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Abstract: Gaussian Graphical Models provide a convenient framework
for representing dependencies between variables. Recently, this tool has re-
ceived a high interest for the discovery of biological networks. The literature
focuses on the case where a single network is inferred from a set of mea-
surements, but, as wetlab data is typically scarce, several assays, where
the experimental conditions affect interactions, are usually merged to infer
a single network. In this paper, we propose two approaches for estimat-
ing multiple related graphs, by rendering the closeness assumption into an
empirical prior or group penalties. We provide quantitative results demon-
strating the benefits of the proposed approaches. The methods presented
in this paper are embeded in the R package simone from version 1.0-0 and
later.
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1. Motivations

Systems biology provides a large amount of data sets that aim to understand
the complex relationships existing between the molecular entities that drive any
biological process. Depending on the molecule of interest, various networks can
be inferred, e.g., gene-to-gene regulation networks or protein-protein interaction
networks. The basic idea is to consider that if two molecules interact, a statistical
dependency between their expression should be observed.

A convenient model of multivariate dependence patterns is Gaussian Graph-
ical Modeling (GGM). In this framework, a multidimensional Gaussian variable
is characterized by the so-called concentration matrix, where conditional in-
dependence between pairs of variables is characterized by a zero entry. This
matrix may be represented by an undirected graph, where each vertex repre-
sents a variable, and an edge connects two vertices if the corresponding pair of
random variables are dependent, conditional on the remaining variables.

Merging different experimental conditions from wetlab data is a common
practice in GGM-based inference methods (Toh and Horimoto 2002, Schäfer and
Strimmer 2005). This process enlarges the number of observations available for
inferring interactions. However, GGMs assume that the observed data form an
independent and identically distributed (i.i.d.) sample. In the aforementioned
paradigm, assuming that the merged data is drawn from a single Gaussian
component is obviously wrong, and is likely to have detrimental side effects in
the estimation process.

In this paper, we propose to remedy this problem by estimating multiple
GGMs, each of whom matching different modalities of the same set of vari-
ables, which correspond here to the different experimental conditions. As the
distributions of these modes have strong commonalities, we propose to estimate
these graphs jointly. Considering several tasks at a time has been attracting
much attention in the machine learning literature, where the generic problem is
usually referred to as “multi-task learning” (Caruana 1997). Efron (2009) used
the terms “indirect evidence” and “learning from the experience of others” for
similar ideas. The principle is to learn an inductive bias, whose role is to sta-
bilize the estimation process, hopefully enabling more accurate predictions in
small sample size regimes (Baxter 2000). The techniques comprise the empirical
and hierarchical Bayes methodologies and regularization schemes (see Argyriou
et al. 2008, for example), which may be interpreted as approximations to the
latter. Here, we will mainly follow the penalty-based approach to leverage the
inference of several related graphs towards a common pattern.

A typical example of this problem arises when inferring gene interactions
from data measured on slightly different stem cells, such as wild and mutant. It
is reasonable to assume that most, though not all, interactions will be common
to both types of cells. The line of attack we propose alleviates the difficulties
arising from the scarcity of data in each experimental condition by coupling the
estimation problems. Our first proposal biases the estimation of the concentra-
tion matrices towards a common value. Our second proposition focuses on the
similarities in the sparsity pattern that are more directly related to the graph
itself. We propose the Cooperative-LASSO, which builds on the Group-LASSO
(Yuan and Lin 2006) to favor solutions with a common sparsity pattern, but
encodes a further preference towards solutions with similar sign patterns, thus
preserving the type of co-regulation (positive or negative) across assays.
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To our knowledge, the present work is the first to exploit the multi-task learn-
ing framework for learning GGMs. However, coupling the estimation of several
networks has recently been investigated for Markov random fields, in the context
of time-varying networks. Kolar et al. (2009) propose two specific constraints,
one for smooth variations over time, the other one for abrupt changes. Their
penalties are closer to the Fused-LASSO and total variations penalties than to
the group penalties proposed here.

2. Network Inference with GGM

In the GGM framework, we aim to infer the graph of conditional depen-
dencies among the p variables of a vector X from independent observations
(X1, . . . , Xn). We assume that X is a p-dimensional Gaussian random variable
X ∼ N (0p,Σ). Let K = Σ−1 be the concentration matrix of the model; the
non-zero entries of Kij indicate a conditional dependency between the variables
Xi and Xj , and thus define the graph G of conditional dependencies of X.

The GGM approach produces the graph G from an inferred K. The latter
cannot be obtained by maximum likelihood estimation that would typically re-
turn a full matrix, and hence a useless fully connected graph. To produce sparse
networks, Banerjee et al. (2008) propose to penalize the entries of K by an `1-
norm. Friedman et al. (2008) latter addressed the very same problem with an
elegant algorithm named the graphical-LASSO. Their well-motivated approach
produces a sparse, symmetric and positive-definite estimate of the concentration
matrix. However, a cruder though more direct approach has been reported to be
more accurate in terms of edge detection (Villers et al. 2008, Rocha et al. 2008).
This approach, proposed by Meinshausen and Bühlmann (2006) and known as
neighborhood selection, determines G via an iterative estimation of the neigh-
borhood of its nodes. For this purpose, it considers p independent `1-penalized
regression problems. Let X be the n× p matrix of stacked observations, whose
kth row contains (Xk)ᵀ. The vertices adjacent to vertex i are estimated by the
non-zero elements of β solving

min
β∈Rp−1

1

n

∥∥Xi −X\iβ
∥∥2
2

+ λ‖β‖1 , (1)

where Xi is the ith column of X and X\i is X deprived of its ith column: the
ith variable is “explained” by the remaining ones. As the neighborhood of the
p variables are selected separately, a post-symmetrization must be applied to
manage inconsistencies between edge selections; Meinshausen and Bühlmann
suggest AND or OR rules, which are both asymptotically consistent (as n goes
to infinity).

