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Abstract

Nonparametric density estimation in the presence of measurement error is

considered. The usual kernel deconvolution estimator seeks to account for the

contamination in the data by employing a modified kernel. In this paper a new

approach based on a weighted kernel density estimator is proposed. Theoret-

ical motivation is provided by the existence of a weight vector that perfectly

counteracts the bias in density estimation without generating an excessive in-

crease in variance. In practice a data driven method of weight selection is

required. Our strategy is to minimize the discrepancy between a standard

kernel estimate from the contaminated data on the one hand, and the con-

volution of the weighted deconvolution estimate with the measurement error

density on the other hand. We consider a direct implementation of this ap-

proach, in which the weights are optimized subject to sum and non-negativity

constraints, and a regularized version in which the objective function includes

a ridge-type penalty. Numerical tests suggest that the weighted kernel es-

timation can lead to tangible improvements in performance over the usual

kernel deconvolution estimator. Furthermore, weighted kernel estimates are

free from the problem of negative estimation in the tails that can occur when

using modified kernels. The weighted kernel approach generalizes to the case of
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multivariate deconvolution density estimation in a very straightforward man-

ner.

Key words: Density estimation, Errors in variables, Integrated square error,

Measurement error, Weights.

1 Introduction

In this article we consider nonparametric estimation of the density of a random vari-

able when we observe only a random sample that has been contaminated by additive

measurement error. This problem is of interest in its own right, with applications in a

wide range of fields. Examples include inference for the distribution of fluorometric data

(e.g. Mendelsohn and Rice, 1982), density estimation from self reported food consumption

data (e.g. Stefanski and Carroll, 1990), inference for geological age distributions (e.g. Sir-

combe and Hazelton, 2004), and estimation of the distribution of gene expression data

(e.g. van de Wiel and Kim, 2007). Density estimation from contaminated data also has

direct connections with nonparametric regression calibration and associated problems.

See Carroll et al. (2006).

Our problem of interest may be stated in more detail as follows. We observe a univariate

random sample Y1, . . . , Yn from a density g, where

Yi = Xi + Zi (i = 1, . . . , n). (1)

Here X1, . . . , Xn are independent and identically distributed with unknown continuous

density f , and the measurement errors Z1, . . . , Zn form a random sample from the con-

tinuous density η which we assume to be known. Our goal is to obtain a nonparametric

estimate of f from the observed sample. According to our model, the densities f , g and

η are related by the convolution equation

g(y) = f ∗ η(x) =

∫
f(x)η(y − x) dx (2)

and so estimation of f is a deconvolution problem.

The most common approach to density deconvolution has been kernel based, as we now

describe. The standard kernel density estimator constructed from Y1, . . . , Yn is

ǧ(y) = ǧ(y;h) =
1

n

n∑
i=1

Kh(y − Yi) (3)
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where Kh(y) = K(y/h)/h, and K is a kernel function satisfying
∫
K(y) dy = 1, µ2 =

µ2(K) =
∫
K(y)y2 dy < ∞, K(y) ≥ 0 and K(y) = K(−y). The parameter h is called

the bandwidth, and controls the smoothness of the estimator. See Wand and Jones

(1995) or Simonoff (1996) for an overview. The estimator ǧ targets g rather than the

desired density f , but it can be adapted by modifying the kernel function. The required

deconvoluting estimator f̆ is related to ǧ and the error density η by ǧ = f̆ ∗ η, so that

ψf̆ = ψǧ/ψη where ψa denotes the characteristic function of a density a. If follows from

(3) that

f̆(x) =
1

n

n∑
i=1

KZ
h (x− Yi) (4)

where KZ
h (u) = h−1KZ(u/h;h) and

KZ(u;h) =
1

2π

∫
e−itu ψK(t)

ψη(t/h)
dt.

It is acknowledged that the estimator f̆ is due Stefanski and Carroll, although these

authors’ seminal paper (Stefanski and Carroll, 1990) appeared in the literature later than

some other articles referring to this methodology. Asymptotic results for f̆ have been

derived by Carroll and Hall (1988), Devroye (1989), Stefanski (1990), Fan (1991a, 1991b,

1992) and Van Es and Uh (2005). Finite sample performance has been investigated

through simulation studies (see Liu and Taylor, 1990, and Stefanski and Carroll, 1990,

for example) and through exact calculations of the mean integrated squared error (MISE)

performance criterion in some special cases Wand (1998).

