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Abstract

The label switching problem is caused by the likelihood of a Bayesian mixture model
being invariant to permutations of the labels. The permutation can change multiple
times between Markov Chain Monte Carlo (MCMC) iterations making it difficult to in-
fer component-specific parameters of the model. Various so-called ‘relabelling’ strategies
exist with the goal to ‘undo’ the label switches that have occurred to enable estimation
of functions that depend on component-specific parameters. Most existing approaches
rely upon specifying a loss function, and relabelling by minimising its posterior expected
loss. In this paper we develop probabilistic approaches to relabelling that allow esti-
mation and incorporation of the uncertainty in the relabelling process. Variants of the
probabilistic relabelling algorithm are introduced and compared to existing loss func-
tion based methods. We demonstrate that the idea of probabilistic relabelling can be
expressed in a rigorous framework based on the EM algorithm.

Keywords: Bayesian, Identifiability, Label Switching, MCMC, Mixture Model.

1 Introduction

Mixture models have been used as tools to model heterogeneity for over 100 years. Devel-
opments in Markov Chain Monte Carlo (MCMC) methods [e.g. Diebolt and Robert, 1994]
opened the door for mixture models in a Bayesian framework as they allow efficient ex-
ploration of posterior and predictive surfaces of these models. The use of these Bayesian
mixture models has given rise to new problems, particularly when estimating component-
specific parameters of the model and interpreting marginal posterior densities.

The label switching problem arises as the components of the Bayesian mixture model
can be ordered arbitrarily. During one run of an MCMC sampler, the order of components
can change multiple times between iterations. To obtain a meaningful interpretation of the
components it is necessary to account for these changes, which has been called relabelling
[e.g. Stephens, 2000]. Various functions of interest, such as recovery of the full mixture
posterior and its associated moments, may be invariant to the labelling permutations. For
this type of inference, the label switching problem need not concern us. On many occasions,
however, it is of interest to infer parameters that are specific to individual components of
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the mixture model. This may be because the components of the model have some interpre-
tation, in the sense of a one-to-one correspondence to true components in the population,
or alternatively we may be using mixture models to carry out semi-parametric density
estimation, and the purpose of the relabelling is to provide coherent estimates of the com-
ponents that make up the density estimate. In either case, we must find methods to ‘relabel’
the results of an MCMC run so that the components are in the same order at each iteration.

A wide array of strategies exist in the literature for ‘relabelling’ MCMC output in an
attempt to remove the label switching problem — we divide them here into three categories.
Identifiability constraints involve relabelling the output of the MCMC sampler so that the
posterior obtained satisfies a constraint on the component parameters. The constraint is
chosen such that exactly one relabelling satisfies the constraint at each iteration of the sam-
pler. Deterministic relabelling algorithms select a relabelling at each iteration of the MCMC
output that minimises the posterior expectation of some loss function. Naturally, a variety
of loss functions have been considered by different authors. Probabilistic approaches are a
relatively new idea in which one acknowledges that there is uncertainty in the relabelling
that should be selected on each iteration of the MCMC output. In contrast, both identifi-
ability constraint and deterministic relabelling algorithms assume that the relabelling that
has been carried out is ‘correct’.

The contribution of this paper is to develop and extend the idea of probabilistic rela-
belling, which was introduced originally in Jasra [2005]. We frame probabilistic relabelling
as an application of the EM algorithm, where the missing data is the order that the com-
ponents are in at each iteration of the MCMC. Two novel probabilistic algorithms based
on the stochastic EM (SEM) are developed.

We will proceed, in Section 2, by briefly describing some of the relabelling algorithms
currently available, before we introduce new strategies for probabilistic relabelling. Section
3 evaluates the performance of the strategies on observed as well as simulated data. We
conclude with a discussion of the advantages and disadvantages of the various methods and
some future directions in Section 4.

2 Relabelling Strategies

Suppose n observations y1, . . . , yn are taken from a K-component mixture distribution
where all the components have the same distributional form, with mixture-specific pa-
rameters θ = (θ1, . . . ,θK), global parameters η and mixing weights π, summarised by
γ = (π1, . . . , πK ;θ1, . . . ,θK ;η). The mixture distribution for a single observation Yi is then
given by

p (yi|γ) =
K∑

k=1

πkfk (yi|θk,η)
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with K ≥ 1, πk > 0 (k = 1, 2, . . . ,K),
∑K

k=1 πk = 1 and fk(·|θk,η) is a density function
parametrised by θk and η. For convenience we introduce latent variables zi, i = 1, . . . , n,
where {zi = k} indicates membership of the observation yi to class k, with for i = 1, . . . , n,

zi
i.i.d.∼ Multinomial

{
1,

(
π1, . . . , πK

) }
Conditional on belonging to class k, observation Yi will be distributed according to fk(·|θk,η),

