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A NEW METHOD FOR FAST COMPUTING UNBIASED

ESTIMATORS OF CUMULANTS

E. DI NARDO, G. GUARINO, AND D. SENATO

Abstract. We propose new algorithms for generating k-statistics, multivari-
ate k-statistics, polykays and multivariate polykays. The resulting computa-
tional times are very fast compared with procedures existing in the literature.
Such speeding up is obtained by means of a symbolic method arising from the
classical umbral calculus. The classical umbral calculus is a light syntax that
involves only elementary rules to managing sequences of numbers or polyno-
mials. The cornerstone of the procedures here introduced is the connection
between cumulants of a random variable and a suitable compound Poisson
random variable. Such a connection holds also for multivariate random vari-
ables.

1. Introduction

In the last decades, symbolic methods have been successfully used in differ-
ent mathematical areas (Grossman, 1989; Wang and Zheng, 2005). Symbolic tech-
niques have been recently used in problems arising from computational statistics
(see Andrews and Stafford (2000), Zeilberger (2004)). The papers (Di Nardo and Senato,
2006b) and (Di Nardo et al., 2008b) lie within this field. In these papers, the the-
ory of k-statistics and polykays was completely rewritten, carrying out a unifying
framework for these estimators, both in the univariate and multivariate cases.

This subject goes back to Fisher (1929) and up to today it was treated by
means of different languages. Main references are Stuart and Ord (1987), Speed
(1983, 1986), McCullagh (1987). A more accurate list of references can be found in
Di Nardo et al. (2008b).

The umbral techniques, investigated in Di Nardo et al. (2008b), have allowed us
to implement a single algorithm for k-statistics, multivariate k-statistics, polykays
and multivariate polykays (Di Nardo et al., 2008a). Nevertheless, the elegance of a
unifying outlook pays a price in computational costs that become comparable with
those of MathStatica (Rose and Smith, 2002) for polykays and not competitive for
univariate and multivariate k-statistics.

By developing the ideas introduced in Di Nardo et al. (2008b) for k-statistics, in
this paper we introduce radically innovative procedures for generating all these es-
timators, by realizing a substantial improvement of computational times compared
with those in the literature.

A frequently asked question is: why are these calculations relevant? Usually
higher order objects require enormous amounts of data to estimate with any accu-
racy. Nevertheless, there are different areas, such as astronomy, astrophysics and
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biophysics, which need to compute high order k-statistics in order to recognizing a
gaussian population (Ferreira et al., 1997). Undoubtedly, an enjoyable challenge is
to have efficient procedures to deal with the involved huge amount of algebraic and
symbolic computations.

The algorithms proposed here are based on the umbral language introduced by
Rota and Taylor (1994). Applications of the classical umbral calculus are given
in Zeilberger (2000) ÷ (2002), where generating functions are computed for many
difficult problems dealing with counting combinatorial objects. Applications to
bilinear generating functions for polynomial sequences are given in Gessel (2003).

Di Nardo and Senato (2001) have developed the classical umbral calculus (1994),
with special care to probabilistic aspects. The basic device is the representation of
a unital sequence of numbers or polynomials by a symbol α, called an umbra. The
umbra α is related to these unital sequences via an operator E that resembles the
expectation operator of random variables (r.v.’s). This symbolic method provides a
light syntax for handling cumulants and factorial moments (Di Nardo and Senato,
2006a), k-statistics then come in hand since these are the unique symmetric unbi-
ased estimators of cumulants (Di Nardo and Senato, 2006b). These estimators are
expressed in terms of power sums in the variables of the random sample.

After recalling basic notions of the umbral language, in Section 3 we show that
any cumulant can be evaluated via cumulants of a suitable umbra. In probabilistic
terms, cumulants of a r.v. can be obtained via cumulants of a suitable compound
Poisson r.v. This link allows us the significant speed up of the algorithms for
k-statistics and polykays. For multivariate cumulants, the basic tool is given by
umbrae indexed by multisets. In Section 4, we recall this symbolic device, in-
troduced and largely used in Di Nardo et al. (2008b). In Section 5, we show the
connection between multivariate cumulants of an umbra and a suitable multivariate
compound Poisson r.v. We then summarize the algorithms for generating multi-
variate k-statistics and polykays. Finally, we compare the computational times of
the algorithms proposed here with those of MathStatica (Rose and Smith, 2002)
and those of Andrews and Stafford (2000). Note that MathStatica does not have
a procedure for multivariate polykays. All programs have been executed on a PC
Pentium(R)4 Intel(R), CPU 2.08 Ghz, 512MB Ram with Maple version 10.0 and
Mathematica version 4.2. We choose the Maple language due to its acknowledged
plainness in translating symbolic computations.

2. Background to umbral calculus

This section is aimed to recalling notation and terminology useful to handle um-
brae. More details and technicalities can be found in Di Nardo and Senato (2001,
2006a).

Formally, an umbral calculus is a syntax consisting of the following data:

i) a set A = {α, β, . . .}, called the alphabet, whose elements are named umbrae;
ii) a commutative integral domain R whose quotient field is of characteristic

zero1;
iii) a linear functional E, called the evaluation, defined on the polynomial ring

R[A] and taking values in R such that
a) E[1] = 1;

1For statistical applications, R is the field of real numbers.
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b) E[αiβj · · · γk] = E[αi]E[βj ] · · ·E[γk] for any set of distinct umbrae in
A and for i, j, . . . , k nonnegative integers (uncorrelation property);

iv) an element ε ∈ A, called the augmentation, such that E[εn] = 0 for every
n ≥ 1;

v) an element u ∈ A, called the unity umbra, such that E[un] = 1, for every
n ≥ 1.

An umbral polynomial is a polynomial p ∈ R[A]. The support of p is the set of
all umbrae occurring in p. If p and q are two umbral polynomials, p and q are
uncorrelated if and only if their supports are disjoint. The umbral polynomials p
and q are umbrally equivalent if and only if

E[p] = E[q], in symbols p ≃ q.