Solving the p regression problems (1) may be interpreted as inferring the
concentration matrix in a penalized, pseudo maximum likelihood framework,
where the joint distribution of X is approximated by the product of the p
distributions of each variable conditional on the other ones (Rocha et al. 2008,
Ambroise et al. 2009, Ravikumar et al. 2010), that is

L(K|X) =

p∑
i=1

(
n∑

k=1

logP(Xk
i |Xk

\i; Ki)

)
,
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where Xk
\i is the kth realization of the vector X deprived of the ith coordinate.

Considering the Gaussian assumption on the generation of the data X, the
pseudo-log-likelihood admits a compact and simple expression (see derivation
in Appendix A.1):

L(K|X) =
n

2
log det(D)− n

2
Tr
(
D−

1
2 KSKD−

1
2

)
− np

2
log(2π) , (2)

where S = n−1XᵀX is the empirical covariance matrix, and D is a p×p diagonal
matrix with elements Dii = Kii. In the sequel, it will be convenient to use the
sufficiency of S for K, and, by a slight abuse of notations, write L(K|X) =
L(K|S).

Following Banerjee et al. (2008), an `1 penalty may be added to obtain a
sparse estimate of K. Nevertheless, our approach to maximizing the pseudo-log-
likelihood is much simpler than the optimization of the log-likelihood proposed
by Banerjee et al. (2008). Indeed, as stated formally in the following proposition,
maximizing the penalized pseudo-log-likelihood on the set of arbitrary matrices
(not constrained to be either symmetric or positive definite) boils down to solv-
ing p independent LASSO problems of size p−1. Furthermore, for the purpose of
discovering the graph structure, additional computational savings are achieved
by remarking that D needs not to be estimated. We thus avoid the iterative
scheme of Rocha et al. (2008) alternating optimization with respect to D and
to the off-diagonal elements of D−1K.

Proposition 1. Consider the following reordering of the rows and columns of
K and S: [

K\i\i Ki\i
Kᵀ

i\i Kii

]
,

[
S\i\i Si\i
Sᵀ
i\i Sii

]
, (3)

where K\i\i is matrix K deprived of its ith column and its ith line, and where
Ki\i is the ith column of K deprived of its ith element. The problem

max
{Kij :i 6=j}

L(K|S)− λ‖K‖1 , (4)

where ‖K‖1 is the componentwise `1-norm, can be solved column-wisely by
considering p LASSO problems in form

min
β∈Rp−1

1

2

∥∥∥S1/2
\i\iβ + S

−1/2
\i\i Si\i

∥∥∥2
2

+
λ

n
‖β‖1 , (5)

where the optimal β is the maximizer of (4) with respect to K−1ii Ki\i as defined
in (3). Hence, Problem (4) may be decomposed into the p Problems (5) of size
p− 1 generated by the p possible permutations in (3).

The full solution to Problem (4), in {Kij : i 6= j}, also requires Kii (see Rocha
et al. 2008). However, since our interest is to unveil the graph structure, the
sparsity pattern of the penalized maximum likelihood estimate of K is sufficient,
and the latter is directly recovered from β.

Proof. See appendix A.2.
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From the definition of the covariance matrix S, it is clear that Problem (1)
is a slight reparameterization of Problem (5). Hence, the graph produced by
the approach of Meinshausen and Bühlmann (2006) is identical to the one ob-
tained by maximizing the penalized pseudo likelihood (Ambroise et al. 2009,
Proposition 8).

3. Inferring Multiple GGMs

In transcriptomics, it is a common practice to conduct several assays where
the experimental conditions differ, resulting in T samples measuring the expres-
sion of the same molecules. From a statistical viewpoint, we have T samples
belonging to different sub-populations, hence with different distributions. As-
suming that each sample was drawn independently from a Gaussian distribution
X(t) ∼ N (0p,Σ

(t)), the T samples may be processed separately by following the
approach described in Section 2. The objective function is expressed compactly
as a sum:

max
{K(t)

ij :i 6=j}Tt=1

T∑
t=1

(
L(K(t)|S(t))− λ‖K(t)‖1

)
. (6)

Note that it is sensible to apply the same penalty parameter λ for all sam-
ples provided that the T samples have similar sizes and originate from similar
distributions, in particular regarding scaling and sparseness.

Problem (6) ignores the relationships between regulation networks. When the
tasks are known to have strong commonalities, the multi-task learning frame-
work is well adapted, especially for small sample sizes, where sharing informa-
tion may considerably improve estimation accuracy. To couple the estimation
problems, we have to break the separability in K(1), . . . ,K(T ) in Problem (6).
This may be achieved either modifying the data-fitting term or the penalizer.
These two options result respectively in the graphical Intertwined-LASSO and
the graphical Cooperative-LASSO presented below.

3.1. Intertwined Estimation

In the Maximum A Posteriori framework, the estimation of a concentration
matrix can be biased towards a specific value, say S−10 . From a practical view-
point, this is usually done by considering a conjugate prior on K , that is, a
Wishart distribution W(S−10 , n). The MAP estimate is then computed as if we
had observed additional observations of empirical covariance matrix S0.

Here, we would like to bias each estimation problem towards the same con-
centration matrix, whose value is unknown. An empirical Bayes solution would
be to set S0 = S̄, where S̄ is the weighted average of the T empirical covariance
matrices. As in the maximum likelihood framework, this approach would lead
to a full concentration matrix. Hence, we will consider here a penalized crite-
rion, which does not exactly fit the penalized maximum likelihood nor the MAP
frameworks, but that will perform the desired coupling between the estimates
of K(1), . . . ,K(T ) while pursuing the original sparseness goal.