Yi|(zi = k) ∼ fk(·|θk,η)

Each zi is then an unknown categorical variable that denotes the subpopulation from which
observation yi originates. Bayesian inference can be conducted on such a model using
MCMC (Diebolt and Robert [1994]). This proceeds, on each iteration r, by drawing a
vector of component memberships z(r), and parameter estimates γ(r), from the posterior.
Throughout this paper, for ease of illustration we will assume that each fk(·) is a normal
distribution with mean µk and variance σ2

k. For the priors we will use the hierarchical
‘random beta’ model in Richardson and Green [1997], following their suggestions on the
hyperparameter choices. For the number of components K we use a Poisson(1) prior as
argued for in Nobile and Fearnside [2007].

Let SK denote the set of all permutations on {1, 2, . . . ,K}. The label switching problem
arises because the likelihood

p (y|γ) =
n∏

i=1

{
K∑

k=1

πν(k)fν(k)

(
yi|θν(k),η

)}

is identical for all ν ∈ SK . If exchangeable priors are used (containing no component-
specific information) then the posterior has the same property, resulting in the posterior
surface having K! symmetric modes, each associated with a different labelling permutation
ν ∈ SK . This is problematic because each iteration of the MCMC sampler r, r = 1, . . . , R,
has an associated permutation ν(r) ∈ SK . Then for r1 6= r2, it may be that ν(r1) 6= ν(r2),
i.e. the sampler can move from one mode to another between iterations. This makes an
ergodic average estimate of a component-specific parameter, e.g.

E[θ1] ≈
1
R

R∑
r=1

θ
(r)
1 (1)

somewhat meaningless. Indeed, if the chain is in equilibrium, then the estimate of E[θk]
should be the same for all k, since such a chain explores equally all the symmetric modes.

The idea of relabelling the MCMC output is to account for the permutations ν(r), r =
1, . . . , R, in such a way that an ergodic average estimate such as (1) is made meaningful.
Of course, we generally have limited data, and can never say with certainty whether we
truly have agreement ν(r1) = ν(r2), for r1 6= r2. Indeed, in our view the ν(r)s are themselves
parameters with associated uncertainty. Define a relabelled posterior, q(·), as the posterior
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density that we obtain when we attempt to account for the permutations ν(r), r = 1, . . . , R
across the iterations of an MCMC sampler. This is not unique — firstly there are K!
versions of it that correspond to applying a permutation ν to the entire output of an MCMC
to yield an equivalent answer. Secondly, we accept that it is not possible to find the ‘correct’
relabelled posterior due to the uncertainty in estimating the ν(r)s — we approximate this
by the various relabelling methods considered in this paper. A version of the relabelled
posterior is then useful when one conducts component-specific inference.

2.1 Identifiability Constraints

The first efforts to deal with the label-switching problem involve placing an Identifiability
Constraint (IC) on the parameter space [e.g. McLachlan and Peel, 2000]. The idea is to
define a restricted parameter space A such that there exists a unique permutation ν∗ ∈ SK

that satisfies
(θν∗(1), . . . , θν∗(K)) ∈ A, for component-specific parameters θk, k = 1, . . . ,K. The simplest
example in the normal distribution case is the constraint µ1 < µ2 < . . . < µK , or equally
the same constraint on the mixture proportions, or the component variances. More sophis-
ticated alternatives can be found, for example, in Marin et al. [2005].

This approach is simple and works well in many situations. Proposition 3.1 of Stephens
[1997a] demonstrates that the relabelling for such a strategy can be carried out after the
MCMC has run, provided the priors are exchangeable. Geweke [2007] notes that use of
the IC leads, asymptotically in n, to the correct marginals for the true parameter vector θ
being recovered, provided θ ∈ A. Nevertheless, for finite n it is found that the parameter
estimates are ‘pushed apart’, that is the difference between the parameters of adjacent com-
ponents is typically over-estimated [McLachlan and Peel, 2000]. This is a consequence of
the fact that we are effectively imposing a-priori that the joint prior of θ must satisfy the
constraint, despite originally imposing exchangeable priors, suggesting we know nothing to
distinguish the components of the mixture model. Moreover, it can be difficult to find a
sensible subspace ,A, when the mixture-specific parameters are multidimensional.