The moments of an umbra α are the elements an ∈ R such that

E[αn] = an, ∀n ≥ 0

and we say that the umbra α represents the sequence of moments 1, a1, a2, . . . .
It is possible that two distinct umbrae represent the same sequence of moments,

in this case they are called similar umbrae. More formally, two umbrae α and γ are
said to be similar when

E[αn] = E[γn] ∀n ≥ 0, in symbols α ≡ γ.

In addition, given a sequence 1, a1, a2, . . . in R there are infinitely many distinct
and thus similar umbrae representing the sequence.

The factorial moments of an umbra α are the elements a(n) ∈ R corresponding
to umbral polynomials (α)n = α(α − 1) · · · (α − n + 1), for each n ≥ 1 via the
evaluation E, that is E[(α)n] = a(n).

Two more special umbrae have been defined in the alphabet A: the singleton
umbra χ and the Bell umbra β.

The singleton umbra χ is the umbra whose moments are all zero, except the first
E[χ] = 1. As shown in Di Nardo and Senato (2006a), its factorial moments are

(2.1) E[(χ)n] = x(n) = (−1)n−1(n− 1)!, ∀n ≥ 1.

The Bell umbra β is the umbra whose factorial moments are all equal to 1,

(2.2) E[(β)n] = b(n) = 1, ∀n ≥ 1.

Its moments are the Bell numbers. The umbra β is therefore the umbral counterpart
of a Poisson r.v. with parameter 1 (Di Nardo and Senato, 2001).

Thanks to the notion of similar umbrae, it is possible to extend the alphabet
A with the so-called auxiliary umbrae, obtained via operations among similar um-
brae. As a consequence, a saturated umbral calculus can be constructed where
auxiliary umbrae are treated as elements of the alphabet (Rota and Taylor, 1994).
Let {α1, α2, . . . , αn} be a set of n uncorrelated umbrae, similar to an umbra α. The
symbol n.α denotes an auxiliary umbra similar to the sum α1 + α2 + · · ·+ αn and
called the dot product between the integer n and the umbra α. Powers of n.α are
umbrally equivalent to the following umbral polynomials (Di Nardo et al., 2008b):

(2.3) (n.α)i ≃
∑

λ⊢i

(n)νλdλαλ,
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where the sum is over all partitions 2 λ = (1r1 , 2r2, . . .) of the integer i, (n)νλ = 0
for νλ > n and

(2.4) dλ =
i!

r1!r2! · · ·

1

(1!)r1(2!)r2 · · ·
and αλ ≡ (αj1)

.r1(α2
j2
).r2 · · · ,

with {ji} distinct integers chosen in {1, 2, . . . , n}. By evaluating equivalence (2.3)
via the linear functional E, we have

(2.5) E[(n.α)i] =
∑

λ⊢i

(n)νλdλaλ,

where aλ = ar11 ar22 · · · . Note that if λ = (1r1 , 2r2 , . . .) is a partition of the integer
r, η = (1s1 , 2s2 , . . .) is a partition of the integer s and λ+ η = (1r1+s1 , 2r2+s2 , . . .),
then

aλ+η = aλaη and αλ+η ≃ αλαη.

Properties of the auxiliary umbra n.α have been extensively described in Di Nardo and Senato
(2001) and these will be recalled whenever it is necessary. It is interesting to remark
that α.n ≡ nα, as proved in Di Nardo and Senato (2006a), in agreement with the
meaning of the dot product.

A feature of the classical umbral calculus is the construction of new auxiliary
umbrae by suitable symbolic replacements. For example, if we replace the integer
n in n.α by an umbra γ, equivalence (2.3) gives

(2.6) (γ.α)i ≃
∑

λ⊢i

(γ)νλdλαλ.

Equivalence (2.6) has been formally proved by using the notion of generating func-
tion of an umbra, for further details see (Di Nardo and Senato, 2001). Note that,
contrary to what happens with n.α, in the dot product α.n the substitution of n
with an umbra γ does not inherit the symbolic expression of moments. As it is
straightforward to show via (2.6), the dot product is therefore not commutative.
This circumstance justifies also the falling off of the right distributive law in the
dot product, so that

(α+ δ).γ ≡ α.γ + δ.γ whereas γ.(α+ δ) 6≡ γ.α+ γ.δ,

for α, γ, δ ∈ A. Actually, by considering the parallelism with the r.v.’s theory, the
dot product γ.α corresponds to a random sum, and the right distributive law falls
off similarly to what it happens for random sums.

In the dot product γ.α, by replacing the umbra γ by the umbra γ.β, we obtain
the so-called composition umbra of α and γ, that is γ.β.α, whose powers are

(2.7) (γ.β.α)i ≃
∑

λ⊢i

γνλdλαλ.

The compositional inverse of an umbra α is the umbra α<−1> satisfying

α<−1>.β.α ≡ α.β.α<−1> ≡ χ.

2Recall that a partition of an integer i is a sequence λ = (λ1, λ2, . . . , λt), where λj are weakly

decreasing integers and
Pt

j=1 λj = i. The integers λj are named parts of λ. By the symbol νλ we

denote the length of λ, that is the number of its parts. A different notation is λ = (1r1 , 2r2 , . . .),
where rj is the number of parts of λ equal to j and r1+r2+ · · · = νλ. We use the classical notation

λ ⊢ i to denoting “λ is a partition of i”.
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In the following examples, some other fundamental auxiliary umbrae are character-
ized by means of equivalence (2.6). The properties we are going to recall are proved
in Di Nardo and Senato (2006a,b).

Example 2.1. The α-partition umbra. If β is the Bell umbra, the umbra β.α is
called the α-partition umbra. By taking into account (2.6) and (2.2), its powers
are

(2.8) (β.α)i ≃
∑

λ⊢i

dλαλ.

By equivalence (2.8), we have

(2.9) β.u<−1> ≡ χ, β.χ ≡ u,

where u<−1> denotes the compositional inverse of u. The umbra β.α corresponds
to a compound Poisson r.v. of parameter 1.