The performance of f̆ is strongly influenced by the choice of bandwidth, h. A number

of authors have proposed data driven techniques for selecting this smoothing parameter

in the setting of density deconvolution. Stefanski and Carroll (1990) and Hesse (1999)

considered cross-validation procedures for choosing h. Delaigle and Gijbels (2004a) sug-

gested a bootstrap approach to the problem. Delaigle and Gijbels (2004b) developed a

plug-in bandwidth selector.

While kernel estimation has been the most popular approach to density deconvolution,

a number of alternatives have been considered. Mendelsohn and Rice (1982) and Koo

and Park (1996) discussed spline based procedures. Wavelet methods were investigated

by a number of researchers, including Walter (1999), Pensky and Vidakovic (1999) and

Pensky (2002). Eggermont and LaRiccia (1997) proposed a smoothed EM algorithm for

computing a type of maximum likelihood estimate of f . Efromovich (1997) developed

techniques based on inverse Fourier transforms, and more recently Hall and Qiu (2005)

examined a discrete Fourier series approach to density deconvolution.
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One of the attractions of a kernel approach to density deconvolution is the familiarity of the

resulting estimator. The estimator f̆ retains the simple structure of the standard kernel

density estimator for uncontaminated data. However, in comparison to this standard

estimator, f̆ has some shortcomings. First, f̆ may take negative values since KZ can do

so. Second, while the extension of the kernel deconvolution estimator to multivariate data

is straightforward in principle (see Masry 1991, 2003, for example), there can be significant

difficulties in practice. If the multivariate errors have a non-diagonal covariance matrix,

or if the multivariate kernel is not a product kernel, then the theoretical analysis of this

type of deconvolution estimator is very challenging and the practical computation is time

consuming. Furthermore, at present there are no good data driven techniques for choosing

the bandwidth matrix for this estimator.

In this article we propose a new adaptation of (3) for deconvolution density estimation.

Specifically, we consider weighted kernel estimators of the form

f̂w(x) = f̂w(x;h) =
1

n

n∑
i=1

wiKh(x− Yi), (5)

where w = (w1, . . . , wn)T is a vector of non-negative weights that may be constrained by

w̄ = 1
n

∑n
i=1wi = 1 so as to ensure that

∫
f̂w(x) dx = 1. The use of weights in kernel

density estimation is not new, but previously this idea has been used for bias reduction in

the context of uncontaminated data. See Jones et al. (1995) and Hall and Turlach (1999).

However, weighting can also be a highly effective approach to density deconvolution. One

immediate attraction of f̂w as opposed to f̆ is that the former will never take negative

values. As we show later, f̂w also has good finite sample performance and can be adapted

to deal with multivariate data in a simple manner.

In the next section we consider the choice of weight vector w in theory. We show that if

the optimal weighting scheme was known, then f̂w would have MISE of asymptotic order

n−4/5, the usual rate in density estimation for uncontaminated data. This observation

may be regarded as motivation for considering weighting as an approach to kernel density

deconvolution. In section 3 we examine data driven schemes for choosing w. Our basic

idea is to choose the weights so as to minimize the discrepancy between f̂w ∗ η and ǧ.

We employ a direct approach in which this discrepancy is minimized subject to sum and

non-negativity constraints on the weights, and a regularized version in which the objective

function is formed by addition at ridge-type penalty term. In section 4 the performance

of our deconvolution estimator is analyzed using simulated and real data sets. Results are

compared with those obtained using the classical estimator f̆ . The multivariate version

of our deconvolution estimator is covered in section 5. Concluding remarks are given in
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section 6.

2 Weighted Deconvolution Estimators in Theory

Consider the weight vector w0 = (w01, . . . , w0n)T defined by

w0i =
f(Yi)

g(Yi)
(i = 1, . . . , n). (6)

With this choice of weights we have

E[f̂w0(x)] = E

[
f(Y )Kh(x− Y )

g(Y )

]
=

∫
f(y)

g(y)
Kh(x− y)g(y) dy

= f ∗Kh(x).

This is precisely the same mean as for a standard kernel estimator constructed from uncon-

taminated data. Standard asymptotic expansions show that bias{f̂w0(x)} ≈ h2µ2f
′′(x)/2

as n →∞ and h→ 0, under suitable regularity conditions. Furthermore, the integrated

squared bias (ISB) may be approximated by h4µ2
2(K)R(f ′′) where R(a) =

∫
a(y)2 dy for

any squared integrable function a.

Turning to the variance,

var{f̂w0(x)} =
1

n

[∫
f 2(y)

g(y)
K2

h(x− y) dy − {f ∗Kh(x)}2

]
assuming that the support of f is a subset of the support of g (as is the case for all

common measurement error models). The integrated variance (IV) may be approximated

by

IV{f̂w0} ≈
1

nh
R(K)

∫
f(y)2

g(y)
dy.