2.2 Deterministic Relabelling Algorithms

The idea of the relabelling algorithm is that we believe that the permutations ν(r1) and
ν(r2) match (for r1 6= r2; r1, r2 ∈ {1, 2, . . . , R}) when a characteristic about the r1

th iteration
under permutation νr1 is ‘close’ to that characteristic of the r2

th iteration under permutation
νr2 . There is a vast literature on the application of such algorithms to the label switching
problem, all considering different characteristics about each iteration on which to measure
closeness, and how one does measure closeness. Stephens [1997a] and Celeux et al. [2000]
give methods where the characteristic is the estimates of the parameters on each iteration
r, θ(r). Stephens [2000] produces a method in which the characteristic is the matrix of
allocation probabilities of the observations to each component of the mixture, P (r) whilst
Nobile and Fearnside [2007] measure closeness in the allocation vector Z(r).
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Call the characteristic on which we measure closeness C, and the measure of closeness
between two characteristics at iterations r1 and r2 as L(C(r1), C(r2)), which is a loss function
that is large when the discrepancy between C(r1) and C(r2) is large. When we apply a
permutation ν(r) to iteration r we will write ν(r)(C(r)).

We are not interested per se in pairwise closeness, but closeness of the characteristics
across the entire MCMC sample, {C(1), . . . , C(R)}, as we wish the entire sample to be rela-
belled ‘correctly’. To take this into account in an efficient manner, many of the relabelling
algorithms adopt a K-means style approach, which can be described in a general manner
as follows:

1. Choose C to minimise
∑R

r=1 L
{
C, ν(r)(C(r))

}
. In the K-means analogy, view C as

the centroids of the clusters. In common with this analogy, C is usually calculated as
the ergodic average of the characteristics C(r), r = 1, . . . , R.

2. For r = 1, . . . , R choose ν(r) to minimize L
{
C, ν(r)(C(r))

}
, which is equivalent to

allocating the observations to the clusters. Stephens [2000] demonstrates that it is
usually possible to achieve this quickly, using a variant of the transportation algorithm.

3. Repeat 1 and 2 until an optimal solution is reached.

The algorithm should be run from multiple starting positions (initial permutations of the
MCMC iterations) as it is only guaranteed to converge to a local maximum rather than
the global maximum (e.g. Stephens [2000]). The approach corresponds to minimising the
approximate posterior expectation of the loss function L, with the approximation arising
from averaging over the MCMC output. The iterative nature of the algorithm means that
it must be run after the MCMC has completed.

ICs and relabelling algorithms have very similar goals, in that they assign meaning to
each of the components. For example, under the IC considered above when we talk about the
first component we mean ‘the component with the smallest mean’. Relabelling algorithms
attempt to give components meaning by enforcing some form of stable behaviour between
iterations of the MCMC. If the goal of the inference is parameter estimation, it seems
sensible to use an algorithm that stabilises the relabelled posterior of the parameters, using
for example the algorithm of Stephens [1997a]. Farrar [2006], however, takes the opposing
view that one should relabel using a different feature than the one of statistical interest,
e.g. relabel based on component allocations when interested in parameter estimates.

A separate class of algorithms are the label invariant loss function approaches introduced
by Celeux et al. [2000]. Here, the idea is to measure closeness between iterations of the
MCMC without relying on labelling information. For example, one could consider pairwise
comparison of the allocation of observations to components [Hurn et al., 2003].

2.3 Probabilistic Relabelling Algorithms

Probabilistic relabelling is first introduced by Jasra [2005]. The idea is that the permutation
ν(r) that is associated with the rth iteration of the MCMC sampler is unknown. Therefore,
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the permutation can be viewed as having the discrete density gr(ν(r);γ, y) over ν(r) ∈ SK ,
conditional on the data, y, and the full vector of parameters, γ. Jasra [2005] then shows,
using the strong law of large numbers, that one can estimate a quantity of interest h(·) via

h(γ) =
1
R

R∑
r=1

∑
ν(r)∈SK

h
{

ν(r)(γ(r))
}

ĝr(ν(r); γ̂, y) (2)

where ν(r)(γ(r)) represents the parameter vector with the component specific parameters
permuted by ν(r). The function of interest h(·) may depend additionally or alternatively on
the allocation vector z.