Example 2.2. The α-cumulant umbra. If χ is the singleton umbra, the umbra χ.α
is called the α-cumulant umbra. By virtue of equivalence (2.6), its powers are

(2.10) (χ.α)i ≃
∑

λ⊢i

x(νλ) dλ αλ,

where x(νλ) are the factorial moments (2.1) of the umbra χ. By taking into account
(2.10), the following equivalences follow

χ.β ≡ u, χ.χ ≡ u<−1>.

Equivalence (2.10) recalls the well-known expression of cumulants κ1, κ2, . . . in
terms of moments a1, a2, . . . of a r.v.

(2.11) κi =
∑

λ⊢i

(−1)νλ−1(νλ − 1)! dλ aλ.

The moments of the α-cumulant umbra χ.α are therefore called cumulants of the
umbra α.

Example 2.3. The α-factorial umbra. The umbra α.χ is called the α-factorial um-
bra and its moments are the factorial moments of α, since the following equivalence
holds

(α.χ)i ≃ (α)i.

The commutative integral domain R may be replaced by a polynomial ring in
any number of indeterminates, having coefficient in a field K of characteristic zero.
Suppose therefore to replace R with the polynomial ring K[y], where y is an inde-
terminate. The uncorrelation property iii) must be rewritten as

E[1] = 1; E[yjαkβl · · · ] = yjE[αk]E[βl] · · ·

for any set of distinct umbrae in A, and nonnegative integers j, k, l, . . . . In K[y][A]
an umbra is said to be a scalar umbra when its moments are elements of K, while it
is said to be a polynomial umbra if its moments are polynomials of K[y]. A sequence
of polynomials p0, p1, . . . ∈ K[y] is umbrally represented by a polynomial umbra
if and only if p0 = 1 and pn is of degree n for every nonnegative integer n. If we
replace the integer n by the indeterminate y in (2.5), then

(2.12) E[(y.α)i] =
∑

λ⊢i

(y)νλdλaλ,
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where (y)νλ denotes the lower factorial polynomials in K[y].
Some other auxiliary umbrae will be used in the following. The symbol α.n is

an auxiliary umbra denoting the product α1 α2 · · · αn, where {α1, α2, . . . , αn} are
similar but uncorrelated umbrae. Moments of α.n can be easily recovered from its
definition. Indeed, if the umbra α represents the sequence 1, a1, a2, . . . , then

E[(α.n)k] = ank ,

for nonnegative integers k and n. The umbra γ is said to be multiplicative inverse
of the umbra α if and only if αγ ≡ u. Recall that, in dealing with a saturated
umbral calculus, the multiplicative inverse of an umbra is not unique, but any
two multiplicative inverses of the same umbra are similar. From the definition, it
follows:

angn = 1 ∀n = 0, 1, 2, . . . that is gn =
1

an
,

where an and gn are moments of α and γ respectively. The multiplicative inverse
of an umbra α should be denoted by α.(−1), but in order to simplify the notation
and in agreement with our intuition, in the following we will use the symbol 1/α.

3. k-statistics via compound Poisson r.v.’s

In this section we resume previous results of the authors (Di Nardo et al., 2008b),
useful to simplify the subsequent reading.

The i-th k-statistic ki is the unique symmetric unbiased estimator of the cumu-
lant κi of a given statistical distribution (Stuart and Ord, 1987), that is E[ki] = κi.
By virtue of (2.11), in umbral terms we shall write

ki ≃ (χ.α)i.

In Di Nardo et al. (2008b), k-statistics have been related to cumulants of compound
Poisson r.v.’s by the following theorem.

Theorem 3.1. If ci(y) = E[(n.χ.y.β.α)i], i = 1, 2, . . . then

(3.1) (χ.α)i ≃ ci

(
χ.χ

n.χ

)

.

The statement of Theorem 3.1 requires some more remarks. As stated in Di Nardo and Senato
(2006a), the umbra

(χ.y.β).α ≡ χ.(y.β.α)

is the cumulant umbra of a polynomial α-partition umbra, the latter corresponding
to a compound Poisson r.v. of parameter y. The polynomial umbra

n.(χ.y.β).α ≡ n.χ.(y.β.α),

is therefore the sum of n uncorrelated cumulant umbrae of a polynomial α-partition
umbra. Thus, Theorem 3.1 states that cumulants of α can be recovered from the
moments of n.(χ.y.β).α, by a suitable replacement of the indeterminate y.

Usually k-statistics are expressed in terms of the r-th powers of the data points
Sr =

∑n

i=1 X
r
i . In order to recover this expression for k-statistics in umbral terms,

it is sufficient to express the polynomials ci(y) in terms of power sums n.αr ≡
αr
1+ · · ·+αr

n. To this aim, the starting point is to express the moments of a generic
umbra such as n.(γα), with γ ∈ A, in terms of r-th power sums n.αr.
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Theorem 3.2. If α, γ ∈ A, then

(3.2) [n.(γα)]i ≃
∑

λ⊢i

dλ(χ.γ)λ(n.α)
r1(n.α2)r2 · · ·

with λ = (1r1 , 2r2 , . . .).

Equivalence (3.2) is the way for expressing the polynomials ci(y), umbrally equiv-
alent to moments of n.χ.y.β.α, in terms of r-th power sums n.αr . Indeed, as

n.χ.y.β.α ≡ n.[(χ.y.β)α]

(see (31) in Di Nardo and Senato 2006a), we can use equivalence (3.2), with γ
replaced by (χ.y.β). This is the starting point to prove the following result, by
which the fast algorithm for k-statistics can be easily recovered.

Theorem 3.3. In K[y], let

(3.3) pn(y) =

n∑

k=1

(−1)k−1(k − 1)!S(n, k) yk,

where S(n, k) are the Stirling numbers of second type. For every α ∈ A we have

(3.4) (χ.α)i ≃
∑

λ⊢i

dλpλ

(
χ.χ

n.χ

)

(n.α)r1(n.α2)r2 · · ·

with λ = (1r1 , 2r2 , . . .) and pλ(y) = [p1(y)]
r1 [p2(y)]

r2 · · · .