Formally, let n1, . . . , nT be the sizes of the respective samples, whose empir-
ical covariance matrices are denoted by S(1), . . . ,S(T ). Also denote n =

∑
nt,

we consider the following problem:
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max
{K(t)

ij :i 6=j}Tt=1

T∑
t=1

(
L(K(t)|S̃(t))− λ‖K(t)‖1

)
, (7)

where S̃(t) = αS(t)+(1−α)S̄ and S̄ = n−1
∑T

t=1 ntS
(t). As this criterion amounts

to consider that we observed a blend of the actual data for task t and data from
the other tasks, we will refer to this approach as intertwined estimation. The
idea is reminiscent of the compromise between linear discriminant analysis and
its quadratic counterpart performed by the regularized discriminant analysis
of Friedman (1989). Although the tools are similar, the primary goals differ:
Friedman (1989) aims at getting a control on the number of effective parameters,
we want to bias empirical distributions towards a common model.

In order to avoid multiple hyper-parameter tuning, the results shown in the
experimental section were obtained with α arbitrarily set to 1/2. More refined
strategies are left for future work.

3.2. Graphical Cooperative-LASSO

The second approach consists in devising penalties that encourage similar spar-
sity patterns across tasks, such as the Group-LASSO (Yuan and Lin 2006),
which has already inspired some multi-task learning strategies (Argyriou et al.
2008), but was never considered for learning graph models. We shortly describe
how Group-LASSO may be used for inferring multiple graphs before introduc-
ing a slightly more complex penalty that was inspired by the application to
biological interactions, but should be relevant in many other applications.

As in the single task case, sparsity of the concentration matrices is obtained
via an `1 penalization of their entries. An additional constraint imposes the sim-
ilarity between the two concentration matrices. Each interaction is considered
as a group.

The Group-LASSO is a mixed norm that encourages sparse solutions with
respect to groups, where groups form a pre-defined partition of variables. In the
GGM framework, by grouping the partial correlations between variables across
the T tasks, such a penalty will favor graphs G1, . . . ,GT with common edges.
The learning problem is then

max
{K(t)

ij :i 6=j}Tt=1

T∑
t=1

L(K(t)|S(t))− λ
∑
i 6=j

( T∑
t=1

(
K

(t)
ij

)2)1/2

. (8)

Though this formalization expresses some of our expectations regarding the
commonalities between tasks, it is not really satisfying here since we aim at in-
ferring the support of the solution (that is, the set of non-zero entries of K(t)).
To enable the inference of different networks (t, u), we must have some (i, j)

such that K
(t)
ij = 0 and K

(u)
ij 6= 0. This event occurs with probability zero with

the Group-LASSO, whose variables enter or leave the support group-wise (Yuan
and Lin 2006). However, we may cure this problem by considering a regular-
ization term that better suits our needs. Namely, when the graphs represent
the regulation networks of the same set of molecules across experimental con-
ditions, we expect a stronger similarity pattern than the one expressed in (8).
Specifically, the co-regulation encompasses up-regulation and down-regulation
and the type of regulation is not likely to be inverted across assays: in terms of
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partial correlations, sign swaps are very unlikely. This additional constraint is
formalized in the following learning problem:

max
{K(t)

ij :i6=j}Tt=1

T∑
t=1

L(K(t)|S(t))

− λ
∑
i 6=j

(( T∑
t=1

(
K

(t)
ij

)2
+

)1/2

+

( T∑
t=1

(
−K(t)

ij

)2
+

)1/2
)

, (9)

where (u)+ = max(0, u).
Figures 1 and 2 illustrate the role of each penalty on a problem with T = 2

tasks and p = 2 variables. They represent several views of the unit balls

2∑
i=1

( 2∑
t=1

β
(t)
i

2
)1/2

≤ 1 , and

2∑
i=1

( 2∑
t=1

(
β
(t)
i

)2
+

)1/2

+

( 2∑
t=1

(
−β(t)

i

)2
+

)1/2

≤ 1 ,

that is, the admissible set for a penalty for a problem with two tasks and two
features.

These plots also provide some insight on the sparsity pattern that originate
from the penalty, since sparsity is related to the singularities at the boundary
of the admissible set (Nikolova 2000). In particular, the first column illustrates

that, when β
(2)
2 is null, β

(1)
2 may also be exactly zero, while the second column

shows that this event is improbable when β
(2)
2 differs from zero. The second row

illustrates the same type of relationship between β
(2)
1 and β

(1)
1 that are expected

due to the symmetries of the unit ball.
Figure 2 corresponds to a Cooperative-LASSO penalty. These plots should be

compared with their Group-LASSO counterpart in Figure 1. We see that there
are additional discontinuities in the unit ball resulting in new vertices on the 3-D

plots. As before, we have that, when β
(2)
2 is null, β

(1)
2 may also be exactly zero,

but in addition, we may also have β
(1)
1 or β

(2)
1 exactly null. Accordingly, in the

second and third row, we see that we may have β
(1)
2 null when β

(2)
2 is non-zero.

These new edges will result in some new zeroes when the Group-LASSO would
have allowed a solution with opposite signs between tasks.