To use this approach we need a way to estimate gr(·), and we also need to know in
advance the vector of true parameters γ. Jasra [2005] gives various suggestions on how
each of these issues may be dealt with. For example, the parameters γ can be derived
by averaging over a small number of iterations from the MCMC, determined by eye not
to have switched labels. The permutation densities gr(·) are derived by estimating the
posterior surface of the relabelled posterior using again a small number of iterations where
the labels are deemed not to have switched. This uses a normal approximation, and the
idea of estimating the relabelled posterior to deal with label switching was first suggested
by Stephens [1997b].

Next we introduce a novel approach to probabilistic relabelling, in which gr(·) and γ
are estimated in an iterative fashion. An EM-type approach is adopted, where the missing
data are the permutations {ν(r), r = 1, . . . , R} applied at each stage. The permutation
densities, gr(·), are estimated by conditioning only on the data, y, the current estimate of
the parameters, γ, and the current allocation vector, z(r). Letting Sr

k = {i : z
(r)
i = k} be

the set of indices of the observations belonging, before permutation, to the kth parameter
at iteration r, we calculate

ĝr(ν(r); γ̂, y, z(r)) ∝
K∏

k=1

∏
i∈Sr

k

π̂ν(k)fν(k)

(
yi|θ̂ν(k), η̂

)
(3)

where the right hand side corresponds to the allocated likelihood. So rather than using a
normal approximation to the surface of the relabelled posterior, gr(·) is estimated based
on the allocated likelihood of the data under each permutation, the current estimate of the
parameters (permuted according to the permutation under consideration) and the current
allocation vector z(r). Finally ĝr(·) is normalised to sum to one over all possible permuta-
tions. A detailed derivation of (3) is given in the Appendix.

The usual application of the EM algorithm [Dempster et al., 1977] to the mixture prob-
lem views the available data as the observations, and the missing data the membership of
the observations to the various components. The framework introduced here, on the other
hand, can be interpreted as an EM algorithm where the available data are the output from
the MCMC sampler, and the missing data are the permutations {ν(r), r = 1, . . . , R} ap-
plied at each stage. One could loosely consider the approaches suggested by Jasra [2005] as
corresponding to a single iteration of such an EM algorithm, with sensible starting values
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chosen. We propose now a variety of extensions and alternatives that stem from placing
probabilistic relabelling in this framework. We suggest first an iterative EM algorithm,
which proceeds, after initialising estimates of the parameters γ using, for example, an IC,
by:

E Step Estimate the densities {gr(·), r = 1, . . . , R} using the current estimate of γ, via
(3).

M step Update estimates of γ using (2), with appropriate choices of h(·). For example,
the component weight π1 may be updated by

π̂1 =
1
R

R∑
r=1

∑
ν(r)∈SK

π
(r)
1 ĝr(ν(r); γ̂, y,z(r))

As with all EM-type algorithms, convergence to the global maximum is not guaranteed
— local modes or saddle points may instead be found. Therefore it is advised to use
multiple starting points (different estimates of γ). We call this EM approach ‘EMP’ (EM
based probabilistic relabelling).

A popular alternative to the EM algorithm is the stochastic EM algorithm (SEM)
[Celeux and Diebolt, 1985]. This introduces an extra step ‘the S step’, where the missing
data is simulated from its estimated density. This constitutes drawing ν(r) multinomially
from the discrete density gr(·). The randomness that this modification introduces helps to
avoid the algorithm getting caught in local modes, and provides faster convergence. Addi-
tionally, the convergence of the SEM does not depend on the starting position [Celeux and
Diebolt, 1985]. A SEM-type probabilistic relabelling strategy is as follows:

E step Estimate the densities {gr(·), r = 1, . . . , R} using the current estimate of γ, via (3).

S step Simulate values for the permutations {ν(r), r = 1, . . . , R} by drawing multinomially
from the corresponding densities gr(·), calling these simulated permutations ν̃(r), r =
1, . . . , R.

M step Update estimates of γ by taking ergodic averages over the sample after accounting
for the permutations ν̃(r), r = 1, . . . , R. For example, the component weight π1 may
be updated by

π̂1 =
1
R

R∑
r=1

π
(r)
1

after the inverse of ν̃(r) has been applied at each r.

We call this approach ‘SEMP’ (SEM based probabilistic relabelling).
A final alternative that we suggest acknowledges that γ is itself unknown. We con-

sider estimating the permutation densities gr(·), r = 1, . . . , R without conditioning on γ by
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integrating γ out with respect to its relabelled posterior, q(γ):

ĝr(ν(r); y, z(r)) ∝
∫ K∏

k=1

∏
i∈Sr

k

π̂ν(k)fν(k)

(
yi|θ̂ν(k), η̂

)
q(γ)dγ̂

and approximate the integral by the Monte Carlo estimate over the MCMC sample

ĝr(ν(r); y, z(r)) ∝ 1
R

R∑
r=1


K∏

k=1

∏
i∈Sr

k

π
(r)
ν(k)fν(k)

(
yi|θ(r)

ν(k),η
(r)

) (4)

This leads to the algorithm

E step Estimate the densities {gr(·), r = 1, . . . , R} using the current estimate of the rela-
belled posterior density of γ, via (4).