The corresponding result for a standard kernel estimation built from an uncontaminated

random sample of size n is IV ≈ R(K)/(nh), the same asymptotic order as IV{f̂w0}.
However, as one might expect, the coefficient of 1/(nh) is larger for the deconvolution

estimator since
∫
f(y)2/g(y) dy > 1.

Summing ISB and IV, it follows that MISE{f̂w0} is of rate n−4/5 when h is chosen to be

of optimal order, h ∼ n−1/5. This is the rate usually associated with density estimation

for uncontaminated data. This rate will not be achievable in practice because w0 is a
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function of the unknown target density. Indeed, it is well known that the optimal rates

for nonparametric density deconvolution are very slow. For example, Carroll and Hall

(1988) showed that if f has two bounded derivatives then this rate can be no better than

(log n)−1 when the measurement error is normally distributed. Nonetheless, the existence

in theory of a set of weights with such desirable properties as w0 provides motivation for

a weighted kernel approach to nonparametric density deconvolution.

3 Implementation of the Weighted Kernel Estimator

In this section we look at issues regarding the practical implementation of f̂ŵ.

3.1 A Discrepancy Criterion

If the estimator f̂ŵ is good then one would expect f̂ŵ ∗ η ≈ g. While g is unknown, we

do have a natural estimator ǧ. This suggests that we might search for a vector of positive

weights solving the linear system

f̂ŵ ∗ η(y) = ǧ(y),

possibly subject to the constraint w̄ = 1. In general this equation will not have a single

solution that holds for all y in the support of g. One approach would be to seek a solution

that holds for some particular set of y values. However, our preferred approach is to

minimize a global measure of the discrepancy between f̂ŵ ∗ η and ǧ. Specifically, we look

for weights to minimize the criterion

Q = Q(w) =

∫
{f̂ŵ ∗ η(y)− ǧ(y)}2 dy. (7)

The case of normally distributed measurement error is by far the most important in

practice, and is also a case in which Q can be evaluated without recourse to numerical

integration techniques. When η = φσ (a normal density with zero mean and variance σ2)

and the kernel is also normal, Kh = φh, then Q has the simple expression

Q(w) =
1

n2

n∑
i=1

n∑
j=1

[
wiwjφ√2λ(Yi − Yj) + φ√2h(Yi − Yj)− 2wiφω(Yi − Yj)

]
(8)

where λ2 = h2 + σ2 and ω2 = 2h2 + σ2 = λ2 + h2.
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Some degree of theoretical support for this approach to weight selection is provided by

Theorem 1. If ŵ denotes the minimizer of Q, then the estimator f̂ŵ is consistent for f .

Theorem 1:

Assume that

(i) The kernel K is a bounded continuous density function with finite second moment.

(ii) The bandwidth h = hn is a non-random sequence satisfying h→ 0 and nh→∞ as

n→∞.

(iii) The densities f and η are continuous and bounded on the real line, and
∫
f 2(x)/g(x) dx <

∞ where g = f ∗ η.

Then f̂ŵ(x)
P→ f(x) for any given x.

The proof of this result is given in appendix A.

Looking forward to section 5, we note that while this theorem is stated (and proved) in

the context of univariate data, the result also applies to the weighted kernel estimator for

multivariate data.

3.2 Bandwidth Selection

The choice of bandwidth is typically critical in terms of performance when implementing

kernel smoothers. For the classic deconvolution estimator, described by (4), it has proved

necessary to develop specially tailored methods of bandwidth selection. However, we found

over a range of numerical experiments that our deconvolution estimator operates well using

standard methods of bandwidth selection for density estimation from uncontaminated

data. This is intuitive, since the weights are chosen with respect to an error criterion Q

defined in terms of estimates of g rather than of f . We wish f̂ŵ ∗ η to be as close as

possible to g, and hence implement ǧ using a bandwidth calibrated for estimation of g.

This bandwidth is then inherited by f̂ŵ.

All the results for f̂ŵ given in Section 4 were obtained using the plug-in bandwidth selector

due to Sheather and Jones (1991).
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3.3 Optimization and Regularization

Optimizing Q(w) in (8) under the constraints that the weights are non-negative and sum

to n leads to the following quadratic program:

minimise
w

1

2
wTQw − bTw (9a)

subject to
n∑

i=1

wi = n (9b)

0 ≤ wi, i = 1, . . . , n (9c)

where w = (w1, w2, . . . , wn)T, Q is an n× n matrix with (i, j)th entry being 1
n2Kh ∗Kh ∗

η ∗ η(Yi − Yj) and b ∈ Rn with ith component being 1
n2

∑n
j=1Kh ∗Kk ∗ η(Yi − Yj). In the

case of Gaussian kernels and measurement error, the corresponding elements of Q and b

are 1
n2φ√2λ(Yi − Yj) and 1

n2

∑n
j=1 φω(Yi − Yj) respectively.