The second main striking difference with Group-LASSO is the loss of the axial
symmetry of the Cooperative-LASSO when some variables are non-zero. These
plots illustrate that the decoupling of the positive and negative parts of the
regression coefficients in the penalty favors solutions where these coefficients are
of same sign across tasks. The penalties are identical in the positive and negative
orthant, but the Cooperative-LASSO penalization is more stringent elsewhere,
when there are some sign mismatches between tasks. The most extreme situation
occurs when there is no sign agreement across tasks for all variables. In the setup
represented here, with only two tasks, the effective penalty then reduces to the
LASSO.
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β
(2)
2 = 0 β

(2)
2 = 0.1 β

(2)
2 = 0.3

β
(2

)
1

=
0

β
(1

)
2

1

1

−1

−1

β
(1)
1

β
(1

)
2

1

1

−1

−1

β
(1)
1

β
(1

)
2

1

1

−1

−1

β
(1)
1

β
(2

)
1

=
0
.1

β
(1

)
2

1

1

−1

−1

β
(1)
1

β
(1

)
2

1

1

−1

−1

β
(1)
1

β
(1

)
2

1

1

−1

−1

β
(1)
1

β
(2

)
1

=
0
.3

β
(1

)
2

1

1

−1

−1

β
(1)
1

β
(1

)
2

1

1

−1

−1

β
(1)
1

β
(1

)
2

1

1

−1

−1

β
(1)
1

Fig 1. Admissible set for the Group-LASSO penalty for a problem with two tasks and two

features. Top row: cuts of the unit ball through (β
(1)
1 , β

(2)
1 , β

(1)
2 ) for various values of β

(2)
2 ,

where (β
(1)
1 , β

(2)
1 ) span the horizontal plane, and β

(1)
2 is on the vertical axis; bottom rows:

cuts through (β
(1)
1 , β

(1)
2 ) for various values of (β

(2)
1 and β

(2)
2 ).
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β
(2)
2 = 0 β

(2)
2 = 0.1 β

(2)
2 = 0.3

β
(2

)
1

=
0

β
(1

)
2

1

1

−1

−1

β
(1)
1

β
(1

)
2

1

1

−1

−1

β
(1)
1

β
(1

)
2

1

1

−1

−1

β
(1)
1

β
(2

)
1

=
0
.1

β
(1

)
2

1

1

−1

−1

β
(1)
1

β
(1

)
2

1

1

−1

−1

β
(1)
1

β
(1

)
2

1

1

−1

−1

β
(1)
1

β
(2

)
1

=
0
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β
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1

−1

−1

β
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1
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1

Fig 2. Admissible set for the Cooperative-LASSO penalty for a problem with two tasks and

two features. Top row: cuts of the unit ball through (β
(1)
1 , β

(2)
1 , β

(1)
2 ) for various values of β

(2)
2 ,

where (β
(1)
1 , β

(2)
1 ) span the horizontal plane, and β

(1)
2 is on the vertical axis; bottom rows:

cuts through (β
(1)
1 , β

(1)
2 ) for various values of (β

(2)
1 and β

(2)
2 ).
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4. Algorithms

In this section, we describe the strategy proposed for solving the three opti-
mization problems introduced above, based upon the proposal of Osborne et al.
(2000a) for solving the LASSO. This part also draws its inspiration from Os-
borne et al. (2000b), Kim et al. (2006), Roth and Fischer (2008).

4.1. Problem Decomposition

The multiple independent tasks Problem (6) can be solved by considering either
T single tasks like (4) of size (p − 1) × p (each one possibly decomposed in p
LASSO sub-problems of size p−1), or a single large problem of size T×(p−1)×p,
which can be decomposed into p LASSO sub-problems of size (p−1)×T , through
Proposition 1. This line of attack is not computationally efficient here, but it
will become advantageous when considering the penalties presented in Section
3.2. It is introduced at this point to provide a unified conceptual view of all
algorithms.

Consider the (p T )×(p T ) block-diagonal matrix C composed by the empirical
covariance matrices of each tasks

C =

S(1) 0
. . .

0 S(T )

 ,

and define

C\i\i =


S
(1)
\i\i 0

. . .

0 S
(T )
\i\i

 , Ci\i =


S
(1)
i\i
...

S
(T )
i\i

 . (10)

The (p−1)T×(p−1)T matrix C\i\i is the matrix C where we removed each line

and each column pertaining to variable i. We define C̃, C̃\i\i and C̃i\i similarly,

with S(t) being replaced by S̃(t) for each t = 1, . . . , T in the above definitions.

Let β(t) ∈ R(p−1) denote the vector estimating K
(t)
i\i, defined from K(t) as

in (3), and let β ∈ RT×(p−1) be the vector of the concatenated estimates

βᵀ = (β(1)ᵀ, · · · ,β(T )ᵀ). The optimization of (6) is achieved by solving p sub-
problems in form:

min
β∈RT×(p−1)

1

2

∥∥∥C1/2
\i\iβ + C

−1/2
\i\i Ci\i

∥∥∥2
2

+ λ

T∑
t=1

1

nt
‖β‖1 . (11)

Note that we do not need to perform the costly matrix operations that are
expressed in the the first term of the objective function of Problem (11). In
practice, we compute

f(β; C) =
1

2
βᵀC\i\iβ + βᵀCi\i ,

which only differs from the squared `2 norm in (11) by a constant that is irrel-
evant for the optimization process.
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Accordingly, Problems (7), (8) and (9) can be decomposed into p minimiza-
tion sub-problems whose objective functions may be decomposed as

Lk(β) = f(β) + λgk(β) , (12)

where, with a slight abuse of notation, f(β) is either f(β; C̃) for Problem (7)
or f(β; C) for Problems (8) and (9), and where gk(β) stands for the penalty
functions respectively defined below:

• for the graphical Intertwined LASSO

g1(β) =

T∑
t=1

1

nt

∥∥∥β(t)
∥∥∥
1

;

• for the graphical Group-LASSO

g2(β) =

p−1∑
i=1

∥∥∥β[1:T ]
i

∥∥∥
2
,

where β
[1:T ]
i =

(
β
(1)
i , . . . , β

(T )
i

)ᵀ
∈ RT is the vector of the ith component

across tasks;
• for the graphical Cooperative-LASSO

g3(β) =

p−1∑
i=1

(∥∥∥∥(β[1:T ]
i

)
+

∥∥∥∥
2

+

∥∥∥∥(−β[1:T ]
i

)
+

∥∥∥∥
2

)
.