For the proofs of Theorems 3.2 and 3.3 see (Di Nardo et al., 2008b).

3.1. Polykays via compound Poisson r.v.’s. The symmetric statistic kr,..., t
satisfying

E[kr,..., t] = κr · · ·κt,

where κr, . . . , κt are cumulants, generalizes k-statistics and these were originally
called generalized k-statistics by Dressel (1940). Later they were called polykays by
Tukey (1950).

As a product of uncorrelated cumulants, the umbral expression for a polykay is
simply

(3.5) kr,..., t ≃ (χ.α)r · · · (χ′.α′)t,

with χ, . . . , χ′ being uncorrelated singleton umbrae, and α, . . . , α′ uncorrelated um-
brae satisfying α ≡ · · · ≡ α′.

Also polykays are usually expressed in terms of power sums. In Di Nardo et al.
(2008b), starting from (3.5), we have given a compressed umbral formula in order to
express polykays in terms of power sums. Such a formula has been implemented in
Maple and the resulting computational times have been presented and discussed in
Di Nardo et al. (2008a). Despite the compressed expression for this umbral formula,
the computational cost of the resulting algorithm involves the Bell numbers and so
increases too rapidly with r+· · ·+t. A different umbral formula may be constructed
by generalizing the results of the previous section. Such a formula is not quite
expressible in a compressed form, but speeds up the algorithm for building polykays
(see the computational times in Table 1 in Section 6).

For plainness, in the following we just deal with two subindexes kr,t, the gener-
alization to more than two being straightforward.
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Let us consider a polynomial umbra whose moments are all equal to y, up to an
integer k, after which the moments are all zero. Let us therefore define the umbra
δy,k satisfying

δy,k ≃

{
(χ.y.β)i i = 0, 1, 2, . . . , k,

0 i > k.

Lemma 3.4. Let r, t be two nonnegative integers. If k = max{r, t}, then

(3.6) [n.(δy,k α)]
r+t ≃

∑

(λ⊢r,η⊢t)

yνλ+νη (n)νλ+νηdλ+ηαλ+η.

Proof. By equivalence (2.5), we have

[n.(δy,k α)]
r+t ≃

∑

ξ⊢(r+t)

(n)νξdξ(δy,k)ξαξ,

since δy,k and α are uncorrelated. The result follows by observing that (δy,k)ξ ≃ 0
for any ξ satisfying λ+ η < ξ, where λ ⊢ r, η ⊢ t and < represents the lexicography
order on integer partitions. �

Let pr,t(y) be the polynomial obtained by evaluating the right hand side of (3.6),
that is

pr,t(y) =
∑

(λ⊢r,η⊢t)

yνλ+νη (n)νλ+νηdλ+ηaλ+η.

The proof of the following theorem is straightforward and allows us to express
products of uncorrelated cumulants by using the polynomials pr,t(y).

Theorem 3.5. If qr,t is the umbral polynomial obtained via pr,t(y) by replacing
yνλ+νη by

(3.7)
(χ.χ)νλ(χ′.χ′)νη

(n.χ)νλ+νη

dλdη
dλ+η

,

then

(χ.α)r(χ′.α′)t ≃ qr,t.

These two last results are sufficient to express the polykay kr,t in terms of power
sums. The steps are summarized in the following:

i) we apply Theorem 3.2 to the polynomial umbra n.(δy,k α), with k = max{r, t},
in order to link the polynomials pr,t(y) to power sums, that is

(3.8) [n.(δy,k α)]
r+t ≃ pr,t(y) ≃

∑

ξ⊢(r+t)

dξ(χ.δy,k)ξ(n.α)
s1 (n.α2)s2 · · · ;

ii) we evaluate the cumulants of the umbra δy,k by means of (2.10), by recalling
that moments corresponding to powers greater than k are zero;

iii) we replace occurrences of yνλ+νη in (3.8) by (3.7), thanks to Theorem 3.5.

The steps i) – iii) are the building blocks of the fast algorithm for generating
polykays.
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4. The multivariate case: umbrae indexed by multisets

In order to consider multivariate k-statistics and polykays, we need of the no-
tion of multivariate moments and multivariate cumulants of an umbral monomial.
The umbral tools necessary to deal with multivariate moments are introduced in
Di Nardo et al. (2008b). Here we recall basic notation and equivalences in order to
generalize Theorems 3.2 and 3.5 to the multivariate case.

AmultisetM is a pair (M̄, f), where M̄ is a set, called the support of the multiset,
and f is a function from M̄ to nonnegative integers. For each µ ∈ M̄, f(µ) is the
multiplicity of µ. The length of the multiset (M̄, f), usually denoted by |M |, is the
sum of multiplicities of all elements of M̄, that is

|M | =
∑

µ∈M̄

f(µ).

When the support of M is a finite set, say M̄ = {µ1, µ2, . . . , µk}, we will write

M = {µ
(f(µ1))
1 , µ

(f(µ2))
2 , . . . , µ

(f(µk))
k } or M = {µ1, . . . , µ1

︸ ︷︷ ︸

f(µ1)

, . . . , µk, . . . , µk
︸ ︷︷ ︸

f(µk)

}.

For example the multiset

M = {α, . . . , α
︸ ︷︷ ︸

i

} = {α(i)}

has length i, support M̄ = {α} and f(α) = i. Recall that a multiset Mi = (M̄i, fi)
is a submultiset of M = (M̄, f) if M̄i ⊆ M̄ and fi(µ) ≤ f(µ), ∀µ ∈ M̄i.

Example 4.1. If M = {α, α, γ, δ, δ} then M1 = {α, α} is a submultiset with
support M̄1 = {α} and f1(α) = 2. Also M2 = {α, δ, δ} is a submultiset with
support M̄2 = {α, δ} and f2(α) = 1, f2(δ) = 2.

