Skip to main content
Log in

Multivariate linear regression with non-normal errors: a solution based on mixture models

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

In some situations, the distribution of the error terms of a multivariate linear regression model may depart from normality. This problem has been addressed, for example, by specifying a different parametric distribution family for the error terms, such as multivariate skewed and/or heavy-tailed distributions. A new solution is proposed, which is obtained by modelling the error term distribution through a finite mixture of multi-dimensional Gaussian components. The multivariate linear regression model is studied under this assumption. Identifiability conditions are proved and maximum likelihood estimation of the model parameters is performed using the EM algorithm. The number of mixture components is chosen through model selection criteria; when this number is equal to one, the proposal results in the classical approach. The performances of the proposed approach are evaluated through Monte Carlo experiments and compared to the ones of other approaches. In conclusion, the results obtained from the analysis of a real dataset are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akaike, H.: Information theory and an extension of the maximum likelihood principle. In: Petrov, B.N., Csaki, B.F. (eds.) Second International Symposium on Information Theory, pp. 267–281. Academiai Kiado, Budapest (1973)

    Google Scholar 

  • Azzalini, A., Capitanio, A.: Statistical applications of the multivariate skew normal distribution. J. R. Stat. Soc. Ser. B 61, 579–602 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  • Azzalini, A., Capitanio, A.: Distributions generated by perturbation of symmetry, with emphasis on a multivariate skew t-distribution. J. R. Stat. Soc. Ser. B 65, 367–389 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • Banfield, J.D., Raftery, A.E.: Model-based Gaussian and non-Gaussian clustering. Biometrics 49, 803–821 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  • Bartolucci, F., Scaccia, L.: The use of mixtures for dealing with non-normal regression errors. Comput. Stat. Data Anal. 48, 821–834 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • Batsidis, A., Zografos, K.: Statistical inference for location and scale of elliptically contoured models with monotone missing data. J. Stat. Plan. Inference 136, 2606–2629 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Batsidis, A., Zografos, K.: Multivariate linear regression model with elliptically contoured distributed errors and monotone missing dependent variables. Commun. Stat. Theory 37, 349–372 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Biernacki, C., Celeux, G., Govaert, G.: Assessing a mixture model for clustering with the integrated classification likelihood. IEEE Trans. Pattern Anal. Mach. Intell. 22, 719–725 (2000)

    Article  Google Scholar 

  • Bozdogan, H.: Model selection and Akaike’s information criterion (AIC): the general theory and its analytical extensions. Psychometrika 52, 345–370 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  • Bozdogan, H.: Mixture-model cluster analysis using model selection criteria and a new informational measure of complexity. In: Bozdogan, H. (ed.) Proceedings of the First US/Japan Conference on the Frontiers of Statistical Modelling: an Informational Approach, pp. 69–113. Kluwer Academic, Boston (1994)

    Google Scholar 

  • Celeux, G., Govaert, G.: Gaussian parsimonious clustering models. Pattern Recogn. 28, 781–793 (1995)

    Article  Google Scholar 

  • Cook, R.D., Weisberg, S.: An Introduction to Regression Graphics. Wiley, New York (1994)

    Book  MATH  Google Scholar 

  • Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood for incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B 39, 1–22 (1977)

    MATH  MathSciNet  Google Scholar 

  • DeSarbo, W.S., Cron, W.L.: A maximum likelihood methodology for clusterwise linear regression. J. Classif. 5, 249–282 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  • Diaz-Garcia, J.A., Rojas, M.G., Leiva-Sanchez, V.: Influence diagnostics for elliptical multivariate linear regression models. Commun. Stat. Theory 32, 625–642 (2003)

    Article  MATH  Google Scholar 

  • Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. Chapman & Hall, London (1993)

    MATH  Google Scholar 

  • Fama, E.F.: The behaviour of stock market prices. J. Bus. 38, 34–105 (1965)

    Article  Google Scholar 

  • Ferreira, J.T.A.S., Steel, M.F.J.: Bayesian multivariate regression analysis with a new class of skewed distributions. Research Report 419, Department of Statistics, University of Warwick (2003)

  • Ferreira, J.T.A.S., Steel, M.F.J.: Bayesian multivariate skewed regression modeling with an application to firm size. In: Genton, M.G. (ed.) Skew-Elliptical Distributions and Their Applications: a Journey Beyond Normality, pp. 174–189. CRC Chapman & Hall, Boca Raton (2004)

    Google Scholar 

  • Fraley, C., Raftery, A.E.: How many clusters? Which clustering method? Answers via model-based cluster analysis. Comput. J. 41, 578–588 (1998)

    Article  MATH  Google Scholar 

  • Fraley, C., Raftery, A.E.: Model-based clustering, discriminant analysis and density estimation. J. Am. Stat. Assoc. 97, 611–631 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • Fraley, C., Raftery, A.E.: Enhanced software for model-based clustering. J. Classif. 20, 263–286 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • Fraley, C., Raftery, A.E.: MCLUST version 3 for R: normal mixture modeling and model-based clustering. Technical Report No. 504, Department of Statistics, University of Washington (2006)