Since f is convex with respect to β, and all penalties are norms, all these
objective functions are convex and thus easily amenable to optimization. They
are non-differentiable at zero, due to the penalty terms, which all favor zero co-
efficients. Bearing in mind the typical problems in biological data, where graphs
have a few tens or hundreds nodes, and where connectivity is very weak1, we
need convex optimization tools that are efficient for medium-size problems with
extremely sparse solutions. We thus chose a greedy strategy that aims at solv-
ing a series of small-size sub-problems, and will offer a simple monitoring of
convergence.

4.2. Solving the Sub-Problems

The minimizers β of the objective functions (12) are assumed to have many zero
coefficients. The approach developed for the LASSO by Osborne et al. (2000a)
takes advantage of this sparsity by solving a series of small linear systems, whose
size is incrementally increased/decreased, similarly to a column generation algo-
rithm. The master problem is the original problem, but solved only with respect
to the subset of variables currently identified as non-zero β coefficients. The sub-
problem of identifying new non-zero variables simply consists in detecting the
violations of the first-order optimality conditions with respect to all variables.
When there are no more such violations, the current solution is optimal.

1Typically, the expected number of vertices in graphs to scale as the number of nodes, that
is, we expect order of

√
pT non-zero coefficients in each sub-problem of size T × (p− 1).
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The objective functions Lk(β) are convex and smooth except at some loca-
tions with zero coefficients. Thus, the minimizer is such that the null vector
0 ∈ Rp−1 is an element of the subdifferential ∂βLk(β). In our problems, the
subdifferential is given by

∂βLk(β) = ∇βf(β) + λ∂βgk(β) , (13)

where ∇βf(β) = C\i\iβ + Ci\i and where the form of ∂βgk(β) differs for the
three problems and will be detailed below.

The algorithm is started from a sparse initial guess, that is, β = 0 or, if
available, the solution obtained on a more constrained problem with a larger
penalization parameter λ. Then, one converges to the global solution iteratively,
by managing the index A of the non-zero coefficients of β and solving the master
problem over A, where the problem is continuously differentiable. The manage-
ment of A requires two steps: the first one removes from A the coefficients
that have been zeroed when solving the previous master problem, ensuring its
differentiability at the next iteration, and the second one examines the candi-
date non-zero coefficients that could enter A. In this process, summarized in
Algorithm 1, the size of the bigger master problems is typically of the order of
magnitude of the number of non-zero entries in the solution. Solving the mas-
ter problem with respect to the non-zero coefficients βA can be formalized as
solving minh Lk(βA + h), where h ∈ R|A| is optimal if 0 ∈ ∂hLk(βA + h).

Algorithm 1: General optimization algorithm
// 0. INITIALIZATION

β ← 0
A ← ∅
while 0 /∈ ∂βL(β) do

// 1. MASTER PROBLEM: OPTIMIZATION WITH RESPECT TO βA
Find a (approximate) solution h to the smooth problem

∇hf(βA + h) + λ∂hgk(βA + h) = 0 .

// where ∂hgk = {∇hgk}
βA ← βA + h

// 2. IDENTIFY NEWLY ZEROED VARIABLES

while ∃i ∈ A : βi = 0 and min
θ∈∂βigk

∣∣∣ ∂f(β)
∂βi

+ λθ
∣∣∣ = 0 do

A ← A\{i}

// 3. IDENTIFY NEW NON-ZERO VARIABLES

// Select i ∈ Ac such that an infinitesimal change of βi provides the

highest reduction of Lk

i← arg max
j∈Ac

vj , where vj = min
θ∈∂βj gk

∣∣∣ ∂f(β)
∂βj

+ λθ
∣∣∣

if vi 6= 0 then
A ← A∪ {i}

else
Stop and return β, which is optimal
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4.3. Implementation Details

We provide below the implementation details that are specific to each optimiza-
tion problem. Specificity of each problem relies on ∂βgk(β), denoted θ herein.

Intertwined LASSO – This LASSO problem is solved as proposed by Os-
borne et al. (2000a), except that we consider here the Lagrangian formulation
with λ fixed.

The components of θ in the subdifferential (13) read

if βi = 0 then θi ∈ [−1, 1] , else θi = sign(βi) .

Solving the master problem on A requires an estimate of θA at βA + h . It is
computed based on a local approximation, where the components of sign(βA+h)
are replaced by sign(βA). 2 This leads to the following descent direction h:

h = −βA − C̃−1\i\i(A,A)(C̃i\i(A) + λθA) ,

where, in order to avoid double subscripts, we use the notation M(A,A) for
the square submatrix of M formed by the rows and columns indexed by A, and
v(A) for the subvector formed by the columns of v indexed by A.

Then, before updating βA, one checks whether the local approximation used
to compute h is consistent with the sign of the new solution. If not the case,
one looks for the largest step size ρ in direction h such that β+

A = βA + ρh
is sign-consistent with βA. This amounts to zero a coefficient, say βi, and i is
removed from A if |∂f(β+)/∂βi| < λ , otherwise, the corresponding θi is set to
−sign(∂f(β+)/∂βi) . In any case, a new direction h is computed as above, and
βA is updated until the optimality conditions are reached within A.