In the following we set
(4.1)

µM =
∏

µ∈M̄

µf(µ), (n.µ)M =
∏

µ∈M̄

(n.µ)f(µ), [n.(χµ)]M =
∏

µ∈M̄

[n.(χµ)]f(µ).

For instance, if M = {α(i)} then αM = αi, (n.α)M = (n.α)i, [n.(χα)]M = [n.(χα)]i.
A subdivision of a multiset M is a multiset S = (S̄, g) of k ≤ |M | non empty

submultisets Mi = (M̄i, fi) of M satisfying

i) ∪k
i=1M̄i = M̄ ;

ii)
∑k

i=1 fi(µ) = f(µ) for any µ ∈ M̄.

Example 4.2. Multisets S1 = {{α, γ}, {α}, {δ, δ}} and S2 = {{α, γ, δ}, {α, δ}} are
subdivisions of M = {α, α, γ, δ, δ}.

By extending the notation (4.1), we set

(4.2) µS =
∏

Mi∈S̄

µ
g(Mi)
Mi

, (n.µ)S =
∏

Mi∈S̄

(n.µMi
)g(Mi),

(4.3) [n.(χµ)]S =
∏

Mi∈S̄

[n.(χµMi
)]g(Mi).
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Example 4.3. If M = {µ1, µ1, µ2}, then S1 = {{µ1}, {µ1, µ2}} is a subdivi-
sion of M. The support of S1 consists of two multisets, M1 = {µ1} and M2 =
{µ1, µ2}, each of one with multiplicity 1, therefore [n.(χµ)]S1

= n.(χµM1
)n.(χµM2

).
Since n.(χµM1

) = n.(χµ1) and n.(χµM2
) = n.(χµ1µ2), we have [n.(χµ)]S1

=
n.(χµ1)n.(χµ1µ2).

We may construct a subdivision of the multiset M by a suitable set partition.
Recall that a partition π of a set C is a collection π = {B1, B2, . . . , Bk} with k ≤ n
disjoint and non-empty subsets of C whose union is C. We denote by Πn the set
of all partitions of C. Suppose the elements of M to be all distinct, build a set
partition and then replace each element in any block by the original one. By this
way, any subdivision corresponds to a set partition π and we will write Sπ. Note
that |Sπ| = |π| and it could be Sπ1

= Sπ2
for π1 6= π2, as the following example

shows.

Example 4.4. If M = {α, α, γ, δ, δ} suppose to label each element of M in such a
way C = {α1, α2, γ1, δ1, δ2}. The subdivision S1 = {{α, γ}, {α}, {δ, δ}} corresponds
to the partition π1 = {{α1, γ1}, {α2}, {δ1, δ2}} of C. We have |S1| = |π1|. Note that
the subdivision S1 also corresponds to the partition π2 = {{α2, γ1}, {α1}, {δ1, δ2}}.

In the following, we denote by nπ the number of set partitions in Π|M| corre-
sponding to the same subdivision S of the multiset M.

If M = {α(i)}, then subdivisions are of type

(4.4) S = {{α}, . . . , {α}
︸ ︷︷ ︸

r1

, {α(2)}, . . . , {α(2)}
︸ ︷︷ ︸

r2

, . . .},

with r1 + 2 r2 + · · · = i. The support of S is S̄ = {{α}, {α(2)}, . . .}, so that (4.2)
and (4.3) give

(4.5) (n.α)S ≡ (n.α)r1(n.α2)r2 · · · [n.(χα)]S ≡ [n.(χα)]r1 [n.(χα2)]r2 · · · .

Before ending this summary, we recall one more notation. Suppose S is a subdi-

vision of the multiset M of type S = {M
(g(M1))
1 ,M

(g(M2))
2 , . . . ,M

(g(Mj))
j }. By the

symbol µ.S we denote

(4.6) µ.S ≡ (µM1
).g(M1) · · · (µ′

Mj
).g(Mj),

where µMt
are uncorrelated umbral monomials. Observe that also µ.S is a multi-

plicative function, that is if S1 and S2 are subdivisions of M then

µ.(S1+S2) ≡ µ.S1µ.S2 ,

where S1 + S2 denotes the disjoint union of S1 and S2. If M = {α(i)}, then

(4.7) αλ ≡ α.S

with λ = (1r1 , 2r2 , . . .). The notation (4.6) cames in handy in order to evaluate
umbral polynomials like (n.µ)M in terms of moments of the umbral monomials
running in M. Indeed, observe that a different way to write equivalence (2.3) follows
by using subdivisions Sπ of M = {α(i)}, that is

(4.8) (n.α)i ≃
∑

π∈Πi

(n.χ)|Sπ|α.Sπ .
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Replace the multiset M = {α(i)} by a generic multiset M, then it follows

(4.9) (n.µ)M ≃
∑

π∈Πi

(n.χ)|Sπ|µ.Sπ .

We end the section by adding one more remark. Let N be a submultiset of M. By
the symbol (µM )N we denote the monomial umbra µM∩N . This notation allows us
to generalize equivalence (4.9) to umbral polynomial (n.µM )N with N ⊂ M, that
is

(4.10) (n.µM )N ≃
∑

π∈Π|N|

(n.χ)|Sπ|(µM ).Sπ .

5. Multivariate k-statistics via compound Poisson r.v.’s

In Di Nardo et al. (2008b), multivariate moments and multivariate cumulants of

an umbral monomial are introduced. Let M = {µ
(f(µ1))
1 , µ

(f(µ2))
2 , . . . , µ

(f(µr))
r } be

a multiset of length i. A multivariate moment is the element of K[y] corresponding
to the umbral monomial µM via evaluation E, that is

E[µM ] = mt1... tr ,

where tj = f(µj) for j = 1, 2, · · · , r. The corresponding multivariate cumulant is
the element of K[y] satisfying

(5.1) E[(χ.µ)M ] = κt1...tr .