This is a quadratic programming problem with a single equality constraints and box

constraints on the parameters. This kind of quadratic program appears in many practical

applications, e.g. they arise for two-category classifying support vector machines (SVM),

essentially as the dual problem to the original problem. See, among others, Cristianini

and Shawe-Taylor (2000, Chapter 6), Schölkopf and Smola (2002, Chapter 7), Karatzoglou

et al. (2006) and Moguerza and Muñoz (2006).

The SVM community has devoted a lot of research effort into solving such quadratic

programs efficiently. The methods used predominantly in this field are sequential minimal

optimization (Schölkopf and Smola, 2002, Chapter 12) and interior point algorithms.

However it should be noted here that interior point algorithms, by their very nature, do

not calculate the exact solution of (9) but find an approximate solution. Recently, there

have been proposals in the numerical literature to solve such quadratic programs using

gradient projection methods; see Serafini et al. (2005) and Dai and Fletcher (2006).

Here we propose a new algorithm for solving (9) based on compute-complete-solution-

path ideas (Osborne et al., 2000; Efron et al., 2004). Details of the algorithm are given

in appendix B. This algorithm can calculate the exact solution of (9) in a fast and

efficient manner for moderate sample sizes. In our extensive numeric simulations we used

the new algorithm for solving (9) as well as the interior point algorithm implemented

by Karatzoglou et al. (2004). However, we noticed that for all practical purposes there

is little difference between the solution determined by our “exact” algorithm and the

solution determined by the interior point algorithm.
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Theoretically the matrix Q in (9) is positive definite, at least as long as there are no

repeated observations, whence the quadratic criterion is strictly convex and the problem

has a unique solution. However, while the matrix Q is positive definite in theory, in finite

precision arithmetic Q is typically singular. A helpful trick in such situations, which can

be utilized in the implementation provided by Karatzoglou et al. (2004), is to employ an

incomplete Cholesky decomposition of Q. That is, an n×m matrix Z is determined, such

that Q ≈ ZZT. Within the interior point algorithm the calculations can be rearranged

such that the calculations involve m×m matrices and not n×n matrices which can lead

to substantial time savings.

In results not reported here, we observed that the interior point algorithm using an in-

complete Cholesky factorization was fastest in calculating the solution of (9), being able

to calculate solutions even for sample sizes of n = 7, 500 in about 10 seconds. In terms of

execution speed, this implementation was followed by the interior point algorithm using Q

directly and our proposed algorithm. For all practical purposes, there was no difference

in the solutions calculated between these three approaches. However, these results also

demonstrated that, due to the numerical singularity of Q, problem (9) is an ill-posed

problem and the solution to this problem is too variable to be of practical use. Thus,

some form of regularization is needed. Here, we propose to use a ridge type penalization

by adding a multiple of 1
2
wTw to the objective function in (9). This leads to the final

version of our proposed method, namely using weights as determined by the solution of

the following quadratic program, where I is the n× n identity matrix:

minimise
w

1
2
wT(Q + γ

n
I)w − bTw (10a)

subject to
n∑

i=1

wi = n (10b)

0 ≤ wi, i = 1, . . . , n (10c)

If γ > 0, then the matrix Q + γn−1I is theoretically and numerically of full rank. Hence,

the variant of the interior point algorithm that uses an incomplete Cholesky factorization

looses its advantage in terms of memory use and speed of execution for this problem.

3.4 Selecting the Ridge Penalty Constraint

By changing from problem (9) to problem (10) we have introduced a ridge penalty pa-

rameter γ. In practice this should be chosen based on the data. We propose that γ be

selected using maximization of a five-fold likelihood cross-validation criterion. The idea
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here is to randomly partition the data into five blocks of equal size (give or take one

if n is not a multiple of 5). We write j ∼ i if and only if i and j are elements of the

same partition. We then compute a log-likelihood for the elements of each block using a

weighted density estimate constructed from all the other data and aggregate the results.