S step Simulate values for the permutations {ν(r), r = 1, . . . , R} by drawing multinomially
from the corresponding densities gr(·), calling these simulated permutations ν̃(r), r =
1, . . . , R.

M step Estimate the relabelled posterior density, q(γ), using the output from the MCMC
and the current estimates ν̃(r), r = 1, . . . , R.

The M step is, therefore, fundamentally different from a usual EM or SEM algorithm —
we estimate an entire posterior rather than point estimates of the parameters. We call this
approach ‘SEMUP’ (SEM based unconditional probabilistic relabelling).

2.4 Comments

For the remainder of the paper we will consider seven different relabelling strategies, the IC,
three deterministic relabelling algorithms and the three variants of probabilistic relabelling
we introduced in the previous section. The notation used for the methods is defined in
Table 1.

Notation Method Source
IC Identifiability constraint McLachlan and Peel [2000]
PL Parameter relabelling algorithm Stephens [1997a]
CPL Class Probability relabelling algorithm Stephens [2000]
AL Allocation vector relabelling algorithm Nobile and Fearnside [2007]
EMP EM probabilistic Section 2.3
SEMP SEM probabilistic Section 2.3
SEMUP SEM unconditional probabilistic Section 2.3

Table 1: Relabelling algorithms evaluated

One of the disadvantages of relabelling algorithms and ICs is that they apply a specific
permutation ν(r) at each iteration r, with no indication on how uncertain we are that this
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particular permutation is ‘correct’. Using probabilistic methods, uncertainty in relabelling
can be quantified by how close to one the probability of the most likely permutation being
correct, max

ν(r)

{
ĝr(ν(r); γ̂, y, z(r))

}
, is, for each iteration of the MCMC.

A further advantage of probabilistic relabelling is the improved recovery of the posterior
tails, which are often truncated using other methods. Consider 50 simulated observations
from 0.5N(0, 1) + 0.5N(2, 1). Figure 1 compares the marginal posteriors for µ1 (defined as
the component mean with smallest ergodic average) under the PL and SEMP methods, as-
suming that all parameters in the model are unknown. The distributions are quite different
in shape with the right hand tail being truncated for the PL algorithm in comparison to the
SEMP method, which is compensated by a higher peak. Similar results are observed in all
the probabilistic methods. This clearly shows the superior ability of probabilistic relabelling
to recover posterior tails.
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Figure 1: Graphs showing the posteriors for µ1 (defined as the µ with smallest ergodic
average) of the two component mixture model 0.5N(0, 1) + 0.5N(2, 1), for the PL (solid
line) and SEMP (dashed line) algorithms.
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3 Comparison of Methods

To evaluate the proposed algorithms we will now compare them to existing methods on
observed and simulated data. The seven relabelling strategies that will be compared are
given in Table 1.

3.1 The Galaxy Data

For the initial comparison we investigate the galaxy data which consist of the velocities of
82 different galaxies [Postman et al., 1986]. A histogram of the data is given in Fig. 2. This
dataset has become the benchmark for testing different methods for analysis of mixture
data. See Jasra et al. [2005] for a recent investigation into the galaxy data in the mixture
modelling context.
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Figure 2: Histogram of the velocities of 82 galaxies.

An MCMC run on this data spends at least 10% of its iterations in each of K =3, 4 and
5 clusters suggesting that any of these choices could be sensible. We refer to Aitkin [2001]
for an interesting summary of the differing posteriors for K achieved using different, but
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apparently similar, methods on this dataset. Here we will look in detail at the relabelling
algorithms applied to the K = 5 case. As this is a single data set, it is feasible to use all of
the output points from the MCMC for the SEMUP algorithm.

A remarkable stability between the different methods can be found as they recover al-
most identical values to each other for all the parameters. Table 2 shows an example of
these results, the component mean of the fourth component, µ4. The mean changes between
methods, which is due to the difference in dealing with tails of the relabelled posterior by the
various methods. Looking at the α-quantiles this is further illustrated by the fact that q0.05

and q0.95 are rather different between the methods. This suggests that there are adjacent
components that are poorly separated. For a parameter in a well-separated component,
such as the first component that accounts for the observations in the left-hand peak, almost
identical results for the α-quantiles are observed for each relabelling method.