Finally, the global optimum is attained if the first-order optimality conditions
are met for all the components of β, that is, if β̂ verifies

0 ∈ C̃\i\iβ̂ + C̃i\i + λθ ,

where θ is such
θA = sign(β̂A) and ‖θAc‖∞ ≤ 1 .

Graphical Group-LASSO – In this problem, the subdifferential (13) is con-

ditioned on the norm of β
[1:T ]
i , the vector of the ith component across tasks.

Let θ
[1:T ]
i =

(
θ
(1)
i , . . . , θ

(T )
i

)ᵀ
∈ RT be defined similarly to β

[1:T ]
i , we have that,

if
∥∥∥β[1:T ]

i

∥∥∥
2

= 0 then
∥∥∥θ[1:T ]

i

∥∥∥
2
≤ 1 ,

else θ
[1:T ]
i =

∥∥∥β[1:T ]
i

∥∥∥−1
2
β
[1:T ]
i ,

where, here and in what follows, 0/0 is defined by continuation as 0/0 = 0. As

the subgradient w.r.t. β
[1:T ]
i reduces to a gradient whenever one component of

β
[1:T ]
i is non-zero, the management of the null variables is done here by subsets

2When A is updated and that βi = 0, the corresponding θi is set to −sign(∂f(β)/∂βi) .
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of T variables, according to
∥∥∥∇β

[1:T ]
i

f(β)
∥∥∥
2
, instead of the one by one basis of

the LASSO. Hence, we only need to index the groups i ∈ {1, . . . , p− 1} in A.

Here also, solving the master problem on A requires an estimate of θ
[1:T ]
A at

β
[1:T ]
A +h . Provided that

∥∥∥β[1:T ]
i

∥∥∥
2
6= 0 for all i ∈ A, θ

[1:T ]
A is differentiable w.r.t.

β
[1:T ]
A . It will thus be approximated by a first-order Taylor expansion, resulting

in a Newton-Raphson or quasi-Newton step. Here, we used quasi-Newton with

BFGS updates. Note that, whenever β
[1:T ]
i = 0, that is, when a new group of

variables has just been activated or is about to be deactivated, the corresponding

θ
[1:T ]
i is set so that ∥∥∥∇β

[1:T ]
i

f(β) + λθ
[1:T ]
i

∥∥∥
2

(14)

is minimum (that is, with θ
[1:T ]
i proportional to ∇

β
[1:T ]
i

f). The updates of A are

also based on the minimal value of (14).

Graphical Cooperative-LASSO – As the Group-LASSO, the Cooperative-
LASSO considers a group structure, but its implementation differs considerably
from the former in the management of A. Though several variables are usually
activated or deactivated at the same time, they typically correspond to subsets of

β
[1:T ]
i , and these subsets are context-dependent; they are not defined beforehand.

As a result, the index of non-zero β
[1:T ]
i is better handled by considering two

sets: the index of β
[1:T ]
i with positive and negative components:

A+ =

{
i ∈ {1, . . . , p− 1} :

∥∥∥∥(β[1:T ]
i

)
+

∥∥∥∥
2

> 0

}
,

and A− =

{
i ∈ {1, . . . , p− 1} :

∥∥∥∥(−β[1:T ]
i

)
+

∥∥∥∥
2

> 0

}
.

Let T denote the index of non-zero entries of β
[1:T ]
i , with complement T c; the

subdifferential at the current solution is such that:

• if i ∈ Ac
+ ∩ Ac

−, then

max

(∥∥∥∥(θ[1:T ]
i

)
+

∥∥∥∥
2

,

∥∥∥∥(−θ[1:T ]
i

)
+

∥∥∥∥
2

)
≤ 1 ;

• if i ∈ Ac
+ ∩ A− then

θTi =

∥∥∥∥(−βTi )
+

∥∥∥∥−1
2

βTi ,

θT
c

i :

∥∥∥∥(θT ci

)
+

∥∥∥∥
2

≤ 1 and

∥∥∥∥(−θT ci

)
+

∥∥∥∥
2

= 0 ;

• i ∈ A+ ∩ Ac
−, then

θTi =

∥∥∥∥(βTi )
+

∥∥∥∥−1
2

βTi ,

θT
c

i :

∥∥∥∥(−θT ci

)
+

∥∥∥∥
2

≤ 1 and

∥∥∥∥(θT ci

)
+

∥∥∥∥
2

= 0 ;
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• if i ∈ A+ ∩ A−, then

θ
(t)
i =

∥∥∥∥(sign
(
β
(t)
i

)
β
[1:T ]
i

)
+

∥∥∥∥−1
2

β
(t)
i , t = 1, . . . , T .

Once A+ and A− are determined, the master problem is solved as for the Group-

LASSO, with BFGS updates, with box constraints to ensure sign feasible β
[1:T ]
i

for i such that i ∈ Ac
+∩A− or i ∈ A+∩Ac

−. When a new variable has just been

activated or is about to be deactivated, the corresponding θ
[1:T ]
i is set so that∥∥∥∥(∇β

[1:T ]
i

f(β) + λθ
[1:T ]
i

)
+

∥∥∥∥
2

+

∥∥∥∥(−∇β
[1:T ]
i

f(β)− λθ[1:T ]
i

)
+

∥∥∥∥
2

(15)

is minimum. The updates of A are also based on the minimal value of (15).

5. Experiments

In most real-life applications, the major part of the inferred graphs are unknown,
with little available information on the presence/absence of edges. We essentially
face an unsupervised learning problem, where there is no objective criterion
allowing to compare different solutions. As a result, setting the hyper-parameters
is particularly troublesome, alike, say, choosing the number of components in
a mixture model, and it is a common practice to visualize several networks
corresponding to a series of penalties.