This produces cross-validation criterion

CV (γ) = CV (ŵ(γ)) =
n∑

i=1

log{f̂ 6∼i
ŵ ∗ η(Yi)}. (11)

Here f̂ 6∼i
ŵ denotes the weighted kernel estimator from (5) constructed only using those

data which are in a block different to that of data point i. For each of the five density

estimates f̂ 6∼i
ŵ corresponding to the five blocks, separate weights are computed by solving

problem (10) based on the given value of γ. We select γ by maximizing CV (γ) for γ > 0.

Our choice of five-fold cross-validation (as opposed to r-fold for some value r 6= 5) is

pragmatic. The larger the value of r, the larger the computational burden required to

compute CV (γ) (since it requires that the quadratic program be solved r times). We

also considered ten-fold cross-validation, but found no evidence of improved performance

in the results. All the numerical work presented in the next section use five-fold cross-

validation for selecting γ when implementing the ridge-penalized version of our weighted

kernel estimator.

4 Numerical Results

In this section we discuss the results from a simulation study, and also look in detail at

applications of our deconvolution density estimator.

4.1 Simulation Study

The performance of three kernel deconvolution density estimators are considered in this

study. The first is our deconvolution estimator implemented using the optimal weight

vector, w0. We refer to this as the ‘oracle’ estimator because it makes use of information

that is not available in practice. The next estimator is our weighted kernel density es-

timator (WKDE) implemented using the ridge type penalty, with the ridge coefficient γ

selected by cross-validation. (We also obtained results for the weighted kernel estimator

without ridge penalization, but these were generally worse than for the ridged version

and so are not presented here.) The final estimator is the ‘classical’ estimator from (4).
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We implement this using the plug-in bandwidth selector developed by Delaigle and Gij-

bels (2004b), which outperformed other methods of bandwidth selection in the simulation

study reported in that paper.

We present results involving four target densities and three levels of measurement error.

The four target densities are normal mixtures. The first is standard normal, N(0, 1);

the second is the kurtotic density 2
3
N(0, 1) + 1

3
N(0, 0.22); the third is the symmetric

bimodal density 1
2
N(−5/2, 1) + 1

2
N(5/2, 1); and the fourth is the asymmetric, bimodal

density 2
5
N(5, 5)+ 3

5
N(13, 13). These densities are displayed by the solid lines in Figure 1.

They mimic those used in the simulation study of Delaigle and Gijbels (2004b), although

we have chosen to focus solely on normal mixtures for computational convenience. For

each problem the measurement error was normally distributed with zero mean. The

measurement error variance was set at low, moderate and high levels corresponding to

‘noise to signal’ variance ratios, var(Z)/var(X), of 0.1, 0.25 and 0.5 respectively. The

densities for the contaminated data are displayed by the variety of broken lines in Figure 1.

[Figure 1 about here.]

Deconvolution density estimates were computed for samples of size n = 100 and n = 250.

For each combination of target density, noise-to-signal variance ratio, and sample size,

500 data sets were generated. The integrated squared error (ISE) was computed for

each density estimate. The ISE results are displayed using box plots on the log-scale in

Figures 2–5.

[Figure 2 about here.]

[Figure 3 about here.]

[Figure 4 about here.]

[Figure 5 about here.]

The theoretical potential of weighted kernel estimators for deconvolution is demonstrated

by the strong performance of the oracle estimator. Our weighted estimator implemented

with weight vector w0 consistently outperforms all other methods, in some cases by a

wide margin.
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As one would expect, WKDE does not perform as well as the oracle weighted estimator

in practice. Nonetheless, based on Figures 2–5 it seems that the performance of WKDE

shows a tangible improvement over the classical kernel deconvolution estimator for target

densities 2 and 3. The results for densities 1 and 4 are reasonably comparable between

the WKDE and classical kernel approaches.

An alternative way of comparing the performance of the WKDE and classical methods

is to consider the proportion of data sets for which the former returns smaller integrated

squared error than the latter. The results are displayed in this format in Table 1. The

pairwise comparisons confirm that WKDE is clearly preferable to the classical method for

densities 2 and 3, while the results for density 4 and in particular density 1 are far more

balanced.

[Table 1 about here.]

The numerical results were obtained using R (R Development Core Team, 2007) running

on a 3GHz PC (Intel R© CoreTM2 Duo CPU E6850) with 4GB RAM and 8GB swap memory

operating under Linux. In terms of computational cost, the WKDE method using the

interior point algorithm takes on average 0.34 seconds for a sample size of n = 250. In

further tests, we found that for n = 2, 500 the computational time for WKDE is about

150 seconds. This demonstrates that our weighted kernel estimator is feasible for samples

of this size. For larger samples it should be possible to keep the computing time in check

by using a pre-binned version of the data, although we have not explored this matter in

detail.