Method Mean Posterior Quantiles
q0.05 q0.25 q0.50 q0.75 q0.95

IC 23.92 21.81 22.56 23.01 23.58 32.51
PL 22.60 21.33 22.04 22.65 23.09 23.65

CPL 22.39 21.09 21.83 22.43 23.00 23.45
AL 22.49 21.20 21.94 22.55 23.04 23.62

EMP 23.92 21.40 22.09 22.68 23.13 24.13
SEMP 22.60 21.25 22.00 22.63 23.09 24.09

SEMUP 23.37 16.39 22.21 22.88 23.44 34.60

Table 2: Summary of estimated µ4 for different relabelling methods across all iterations of
the MCMC with K = 5. Here, µ4 is defined as the mean with the fourth smallest ergodic
average.

Consequently the only major difference between the algorithms can be found in the
variance for the estimates of each parameter as the allocation of component estimates from
the tails has a large bearing on the estimated variances of the parameters.

Figure 3 gives the probabilities of the two most likely permutations (calculated from (3))
for the Galaxy data with the number of components K = 3, 4, 5, for 100 thinned iterations
in each case. We have used the SEMP relabelling procedure. For K = 3 and 4, there is little
or no uncertainty over which permutation of the labels is selected. For K = 5, however,
it is often the case that there are two permutations with reasonable probabilities of being
selected. This suggests that there are two components that are virtually indistinguishable,
which implies that it may be beneficial to merge them. In this way, there is potential to
use this method to help choose the number of components K.
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Figure 3: Graphs showing the probabilities of the most likely (solid line) and second most
likely (dashed line) permutations at 100 iterations of the MCMC sampler for the galaxy
data. The three graphs represent models with differing numbers of components — K = 3
(top), K=4 (middle) and K=5 (bottom).

3.2 Simulated Data

For a more thorough evaluation of the different relabelling algorithms we now turn to
simulated data. We investigated different simulations in which we draw n observations from
πN(0, 1)+ (1−π)N(µ2, σ

2
2), for various combinations of (n, π, µ2, σ

2
2). Each combination is

repeated 100 times and the results are averaged over these repeats in order to remove the
impact of individual data sets. Since it is computationally not feasible to use the SEMUP
algorithm with all available iterations of the MCMC we set the number of posterior points
to 100 for use in (4). As well as giving estimates of parameters, we give a measure of
closeness of the estimated mixture distribution to the true density that we have simulated
from, by simulating 106 values from the true density and estimating the Kullback-Leibler
distance via

ϕ =
104

106

106∑
i=1

log
{
f(xi; θtrue)/f(xi; θ̂)

}
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where θ̂ is estimated via the various relabelling methods, and we have rescaled by 104 from
a usual average to give more readable results.

For situations where the difference between two components is large, that is when either
µ2 was very different from zero or σ2

2 was very different from 1 (e.g. σ2
2 = 0.1 or σ2

2 = 10),
all relabelling algorithms, unsurprisingly, performed well as label switching occurs rarely.
We therefore omit the details of these simulations and focus on situations where the two
components are very similar. Tables 3-5 provide the details of some of the most interesting
situations considered.

For the case where (π, µ2, σ
2
2) = (0.5, 2, 1) and the sample size is varied as n = 50 and

n = 100 (Table 3) it is immediately striking that for all relabelling algorithms except the IC,
the estimates of µ1 and µ2 are pushed toward each other with the effect being strongest for
the CPL and AL methods, and a moderate effect for the probabilistic strategies. Further,
for all relabelling methods, the variances are severely over-estimated and neither feature is
improved by an increase sample size, even when raised to n = 500 (not shown).

Both of these problems can be attributed to posterior weight on the possibility of both
components being in the middle of the dataset with similar means and different variances.
This solution, however, yields a rather different interpretation of the components than the
one used to generate the data. The high standard deviation of the simulations indicates a
high uncertainty in the ‘correct’ interpretation of the mixture distribution. In terms of the
predictive error ϕ, PL and the probabilistic approaches are best performers in both sample
sizes.