Regarding the first issue, we chose to present here synthetic and well-known
real data that allow for an objective quantitative evaluation. Regarding the
second issue, the problem of choosing penalty parameters can be guided by the-
oretical results that provide a bound on the rate of false edge discovery (Mein-
shausen and Bühlmann 2006, Banerjee et al. 2008, Ambroise et al. 2009), or by
more traditional information criteria targeting the estimation of K (Yuan and
Lin 2007, Rocha et al. 2008). However, these proposals tend to behave poorly,
and it is a usual practice to compare the performance of learning algorithms
by providing a series of results, such as precision-recall plots or ROC-curves,
letting the choice of penalty parameters as a mostly open question for future
research. Although the shortcomings of this type of comparison are well-known
(Drummond and Holte 2006, Bengio et al. 2005), we will use precision vs. recall
plots, which can be considered as valuable exploratory tools.

Precision is the ratio of the number of true selected edges to the total number
of selected edges in the inferred graphs. Recall is the ratio of the number of true
selected edges in the inferred graphs to the total number of edges in the true
graphs. In a statistical framework, the recall is equivalent to the power and the
precision is equivalent to one minus the false discovery proportion.

5.1. Synthetic Data

5.1.1. Simulation Protocol

To generate T samples stemming from a similar graph, we first draw an “ances-
tor” graph with p nodes and k edges according to the Erdős-Rényi model. Here,



Chiquet, Grandvalet and Ambroise/Inferring Multiple Graph Structures 16

Fig 3. Set of simulated graphs: ancestor (top) and two children (bottom) engendered by a
δ = 2 perturbation.

we consider a simple setting with T = 4 and a network with p = 20 nodes and
k = 20 edges, as illustrated in Figure 3. Then, T children graphs are produced
by random addition and deletion of δ edges in the ancestor graph. The T con-
centration matrices are built from the normalized graph Laplacians, whose off-
diagonal elements are slightly deflated to produce strictly diagonally dominant
matrices. To allow for positively and negatively correlated variables, we generate
a strictly triangular matrix of random signs drawn from a Rademacher distribu-
tion. This matrix is symmetrized, complemented with ones on the diagonal, and
its component-wise multiplication with the deflated Laplacians produces the
ground-truth for the concentration matrices K(1), . . . ,K(T ). Each K(t) is finally

used to generate n Gaussian vectors with zero mean and covariance K(t)−1.

5.1.2. Experimental Setup

The precision-recall plots are computed by considering the cumulative number
of true and false edge detections among the T = 4 children networks. Let E(t)
be the set of edges for children network t, precision and recall are respectively
formaly defined as:

T∑
t=1

∑
(i,j)∈E(t)

1(K̂
(t)
ij )

T∑
t=1

∑
i>j

1(K̂
(t)
ij )

and

T∑
t=1

∑
(i,j)∈E(t)

1(K̂
(t)
ij )

T∑
t=1

∣∣∣E(t)∣∣∣ ,

where K̂
(t)
ij is the estimated partial correlation between variables i and j for

network t, 1(u) returns 1 if u 6= 0 and 0 otherwise, and |E| is the cardinal of E .
To ensure representativeness, the precision-recall figures are averaged over

100 random draws of the ancestor graph, the averaging being performed for
fixed values of the penalization parameter λ. That is, each point in the (preci-
sion,recall) plane is the average of the 100 points obtained for each random draw
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of the ancestor graph, for a given estimation method and for a given value of
the penalization parameter. We compare our proposals, namely the Graphical
Intertwined (α = 1/2), Cooperative and Group LASSO to two baselines: the
original neighborhood selection of Meinshausen and Bühlmann (2006), either
applied separately to each graph (annotated “independent”), or computed on
the data set merging the data originating from all graphs (annotated “pooled”).

5.1.3. Results

Figures 4, 5 and 6 display precision-recall plots for nine prototypical situations.
From Figure 4 to 6, the sample size increases, and from top to bottom, the differ-
entiation between networks increases. First, note that the independent strategy
is not influenced by the level of perturbation, yet only by the sub-sample size,
as expected.

The top graph in Figure 4 represents the small-sample low-perturbation
situation, where merging data sets is a good strategy, leveraging the inde-
pendent analysis. The latter performs poorly, and our multi-task approaches
dominate the pooled strategy, the Cooperative-LASSO being superior to the
Group-LASSO, which has the advantage on the Intertwined LASSO. The
medium/large-sized-sample low-perturbation (top graph in Figures 5 and 6),
small/medium-sized-sample medium-perturbation (middle graph in Figures 4
and 5) and small-sized-sample large-perturbation (bottom graph in Figure 4)
are qualitatively similar, with less differences between all competitors. For the
large-sample medium-perturbation (middle graph in Figure 6) and medium-
sized-sample low-perturbation (bottom graph in Figure 5) cases, all methods
perform similarly. There is a slight advantage for the multi-task strategies for
high recalls, and a slight advantage for the independent analysis for low recalls
(that is, for high penalization, where there is less effective degrees of freedom
to determine). The bottom graph in Figure 6 represents the large-sample high-
perturbation situation, where merging data is a bad strategy, since the networks
differ significantly and there is enough data to estimate each network indepen-
dently. The independent strategy works best, closely followed by the Intertwined
LASSO. The Cooperative and Group-LASSO behave equally well for high recalls
(low penalization parameters), but for highly penalized solutions (low recalls),
they eventually become slightly worse than the pooled estimation.