4.2 Data Analysis

We now turn to a real data example involving measurements on systolic blood pressure

(SBP, in mmHg) taken from the Framingham study Kannel et al. (1986). In this study

a cohort of men were examined on a number of occasions over an eight year period. We

look at the SBP measurements obtained at the third clinic visit for 285 men aged 56 years

and over. A pair of readings on SBP were taken at this visit for each subject. We use

the set of first SBP measurement for each person as our contaminated data. We employ

a normal measurement error model, for which the variance of the error terms can then

be estimated using the paired data, as described by Carroll et al. (2006). We obtained a

standard deviation of σ̂Z = 12.8 which we consider to be fixed for the remainder of our

analysis.
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Density estimates are displayed in Figure 6. The solid line is a standard kernel estimator,

ignoring measurement error, and constructed with Sheather-Jones plug-in bandwidth h =

7.2. The dashed line is the WKDE estimate obtained using the same bandwidth, and

derived using a ridge parameter of γ = 20.0. The dotted line is the classical estimate, with

deconvolution plug-in bandwidth h = 4.5. The WKDE and classical methods produce

reasonably similar estimates over much of the range of the data. The most noticeable

differences are that WKDE produces a more peaked mode at the centre of the distribution,

and that the classical method leads to an ugly negative bump around 85 mmHg. The

negative values for the classical kernel deconvolution density could be reset to zero (and

the density renormalized), but this would leave a sharp discontinuity in the derivative of

f̆ at about 92 mmHg. Furthermore, the artificial bump at about 65 mmHg would remain,

a consequence of the shape of the classical deconvolution kernel function.

[Figure 6 about here.]

5 Deconvolution of Multivariate Densities

5.1 Weighted Multivariate Kernel Estimators

The weighted kernel estimation approach to density deconvolution can be extended to

contaminated multivariate data in a straightforward fashion. The model remains as in

(1), but with X, Y and Z now interpreted as p-variate random vectors. The measurement

error distribution will typically be assumed to be p-variate normal with zero mean vector

and covariance matrix Σ. This matrix need not be diagonal, so we can represent settings

in which there is dependence in the measurement error across variables.

In the multivariate setting, the weights for our estimator f̂ŵ may continue to be chosen

by minimization of the criterion Q with an additional ridge penalty, where the integral in

(7) should be interpreted as p-dimensional. When the measurement error is multivariate

normal, as described above, and the kernel is multivariate normal with covariance matrix

H, equation (7) can be evaluated directly to give

Q(w) =
1

n2

n∑
i=1

n∑
j=1

[wiwjφ2Λ(Yi − Yj) + φ2H(Yi − Yj)− 2wiφΩ(Yi − Yj)] (12)

where φΣ here denotes a multivariate normal density with zero mean vector and covariance

matrix Σ. The matrices Λ and Ω are defined by Λ = Σ +H and Ω = Σ + 2H.
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5.2 Data Analysis

Here we consider an extension of the analysis of the Framingham blood pressure data

introduced earlier. We examine bivariate data, comprising SBP measurements for each

subject at the first examination on their second and third clinic visits respectively. We

assume that the measurement errors in the two SBP measurements are independent, and

normally distributed with zero mean. The measurement error variances can be estimated

using the methodology discussed before, giving Σ̂ = diag(158.8, 163.5). The bandwidth

matrix for the contaminated data was

H =

[
66.2 50.9
50.9 71.1

]
using the plug-in method of Duong and Hazelton (2003).

The standard density estimate from the uncontaminated data is displayed as a contour

plot in the left hand panel of Figure 7. Using weights obtained through WKDE imple-

mented with ridge penalty parameter γ = 0.40, the right hand panel shows the decon-

voluted density estimate. This has a much tighter distribution about the 45◦ line than

the standard density estimate. Deconvolution indicates less variation in personal blood

pressure between the two clinic visits than is suggested by the raw data.

[Figure 7 about here.]

6 Conclusions

In this paper we have proposed a new approach to density deconvolution, based on the

use of weighted kernel estimators. Our methodology has a number of advantages over the

classical kernel technique for deconvolution. First, our weighted kernel estimator avoids

the spurious wiggles and regions of negative density that arise from the shape of the

effective kernels employed in the classical method. Second, results from our simulation

study indicate that weighted kernel estimation can provide tangible improvements in per-

formance over the classical estimators for moderate sample sizes. Third, our approach

generalizes very simply to multivariate setting, even when the measurement error is cor-

related across variables. Implementation of the classical method in such circumstances

can be challenging because of the complexity of the integrals required to compute the

effective deconvolution kernels.