When looking at the results for very similar components (µ2 = 0.1, Table 4) we see the
converse feature of the average estimates of µ1 and µ2 being pushed apart from each other.
This is caused by the components being virtually indistinguishable so the MCMC responds
by moving one component excessively to the left and the other excessively to the right.
These opposing results are an illustration of the limitations of using ergodic average esti-
mates for the parameters. For this situation interestingly the CPL and AL method perform
better than the other methods, while probabilistic relabelling methods are in the middle.
It is also interesting to see that, contrary to the previous set of situations, the estimates
of the variance are more or less on target for all algorithms considered. In this case, the
predictive error ϕ is minimised by CPL and AL, although SEMUP performs fairly well.

In Table 5 the components are more distinguishable (µ2 = 2), but the mixing weights are
rather different, with π = 0.1. In this case, µ1 and σ1 are both severely over-estimated while
µ2 and σ2 are estimated accurately for all relabelling strategies with none of the methods
appearing to be superior to the others. Additionally π is also over-estimated strongly which
can be attributed to the asymmetry in the posterior distribution. The predictive error ϕ is
smallest for the PL method while it is largest for the IC.
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n θ IC PL CPL AL EMP SEMP SEMUP

µ1 −0.02 (0.21) 0.19 (0.12) 0.64 (0.19) 0.65 (0.18) 0.20 (0.09) 0.20 (0.16) 0.34 (0.16)
µ2 1.90 (0.12) 1.69 (0.03) 1.24 (0.09) 1.23 (0.08) 1.69 (0.01) 1.68 (0.06) 1.54 (0.06)

50 σ2
1 1.63 (0.39) 1.62 (0.31) 1.58 (0.51) 1.58 (0.51) 1.62 (0.37) 1.63 (0.38) 1.66 (0.39)

σ2
2 1.61 (0.47) 1.62 (0.55) 1.66 (0.34) 1.66 (0.34) 1.62 (0.48) 1.61 (0.48) 1.58 (0.46)

π 0.50 (0.06) 0.51 (0.09) 0.49 (0.38) 0.49 (0.39) 0.51 (0.11) 0.46 (0.08) 0.47 (0.11)
ϕ 205 97 166 169 96 86 83

µ1 0.07 (0.18) 0.23 (0.23) 0.58 (0.36) 0.58 (0.36) 0.27 (0.28) 0.28 (0.25) 0.30 (0.26)
µ2 1.91 (0.19) 1.75 (0.23) 1.39 (0.39) 1.40 (0.38) 1.71 (0.30) 1.70 (0.29) 1.68 (0.27)

100 σ2
1 1.52 (0.39) 1.52 (0.39) 1.50 (0.39) 1.50 (0.39) 1.51 (0.35) 1.52 (0.39) 1.52 (0.36)

σ2
2 1.47 (0.36) 1.47 (0.37) 1.49 (0.36) 1.49 (0.36) 1.49 (0.40) 1.47 (0.35) 1.47 (0.39)

π 0.50 (0.05) 0.50 (0.07) 0.49 (0.24) 0.49 (0.24) 0.50 (0.09) 0.50 (0.09) 0.49 (0.09)
ϕ 110 65 188 184 66 67 70

Table 3: Average parameter estimates over 100 iterations for different relabelling strategies
when (π, µ1, µ2, σ

2
1, σ

2
2) = (0.5, 0, 2, 1, 1) for n = 50 and n = 100. Values in parentheses give

the standard deviations of the estimates.

θ IC PL CPL AL EMP SEMP SEMUP

µ1 −0.60 (0.24) −0.42 (0.28) −0.22 (0.30) −0.21 (0.30) −0.47 (0.30) −0.44 (0.28) −0.36 (0.29)
µ2 0.67 (0.22) 0.47 (0.24) 0.27 (0.26) 0.27 (0.26) 0.52 (0.25) 0.50 (0.25) 0.42 (0.25)
σ2

1 0.95 (0.25) 0.95 (0.31) 0.94 (0.26) 0.94 (0.26) 0.95 (0.24) 0.95 (0.27) 0.96 (0.28)
σ2

2 0.92 (0.23) 0.91 (0.29) 0.92 (0.23) 0.92 (0.23) 0.92 (0.23) 0.91 (0.24) 0.91 (0.24)
π 0.49 (0.09) 0.49 (0.15) 0.47 (0.29) 0.47 (0.29) 0.49 (0.14) 0.48 (0.14) 0.50 (0.15)
ϕ 211 37 0.4 0.4 66 50 18

Table 4: Average parameter estimates over 100 iterations for different relabelling strategies
when (π, µ1, µ2, σ

2
1, σ

2
2) = (0.5, 0, 0.1, 1, 1) for n = 100. Values in parentheses give the

standard deviations of the estimates.