For example, if M = {α(i)} then (χ.µ)M ≃ (χ.α)i. As for k-statistics, the umbra
(χ.y.β.µ)M is the cornerstone for building efficiently multivariate k-statistics. Let
us observe that the evaluation of (χ.y.β.µ)M gives the umbral counterpart of joint
cumulants of a multivariate compound Poisson r.v. with parameter y. We need
therefore to characterize the evaluation of [n.(χ.y.β.µ)]M .

Proposition 5.1. Let M be a multiset of length i. The umbra [n.(χ.y.β.µ)]M is
umbrally equivalent to the umbral polynomial

(5.2) cM (y) =
∑

π∈Πi

(n.χ)|Sπ|y|Sπ|µ.Sπ ,

where Sπ are the subdivisions of the multiset M corresponding to the partitions π.

Proof. In equivalence (4.9), replace the generic umbral monomial µ by χ.y.β.µ. We
have

(5.3) [n.(χ.y.β.µ)]M ≃
∑

π∈Πi

(n.χ)|Sπ|[(χ.y.β)µ].Sπ ,

where the form on the right-hand side is worked out by means of the equivalence
χ.y.β.µ ≡ (χ.y.β)µ. The umbrae (χ.y.β) and µ are uncorrelated, so that

[(χ.y.β)µ].Sπ ≡ (χ.y.β).Sπµ.Sπ .

Let Sπ = {M
(g(M1))
1 ,M

(g(M2))
2 , . . . ,M

(g(Mj))
j }. Equivalence (5.2) follows from (5.3),

by observing that

(χ.y.β).Sπ ≃ y|Sπ|,

since the umbra χ.y.β has moments all equal to y, and
∑

g(Mi) = |Sπ|. �
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Theorem 5.2. If cM (y) are the umbral polynomials given in (5.2), then

(5.4) cM

(
χ.χ

n.χ

)

≃ (χ.µ)M .

Proof. The result follows directly from (5.2) by replacing y by χ.χ
n.χ

and by recalling

that

(5.5) (χ.µ)M ≃
∑

π∈Πi

(χ.χ)|Sπ| µ.Sπ ,

an equivalence which follows from (4.9) by replacing n by χ. �

Theorem 5.3. Let pπ(x) = [p1(x)]
r1 [p2(x)]

r2 · · · , with pn(x) given in (3.3) and π
a partition of Π|M| with r1 blocks of cardinality 1, r2 blocks of cardinality 2, and so
on, then

(5.6) (χ.µ)M ≃
∑

π∈Πi

pπ

(
χ.χ

n.χ

)

(n.µ)Sπ
.

Proof. First observe that [n.(χ.y.β.µ)]M ≡ [n.((χ.y.β)µ)]M , so that

cM (y) ≃ [n.((χ.y.β)µ)]M .

We need to express [n.((χ.y.β)µ)]M in terms of power sums. To this aim, note that,
by using (4.5) and (4.7), equivalence (3.2) can be rewritten as

(5.7) [n.(γα)]M ≃
∑

π∈Πi

(χ.γ).Sπ(n.α)Sπ
,

where Sπ is a subdivision of the multiset M = {α(i)}. Replace M by any multiset.
Equivalence (5.7) becomes

(5.8) [n.(γµ)]M ≃
∑

π∈Πi

(χ.γ).Sπ(n.µ)Sπ
.

In equivalence (5.8), suppose to replace γ by χ.y.β, then

(5.9) [n.((χ.y.β)µ)]M ≃
∑

π∈Πi

(χ.χ.y.β).Sπ(n.µ)Sπ
.

Let Sπ = {M
(g(M1))
1 ,M

(g(M2))
2 , . . . ,M

(g(Mj))
j }, then

(χ.χ.y.β).Sπ ≡ [(χ.χ.y.β)M1
].g(M1) · · · [(χ′.χ′.y.β′)Mj

].g(Mj).

Observe that

(χ.χ.y.β)Mi
=

∏

µ∈M̄i

(χ.χ.y.β)f(µ) = (χ.χ.y.β)|Mi|,

so that
E[(χ.χ.y.β).Sπ ] = [p|M1|(y)]

g(M1) · · · [p|Mj |
(y)]g(Mj) = pπ(y)

if Sπ is the subdivision corresponding to the partition π. By replacing y by (χ.χ)/(n.χ),
equivalence (5.6) is proved. �

Recall that the multivariate k-statistics are the unique symmetric unbiased es-
timators of joint cumulants. Since these estimators are umbrally equivalent to
(χ.µ)M , with a suitable choice of the multiset M, the expression for multivariate
k-statistics in terms of power sums is given by the right-hand side of equivalence
(5.6).
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5.1. Multivariate polykays via compound Poisson r.v.’s. The symmetric
statistic kt1...tr ;...; l1...lm satisfying

E[kt1...tr ;...; l1...lm ] = κt1...tr · · ·κl1...lm ,

where κt1...tr , . . . , κl1...lm are multivariate cumulants, generalizes polykays. As prod-
uct of uncorrelated multivariate cumulants, the umbral expression for a multivariate
polykay is simply

(5.10) kt1...tr ;...; l1...lm ≃ (χ.µ)T · · · (χ′.µ′)L,

with χ, . . . , χ′ being uncorrelated singleton umbrae and T, . . . , Lmultisets of umbral
monomials such that

T = {µ
(t1)
1 , . . . , µ(tr)

r }, . . . , L = {µ
(l1)
1 , . . . , µ(lm)

m }.

Also for multivariate polykays we have given a compressed umbral formula in terms
of multivariate power sums (Di Nardo et al., 2008b). Such a formula has been
implemented in Maple and the resulting computational times have been presented
and discussed in Di Nardo et al. (2008a). Here we generalize the procedure given
for univariate polykays, speeding up the algorithm.

For plainness, in the following we just deal with two multisets T and L, the
generalization being straightforward.