14



It is natural to compute the weights for our kernel estimator so as to minimize some

measure of discrepancy between the standard kernel estimate from the contaminated

data on the one hand, and the convolution of the weighted deconvolution estimate with

the measurement error density on the other hand. Our preference is to use an integrated

squared difference between these densities but there are many alternatives that seem

reasonable, at first sight at least. For example, one could seek to minimize the integrated

absolute difference between the densities, or seek a perfect match between the densities

on some finite set of values. There remains scope for further research in this matter.
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A Proof of Theorem 1

By the triangle inequality,∫
{g(y)− f̂ŵ ∗ η(y)}2 dy ≤

∫
{ǧ(y)− g(y)}2 dy +

∫
{ǧ(y)− f̂ŵ ∗ η(y)}2 dy.

The first term on the right hand side tends to zero in probability as n→∞ by standard

results for kernel density estimators. Turning to the second term on the right hand side,∫
{ǧ(y)− f̂ŵ ∗ η(y)}2 dy ≤

∫
{ǧ(y)− f̂w0 ∗ η(y)}2 dy

≤
∫
{ǧ(y)− g(y)}2 dy +

∫
{g(y)− f̂w0 ∗ η(y)}2 dy

P→ 0 as n→∞.

It follows from the assumed continuity of the relevant functions that f̂ŵ ∗ η(y) → g(y)

for any y. Then ψf̂ → ψg/ψη = ψf as n → ∞, and the result follows by application of

continuity and inversion theorems for characteristic functions.

The Theorem holds whether or not the constraint w̄ = 1 is applied. This is because the

population mean weight for w0 is unity, since E[f(Y )/g(Y )] = 1.

B Exact algorithm

Note that problem (9) and (10) are essentially of the same structure accept that one uses

Q and the other Q + γ
n
I in the quadratic term. Thus, the algorithm described here can

be used to solve either problem but is described using the notation of problem (9).

The algorithm developed here determines the exact solution for (9) using compute-

complete-solution-path ideas. For this end, the equality constraint (9b) is replaced by

the constraint
∑n

i=1wi = t. After applying this change, it is easy to realize that the

solution w = w(t) of the modified problem is piecewise linear and continuous in t; see

19



Rosset and Zhu (2007). Thus, we just have to run a homotopy algorithm from t = 0 to

t = n to find the solution of (9).

To develop this algorithm, note that the KKT-conditions for the solution of

minimise
w

1

2
wTQw − bTw (13a)

subject to
n∑

i=1

wi = t (13b)

0 ≤ wi, i = 1, . . . , n (13c)

are that κ ∈ Rn and ν ∈ R exist with

Qw − b− κ− ν1 = 0 (14)

and

κi ≥ 0, wi ≥ 0, wiκi = 0 i = 1, . . . , n (15)

ν

(
n∑

i=1

wi − t

)
= 0 (16)

and 1 and 0 denote vectors of ones and zeros, respectively.

To fix notation, for a set of indices, Ω ⊆ {1, 2, . . . , n}, with |Ω| = r, we denote by QΩ the

r× r submatrix of Q indexed by Ω. Likewise, for any vector x, the subvector indexed by

Ω and Ωc are denoted xΩ and xΩc , respectively. PΩ denotes the permutation matrix such

that x = PΩ ( xΩ
xΩc ).

The proof that the solution of (13) is piecewise linear and continuous as function of t,

with breakpoints at 0 = t0 < t1 < t2 < . . . , proceeds by construction. We will describe

how the complete solution path can be calculated. Essentially, starting at t0 = 0 the

break points are calculated iteratively and the solution at each break point is determined.

If the solution is desired for a value of t that is not a break point, then that solution can

be calculated by simple linear interpolation of the solutions that correspond to the two

break points that bracket t. In our case, we are interested in running the algorithm up

to t = n and stop at the corresponding solution.

First, note that if Ω = {i : wi > 0}, then the complementary conditions (15) imply that

κΩ = 0; whence, using (14), it follows that

|ν| = ‖(Qw)Ω − bΩ‖∞
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Thus, for t0 = 0 we initialize the algorithm as follows:

w0 = 0, Ω = {i : bi = max
j
bj}, ν0 = −‖bΩ‖∞, κ0 = −b− ν01

Clearly, this choice satisfy (14)–(16).

Now assume we are at break point ts, then we proceed as follows:

1. Calculate δΩ = Q−1
Ω 1, δ = PΩ

(
δΩ
0

)
. and δ̃ = Qδ.