θ IC PL CPL AL EMP SEMP SEMUP

µ1 0.75 (0.40) 0.91 (0.47) 1.07 (0.55) 1.08 (0.55) 0.85 (0.45) 0.91 (0.49) 0.95 (0.49)
µ2 2.32 (0.20) 2.17 (0.20) 2.00 (0.21) 1.99 (0.21) 2.22 (0.23) 2.16 (0.23) 2.12 (0.20)
σ2

1 1.39 (0.36) 1.46 (0.46) 1.36 (0.43) 1.35 (0.42) 1.35 (0.36) 1.39 (0.38) 1.38 (0.41)
σ2

2 1.02 (0.29) 0.95 (0.25) 1.05 (0.26) 1.05 (0.27) 1.05 (0.31) 1.02 (0.29) 1.02 (0.32)
π 0.39 (0.10) 0.36 (0.12) 0.28 (0.18) 0.28 (0.18) 0.38 (0.12) 0.39 (0.13) 0.40 (0.14)
ϕ 184 51 57 59 125 106 110

Table 5: Average parameter estimates over 100 iterations for different relabelling strategies
when (π, µ1, µ2, σ

2
1, σ

2
2) = (0.1, 0, 2, 1, 1) for n = 100. Values in parentheses give the standard

deviations of the estimates.

Overall the results indicate that none of the methods compared are performing uni-
formly better than any of the others leaving the ultimate decision on which method to use
to the user. The CPL and AL methods are unstable in terms of the predictive error ϕ as
they perform well when the components are very hard to distinguish, but show poor perfor-
mance when the components are more separated. Consistent results for ϕ are obtained for
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the PL and the probabilistic methods. Based on these results it is, however, evident that
the use of ergodic averages can often be detrimental. Due to the large variation in the pa-
rameter estimates we believe the SEMUP method is more appropriate as it is probabilistic
and moreover avoids conditioning on the parameter estimates. It does, however, depend on
the accuracy of the approximation in (4) through the value of R.

4 Discussion

In this paper we have developed a new class of probabilistic methods for the label switching
problem in Bayesian mixture models. The main advantages of these approaches are on the
one hand that the tails of the posterior distributions are recovered and on the other hand
uncertainty associated with relabelling can be incorporated, features that are not present
for deterministic relabelling algorithms. The computation time of the probabilistic meth-
ods are either substantially lower than or on par with the existing deterministic methods
with the exception of the IC. It is shown through analysis of an observed dataset as well as
simulation that the parameter estimates obtained by probabilistic relabelling are virtually
the same as for the deterministic approaches suggesting that the above advantages come
without any loss.

We also introduce an algorithm for probabilistic relabelling, called SEMUP, that does
not rely on ergodic average estimates of parameters as we integrate over a relabelled poste-
rior. Although there is some additional computation required to approximate the relevant
integral that also introduced a trade-off between speed and accuracy, the additional time
was found to be reasonable for single datasets.

During the evaluation of the methods it was pointed out that some information about
the choice of K, the number of components, can be derived from probabilistic relabelling al-
gorithms. Although the full extent of the relevance of probabilistic relabelling for choosing
K is still to be evaluated carefully, it does show promise. The uncertainty in the rela-
belling can be used as an indication that too many components are in the model, since high
uncertainty in relabelling suggests that there is ambiguity between adjacent components,
implying that it may be better to merge them. Further work will need to be done to get a
better understanding of this.

A Derivation of (3)

First, gr(νr; γ̂, y, z(r)) is defined as the probability that permutation νr is ‘correct’, given
the data y, the current estimate of the parameters γ̂, and the allocation vector z(r), for the
rth iteration of the sampler. In an abuse of notation when we write νr henceforth we mean
‘permutation νr is correct’.
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Then

P[νr|y, z(r), γ̂] =
P[y|νr, z

(r), γ̂]P[z(r)|νr, γ̂]P[νr|γ̂]
P[y|γ̂, z(r)]P[z(r)|γ̂]

Now, the terms in the denominator do not depend on νr, and we assume that each permu-
tation is equally likely, so we are left with

P[νr|y, z(r), γ̂] ∝P[y|νr, z
(r), γ̂]P[z(r)|νr, γ̂]

=
n∏

i=1

P[yi|νr, z
(r)
i , γ̂]P[z(r)

i |νr, γ̂]

=
K∏

k=1

∏
i∈Sr

k

π̂ν(k)fν(k)

(
yi|θ̂ν(k), η̂

)
which is the form given in (3).
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