  • Galea, M., Paula, G.A., Bolfarine, H.: Local influence in elliptical linear regression models. Statistician 46, 71–79 (1997)

    Google Scholar 

  • Galimberti, G., Soffritti, G.: Model-based methods to identify multiple cluster structures in a data set. Comput. Stat. Data Anal. 52, 520–532 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Grün, B., Leisch, F.: FlexMix version 2: finite mixtures with concomitant variables and varying and constant parameters. J. Stat. Softw. 28 (2008a). URL http://www.jstatsoft.org/v26/i04/

  • Grün, B., Leisch, F.: Finite mixtures of generalized linear regression models. In: Shalabh, Heumann, C. (eds.) Recent Advances in Linear Models and Related Areas, pp. 205–230. Physica Verlag, Heidelberg (2008b)

    Chapter  Google Scholar 

  • Hennig, C.: Identifiability of models for clusterwise linear regression. J. Classif. 17, 273–296 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  • Hennig, C.: Fixed point clusters for linear regression: computation and comparison. J. Classif. 19, 249–276 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • Hosmer, D.W. Jr.: Maximum likelihood estimates of the parameters of a mixture of two regression lines. Commun. Stat. Simul. 3, 995–1006 (1974)

    Article  Google Scholar 

  • Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2, 193–218 (1985)

    Article  Google Scholar 

  • Leisch, F.: FlexMix: a general framework for finite mixture models and latent class regression in R. J. Stat. Softw. 11 (2004). URL http://www.jstatsoft.org/v11/i08

  • Liu, C.: Bayesian robust multivariate linear regression with incomplete data. J. Am. Stat. Assoc. 91, 1219–1227 (1996)

    Article  MATH  Google Scholar 

  • Liu, S.: Local influence in multivariate elliptical linear regression models. Linear Algebra Appl. 354, 159–174 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • Looney, S.W., Gulledge, T.R.: Use of the correlation coefficient with normal probability plots. Am. Stat 39, 75–79 (1985)

    Article  Google Scholar 

  • Maugis, C., Celeux, G., Martin-Magniette, M.-L.: Variable selection in model-based clustering: a general variable role modeling. Comput. Stat. Data Anal. 53, 3872–3882 (2009a)

    Article  MATH  MathSciNet  Google Scholar 

  • Maugis, C., Celeux, G., Martin-Magniette, M.-L.: Variable selection for clustering with Gaussian mixture models. Biometrics 65, 701–709 (2009b)

    Article  MATH  MathSciNet  Google Scholar 

  • McColl, J.H.: Multivariate Probability. Arnold, London (2004)

    MATH  Google Scholar 

  • McLachlan, G.J., Krishnan, T.: The EM Algorithm and Extensions, 2nd edn. Wiley, Chichester (2008)

    Book  MATH  Google Scholar 

  • McLachlan, G.J., Peel, D.: Finite Mixture Models. Wiley, Chichester (2000)

    Book  MATH  Google Scholar 

  • R Development Core Team: R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria (2008). URL http://www.R-project.org

  • Raftery, A.E., Dean, N.: Variable selection for model-based cluster analysis. J. Am. Stat. Assoc. 101, 168–178 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. Am. Statist. Assoc. 66, 846–850 (1971)

    Article  Google Scholar 

  • Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978)

    Article  MATH  Google Scholar 

  • Seidel, W., Mosler, K., Alker, M.: A cautionary note on likelihood ratio tests in mixture models. Ann. Inst. Stat. Math 52, 481–487 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  • Srivastava, M.S.: Methods of Multivariate Statistics. Wiley, New York (2002)

    MATH  Google Scholar 

  • Steele, R.J., Raftery, A.E.: Performance of Bayesian model selection criteria for Gaussian mixture models. Technical Report No. 559, Department of Statistics, University of Washington (2009)

  • Sutradhar, B.C., Ali, M.M.: Estimation of the parameters of a regression model with a multivariate t error variable. Commun. Stat. Theory 15, 429–450 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  • Sutton, J.: Gibrat’s legacy. J. Econ. Lit. 35, 40–59 (1997)

    Google Scholar 

  • Wedel, M., Steenkamp, J.-B.E.M.: A clusterwise regression method for simultaneous fuzzy market structuring and benefit segmentation. J. Mark. Res. 28, 385–396 (1991)

    Article  Google Scholar 

  • Yakowitz, S.J., Spragins, J.D.: On the identifiability of finite mixtures. Ann. Math. Stat. 39, 209–214 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  • Zellner, A.: Bayesian and non-Bayesian analysis of the regression model with multivariate student-t error terms. J. Am. Stat. Assoc. 71, 400–405 (1976)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Soffritti.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(PDF 119 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soffritti, G., Galimberti, G. Multivariate linear regression with non-normal errors: a solution based on mixture models. Stat Comput 21, 523–536 (2011). https://doi.org/10.1007/s11222-010-9190-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-010-9190-3

Keywords

Navigation