2. For τ > 0, parameterize the future path as:

wτ = wts + τδ

ντ = νts + τ

κτ = κts − τ(1− δ̃)

Note that by construction δ̃Ω = 1. Hence, clearly, if wts , νts and κts satisfy (14)–

(16) so do wτ , ντ and κτ for τ > 0, τ small, and we can proceed along this path.

3. (a) If Ωc = ∅ and all entries in δ are non-negative, then there will be no further

breakpoints and we can continue to move along this path until the desired

solution is found.

(b) Otherwise we move along this path until one of the following two events happen:

• An entry of κτ
Ωc becomes zero, this can only happen if the corresponding

entry in 1− δ̃Ωc is positive.

That is, for all i ∈ Ωc such that 1− δ̃i > 0 we have to calculate τi =
κts

i

1−δ̃i
.

Set τ 1 to the minimum of these values (τ 1 = ∞ if no such τi exist) and i10

to the corresponding index i.

• An entry of wτ
Ω becomes zero, this can only happen if the corresponding

entry in δΩ is negative.

That is, for all i ∈ Ω such that δ̃i < 0 we have to calculate τi = −wi

δi
. Set

τ 2 to the minimum of these values (τ 2 = ∞ if no such τi exist) and i20 to

the corresponding index i.

Set τ 0 = min{τ 1, τ 2}. If τ 0 = τ 1, then Ω = Ω ∪ {i10}, otherwise Ω = Ω \ {i20}.
Determine wts+1 = wτ0 , νts+1 = ντ0 , κts+1 = κτ0 and ts+1 =

∑n
i=1w

ts+1

i . Iterate

by returning to step 1.

As mentioned in the main text, the matrix Q in the quadratic program considered in

this problem is typically numerically singular despite being theoretically positive definite.
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For this reason the quadratic program (9) cannot be solved by an algorithm such as the

one proposed by Goldfarb and Idnani (1983), implemented in the R package quadprog

(Turlach and Weingessel, 2007), which first calculates the unconstrained solution and

then iteratively enforces violated constraints. Other commonly used general quadratic

programming solver require an initial step in which a feasible starting point is determined;

see, among others, Fletcher (1987) and Gill et al. (1981).

This algorithm avoids both these problems by starting at w = 0 and operating only on

submatrices QΩ of Q. Though, in our numerical experiments we observed that, in partic-

ular with sample sizes above n = 500, occasionally the algorithm fails due to numerical

singularity of QΩ if no regularization is used.
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Figure 1: Target densities, f (solid lines) and densities of the contaminated data, g with
‘noise to signal’ variance ratios, var(Z)/var(X), set at 0.1 (dashed line), 0.25 (dotted
lines) and 0.5 (dot-dash line).
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Figure 2: Box plots of integrated squared error for deconvolution estimators for target
density 1, categorized by sample size (100 and 250) and noise-to-signal ratio (0.1, 0.25
and 0.5).
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Figure 3: Box plots of integrated squared error for deconvolution estimators for target
density 2, categorized by sample size (100 and 250) and noise-to-signal ratio (0.1, 0.25
and 0.5).
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Figure 4: Box plots of integrated squared error for deconvolution estimators for target
density 3, categorized by sample size (100 and 250) and noise-to-signal ratio (0.1, 0.25
and 0.5).
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Figure 5: Box plots of integrated squared error for deconvolution estimators for target
density 4, categorized by sample size (100 and 250) and noise-to-signal ratio (0.1, 0.25
and 0.5).
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Figure 6: Density estimates for systolic blood pressure data for n = 285 men. The solid
line is the density estimate ignoring measurement error. The dashed line is the weighted
kernel deconvolution estimate. The dotted line is the classical deconvolution estimate.
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Figure 7: Contour plots of density estimates for bivariate blood pressure data from n =
285 men, comprising measurements taken at two separate clinic visits. The left hand panel
displays the standard kernel density estimate from the contaminated data. The right hand
panel displays the weighted kernel deconvolution density estimate. The contaminated data
are displayed as a scatter plot in both panels.
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var(Z)/var(X) n Density 1 Density 2 Density 3 Density 4
0.1 100 0.498 0.890 0.912 0.778
0.1 250 0.460 0.934 0.698 0.758

0.25 100 0.526 0.862 0.868 0.690
0.25 250 0.456 0.894 0.888 0.694

0.5 100 0.552 0.826 0.818 0.600
0.5 250 0.508 0.866 0.920 0.636

Table 1: Pairwise comparison of the classical and WKDE methods. The tabulated values
show the proportion of simulated data sets for which WKDE returned a lower integrated
squared error than the classical method.

30


