where zitht*mJ) denotes the first [ M (y; — [v¢])] volatilities of the i*® replicate
at iteration ¢.

Making use of diffuse conjugate prior distributions (uniform over the (—1, 1) sta-
bility domain for ¢, standard normal for o and square-root inverse gamma with pa-
rameters « = 1, § = 0.1 for o) for 0 ensures that the prior distributions are rapidly
“forgotten”, leading to a maximum likelihood estimate. Our sampling strategy at
each time is to sample (o, §) from their joint conditional distribution, then to sam-
ple o from its conditional distribution. These distributions are multivariate normal
and inverse gamma, respectively. Their parameters are given by (Jacquier et al.,
2007). New volatilities were then sampled using a Kalman smoother obtained by a
local linearisation of the model as the proposal distribution — an approach described
in some detail in (Doucet et al., 2006).
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N T 7 e} ) o
1,000 250 4 —0.45+0.19 0.939£0.026 0.36 £0.09
1,000 500 4 —0.594+0.27 0.919+0.037 0.43+0.11
1,000 1,000 4 —0.21+0.02 0.973+£0.003 0.25+0.02
5,000 250 4 —0.33£0.06 0.9544+0.008 0.31=£0.04
TABLE 6. SMC sampler results (mean + standard deviation) for
simulated stochastic volatility data with generating parameters of
6 =0.95, a = —0.363 and o = 0.26.

4.3.1. Simulated Data. We consider a sequence of 500 observations generated from

a stochastic volatility model with parameter values of § = 0.95, a = —0.363 and
o = 0.26 (suggested by (Jacquier et al., 2007) as being consistent with empirical
estimates for financial equity return time series). The parameters pg = —7,00 = 1

were assumed known. Results are shown in table 6.

Note that a greater number of particles and intermediate distributions are re-
quired in this case than were needed in the previous examples for a number of
reasons. Unavailability of the likelihood makes the problem a little more difficult,
but the principle complication is that it is now necessary to integrate out 500 con-
tinuous valued latent variables.

The intention of this example is to show how the algorithm can be applied in
more complex settings. The results shown here do not provide rigorous evidence
that the algorithm is performing well, but heuristically that does appear to be the
case. Estimated parameter values are close to their true values' and the degree
of dispersion is comparable to that observed by (Jacquier et al., 2007) at small
values of v using data simulated with the same parameters. It can be seen that the
results obtained are reasonably robust to variation in the number of particles and
intermediate distributions which are utilised.
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