Let N be the disjoint union of all submultisets respectively of T and L and
suppose to denote by + the disjoint union of two multisets.

Example 5.1. Let T = {µ1, µ2} and L = {µ1}. The disjoint union of all submul-
tisets respectively of T and L is N = {{µ1, µ2}, {µ1}, {µ2}, {µ1}}. If T = {µ1, µ2}
and L = {µ3} then N = {{µ1, µ2}, {µ1}, {µ2}, {µ3}}.

As before, we need of a polynomial umbra, indexed by a suitable multiset, which
behaves as a filter on subdivisions of T +L, by deleting those which are not disjoint
unions of subdivisions respectively of T and L. Suppose therefore Mi = (M̄i, g), a
submultiset of T + L. Let us define the umbra δy,N satisfying

(5.11) (δy,N )Mi
≃

{
0 if Mi 6⊂ N,

(χ.y.β)Mi
≃ (χ.y.β)|Mi| ≃ y otherwise.

Let Sν be a subdivision of T + L, and Sπ and Sτ subdivisions respectively of T
and L, without taking into account the distinct labels. Via (5.11), the following
equivalence results

(5.12) (δy,N).Sν ≃

{
0 ifSν 6< Sπ + Sτ ,
(χ.y.β).Sν ≃ y|Sν | otherwise,

where < denotes the natural extension to subdivisions of the refinement relation
defined on the lattice of set partitions.

Lemma 5.4. If δy,N is the umbra defined in (5.11), then

(5.13) [n.(δy,N µ)]T+L ≃
∑

(π∈Π|T |,τ∈Π|L|)

(n.χ)|Sπ|+|Sτ |y|Sπ|+|Sτ | µ.(Sπ+Sτ ).

Proof. From (4.10), we have

(5.14) [n.(δy,N µ)]T+L ≃
∑

ν∈Π|T+L|

(n.χ)|Sν | δ.Sν

y,N µ.Sν ,
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since δy,N is uncorrelated with any element of T +L. Due to (5.12), in the sum on
the right hand side of (5.14), the addends which give a non-zero contribution are
only those corresponding to subdivisions which can be split in a subdivision of T
and a subdivision of L, that is

(5.15) [n.(δy,N µ)]T+L ≃
∑

(π∈Π|T |,τ∈Π|L|)

(n.χ)|Sπ|+|Sτ | δ.Sπ

y,N δ.Sτ

y,N µ.Sπ µ.Sτ .

Observing that δ.Sπ

y,N ≃ y|Sπ| and δ.Sτ

y,N ≃ y|Sτ |, the result follows immediately since

µ.Sπµ.Sτ ≃ µ.(Sπ+Sτ ), due to (5.12). �

By recalling that subdivisions corresponding to different partitions can be equal,
equivalence (5.13) may be rewritten as

(5.16) [n.(δy,N µ)]T+L ≃
∑

(Sπ,Sτ )

nπ+τ (n.χ)|Sπ|+|Sτ | y|Sπ|+|Sτ | µ.(Sπ+Sτ ),

where nπ+τ is the number of set partition pairs (π, τ) corresponding to subdivision
Sπ + Sτ . Assume

(5.17) pT,L(y) =
∑

(Sπ,Sτ)

nπ+τ (n.χ)
|Sπ|+|Sτ |y|Sπ|+|Sτ | µ.(Sπ+Sτ ).

Thanks to (5.16), the next theorem is proved by simple calculations and allows us to
express products of uncorrelated multivariate cumulants by using the polynomials
pT,L(y).

Theorem 5.5. Suppose nπ (respectively nτ ) the number of set partitions in Π|T |

(respectively Π|L|) corresponding to the subdivision Sπ (respectively Sτ ) and nπ+τ

the number of set partitions in Π|T+L| corresponding to the subdivision Sπ + Sτ . If

qT,L is the umbral polynomial obtained from pT,L(y) by replacing y|Sπ|+|Sτ | with

(5.18)
(χ.χ)|Sπ|(χ′.χ′)|Sτ |

(n.χ)|Sπ|+|Sτ |

nπnτ

nπ+τ

,

then
(χ.µ)T (χ′.µ′)L ≃ qT,L.

Proof. Due to (5.5), product of multivariate cumulants may be written as:

(χ.µ)T (χ′.µ′)L ≃
∑

(π∈Π|T |,τ∈Π|L|)

(χ.χ)|Sπ |(χ′.χ′)|Sτ | µ.(Sπ+Sτ ).

The previous equivalence can be rewritten as

(5.19) (χ.µ)T (χ
′.µ′)L ≃

∑

(Sπ,Sτ)

nπnτ (χ.χ)
|Sπ|(χ′.χ′)|Sτ |µ.(Sπ+Sτ ).

The result follows by comparing the right hand side of (5.19) with pT,L(y) in (5.17)

where y|Sπ|+|Sτ | has been replaced by (5.18). �

Via equivalence (5.8), the following equivalence holds

(5.20) [n.(δy,Nµ)]T+L ≃
∑

ν∈Π|T+L|

(χ.δy,N).Sν (n.µ)Sν
,

by which it is possible to express multivariate polykays in terms of power sums.
The algorithm is summarized in the following:
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i) by equivalence (5.20), we evaluate n.(δy,N µ) in terms of power sums in
order to link the polynomials pL,T (y) to power sums;

ii) we evaluate the cumulants of the umbra δy,N by means of

(χ.δy,N )M ≃
∑

π∈Πi

(χ.χ)|Sπ| δ.Sπ

y,N

which is an obvious generalization of equivalence (5.5);
iii) we replace occurrences of y|Sπ|+|Sτ | in (χ.δy,N)M by (5.18).

6. Computational comparisons

Tables 1 and 2 show comparisons of computational times among four different
software packages. The first one, which we call AS algorithms, has been implemented
in Mathematica and refers to procedures explained in (Andrews and Stafford, 2000),
see http://fisher.utstat.toronto.edu/david/SCSI/chap.3.nb. The second one refers
to the package MathStatica (Rose and Smith, 2002). Note that in this pack-
age, there are no procedures devoted to multivariate polykays. The third pack-
age, named Fast algorithms, has been implemented in Maple 10.x by using the
results of this paper. The last procedure, named Polyk, has been described in
(Di Nardo et al., 2008a). Let us remark that, for all the considered procedures, the
results are in the same output form and have been performed by the authors on
the same platform. To the best of our knowledge, there is no R implementation for
k-statistics and polykays.

Table 1. Comparison of computational times in sec. for k-
statistics and polykays. Missed computational times “means
greater than 20 houres”.

kt,..., l AS Algorithms MathStatica Fast-algorithms Polyk-algorithm

k5 0.06 0.01 0.01 0.08

k7 0.31 0.02 0.01 0.03

k9 1.44 0.04 0.01 0.16

k11 8.36 0.14 0.01 0.23

k14 396.39 0.64 0.02 1.33

k16 57982.40 2.03 0.08 4.25

k18 - 6.90 0.16 13.70

k20 - 25.15 0.33 42.26

k22 - 81.70 0.80 172.59

k24 - 359.40 1.62 647.56

k26 - 1581.05 2.51 3906.19

k28 - 6505.45 4.83 21314.65

k3,2 0.06 0.02 0.01 0.02

k4,4 0.67 0.06 0.02 0.06

k5,3 0.69 0.08 0.02 0.07

k7,5 34.23 0.79 0.11 0.70

k7,7 435.67 2.52 0.26 2.43

k9,9 - 27.41 2.26 23.32

k10,8 - 30.24 2.98 25.06

k4,4,4 34.17 0.64 0.08 0.77

http://fisher.utstat.toronto.edu/david/SCSI/chap.3.nb
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The Polyk algorithm, introduced in Di Nardo et al. (2008a), has the advantage
to give k-statistics, multivariate k-statistics, polykays and multivariate polykays,
depending on input parameters. That is one algorithm for the whole matter. The
computational times of Polyk are better than those of AS algorithms in all cases.
Polyk works better than MathStatica for polykays but is not competitive for k-
statistics. MathStatica has not a procedure for multivariate polykays.

Table 2. Comparison of computational times in sec. for multi-
variate k-statistics and multivariate polykays. For AS Algorithms
and Polyk-algorithm, missed computational times means “greater
than 20 houres”. For MathStatica, missed computational times
means “procedures not available”.

kt1... tr ; l1...lm AS Algorithms MathStatica Fast-algorithms Polyk-algorithm

k3 2 0.25 0.03 0.01 0.03
k4 4 28.36 0.16 0.02 0.34
k5 5 259.16 0.55 0.06 1.83
k6 5 959.67 1.01 0.16 4.61
k6 6 - 2.20 0.28 12.08
k7 6 - 4.01 0.53 33.22
k7 7 - 8.49 1.04 95.19
k8 6 - 7.37 1.09 91.80
k8 7 - 14.92 2.19 300.60
k3 3 3 1180.03 0.88 0.47 2.90
k4 3 3 - 2.00 0.40 9.26
k4 4 3 - 4.80 0.94 34.20
k4 4 4 - 13.53 2.30 155.03
k1 1; 1 1 0.05 - 0.01 0.01
k2 1; 1 1 0.20 - 0.01 0.03
k2 2; 1 1 1.22 - 0.03 0.05
k2 2; 2 1 6.30 - 0.08 0.09
k2 2; 2 2 33.75 - 0.14 0.30

k2 1; 2 1; 2 1 78.94 - 0.22 0.45
k2 2; 1 1; 1 1 30.01 - 0.14 0.20
k2 2; 2 1; 1 1 126.19 - 0.28 0.55
k2 2; 2 1; 2 1 398.42 - 0.55 1.66
k2 2; 2 2; 1 1 464.45 - 0.61 1.59
k2 2; 2 2; 2 1 1387.00 - 1.25 5.52
k2 2; 2 2; 2 2 3787.41 - 2.91 20.75

Finally, from Table 1 and 2, it is evident that there is a significant improve-
ment of computational times realized by the Fast-algorithms, compared to the
other three packages. The Fast-algorithms are available at the following web page
http://www.unibas.it/utenti/dinardo/fast.pdf.

In Table 3, we quote computational times for the k-statistics, the polykays
and the multivariate ones given in Tables 1 and 2, obtained with forthcoming
MathStatica release 2, by using Mathematica 6.0, on Mac OS X, with Mac Pro
2.8GHz (Colin Rose, private communication)

http://www.unibas.it/utenti/dinardo/fast.pdf
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Table 3. Computational times in sec., for the k-statistics, the
polykays and the multivariate ones given in Tables 1 and 2, ob-
tained with forthcoming MathStatica release 2.

kt,..., l MathStatica 2 kt1... tr; l1...lm MathStatica 2

k5 0.008 k3 2 0.012

k7 0.017 k4 4 0.009

k9 0.039 k5 5 0.345

k11 0.084 k6 5 0.592

k14 0.329 k6 6 1.230

k16 0.917 k7 6 2.107

k18 2.804 k7 7 4.215

k20 9.363 k8 6 3.595

k22 32.11 k8 7 7.359

k3,2 0.012 k3 3 3 0.529

k4,4 0.044 k4 3 3 2.552

k7,5 0.434 k4 4 4 6.926

k7,7 1.288 k1 1; 1 1 0.006

k9,9 11.89 k2 1; 1 1 0.014

k10,8 12.39 k2 2; 1 1 0.038

k4,4,4 0.359 k2 2; 2 1 0.085

k2 2; 2 2 0.020

k2 1; 2 1; 2 1 0.227

k2 2; 1 1; 1 1 0.154

k2 2; 2 1; 1 1 0.413

k2 2; 2 1; 2 1 0.928

k2 2; 2 2; 1 1 1.063

k2 2; 2 2; 2 1 2.622

k2 2; 2 2; 2 2 6.402
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