These experiments show that our proposals are valuable, especially in the
most common situation where data are scarce. Among the baselines, the usual
pooled sample strategy is good in the small-sample low-perturbation, and the
opposite independent strategy is better in the large-sample high-perturbation
case. The intertwined LASSO is very robust, in the sense that it always per-
forms favorably compared to the best baseline method over the whole spectrum
of situations. Furthermore, except for the large-sample high-perturbation case,
the Group-LASSO performs even better, and the Cooperative-LASSO improves
further the supremacy of the multiple graph inference approach.

5.2. Protein Signaling Network

Only a few real data sets come with a reliable and exhaustive ground-truth al-
lowing quantitative assessments. We make use of a multivariate flow cytometry
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Fig 4. Precision-recall curves for the Intertwined, Cooperative, Group and the two baseline
LASSO, for inferring four graphs (each with p = 20 nodes, k = 20 edges and a perturbation
δ from the ancestor graph) from four samples of size nt = 25.
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Fig 5. Precision-recall curves for the Intertwined, Cooperative, Group and the two baseline
LASSO, for inferring four graphs (each with p = 20 nodes, k = 20 edges and a perturbation
δ from the ancestor graph) from four samples of size nt = 50.
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Fig 6. Precision-recall curves for the Intertwined, Cooperative, Group and the two baseline
LASSO, for inferring four graphs (each with p = 20 nodes, k = 20 edges and a perturbation
δ from the ancestor graph) from four samples of size nt = 100.
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data set pertaining to a well-studied human T-cell signaling pathway (Sachs
et al. 2005). The latter involves 11 signaling molecules (phospholipids and phos-
phorylated proteins) and 20 interactions described in the literature. The signal-
ing network is perturbed by activating or inhibiting the production of a given
molecule. Fourteen assays have been conducted, aiming to reveal different part
of the network. Here, we used only four assays (inhibition of PKC, activation of
PKC, inhibition of AKT, activation of PKA).

Graphs inferred using only one assay at a time show that each assay really
focus on different part of the network (see Figure 7).
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Fig 7. Four graphs inferred from single assay. From left to right, top to bottom, we have
respectively graphs inferred from an assay: inhibiting akt, activating pka, inhibiting pkc, ac-
tivating pkc. Thick black lines represent true positive and thin red lines are false positive.
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Fig 8. Ground-truth pathway (left) and graph sum of the four graphs estimated by Intertwined
LASSO using all data (right). Thick black lines represent true positive and thin red lines are
false positive.

When considering a strategy based on inference from multiple assays, the
first false positive inferred by the Intertwined Graphical LASSO occurs when
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11 true interactions out of 20 are detected (see Figure 8). This edge, between p38
and Jnk, is in fact due to an indirect connection via unmeasured MAP kinase
kinases (Sachs et al. 2005), which is a typical problem of confounding arising
in this context. Considering partial correlations within the subset of available
variables, the edge is correctly detected, but it is a false positive with respect
to the biological ground truth. Furthermore, in larger biological networks, the
absence of edge in the ground truth pathway often merely means that there is yet
no evidence that the co-regulation exists. As a result, most real data evaluation
of graph inference methods are based on qualitative subjective assessments by
experts.

This caveat being, the various inference algorithms behave here as in the
synthetic experiments: all inference methods perform about equally well for
large samples (each assay consists here of about 1000 repeated measurements).

Figure 9 displays the results obtained for small sample sizes. Here also, the
precision-recall plots are averaged over 100 independent random draws of sam-
ples of size nt, that is n = 4nt observations over the four considered assays. It is
worth noticing that the large sample size limit is almost obtained for nt = 20.
As for the synthetic experiments, the averaging is performed for fixed values of
the penalization parameter λ. In this situation, our proposals dominate the best
baseline strategy, which is pooled estimation. Again, the Intertwined LASSO is
very robust, but the Group-LASSO, and to a greater extent the Cooperative-
LASSO perform better in the small-sample-size regime.

6. Conclusion

This paper presents the first methods dedicated to the inference of multiple
graphs in the Gaussian Graphical Model framework. In this setup, the two
baseline approaches consist in either handling the inference problems separately
or as a single one by merging the available data sets. Our proposals, motivated
by bioinformatics applications, were devised to describe the dependencies be-
tween pairs of variables in analogous operating conditions, such as measurements
recorded in different assays. This situation occurs routinely with omics data.

Our approaches are based on the neighborhood selection of Meinshausen and
Bühlmann (2006). The first one, the Intertwined Graphical LASSO, relaxes
the uniqueness constraint that is implicit when the tasks are processed as a
single one, merely biasing the results towards a common answer. Our second
approach, the Graphical Cooperative-LASSO, is based on a group-penalty that
favors similar graphs, with homogeneous dependencies between the same pairs
of variables. Homogeneity is quantified here by the magnitude and sign of partial
correlations. The Cooperative-LASSO contrasts the Group-LASSO in being able
to infer differing graph structures across tasks. Our experimental results show
that our proposals are valuable and robust, consistently performing at least as
well as the best of the two baseline solutions.

The algorithms developed in this paper are made available within the R-
package simone from version 1.0-0 and later. This package also embeds extension
of the multi-task framework to time-course data, that is, when transcriptomics
data are collected by considering the same individual across time. This imple-
mentation builds on the `1-penalized VAR(1) model described in Charbonnier
et al. (2010).
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Fig 9. Precision-recall curves for the Intertwined, Cooperative, Group and the two baseline
LASSO, for inferring the graphs on four assays of Sachs’ data from four samples of size
nt = 7, 10 and 20.
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As future work, we will provide a theoretical analysis of the Cooperative-
LASSO regarding uniqueness of the solution and selection consistency, or spar-
sistence, that corresponds here to the asymptotic convergence of the set of de-
tected edges towards the set of true edges.
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Appendix A: Proofs

A.1. Derivation of the pseudo-log-likelihood

We show here that the pseudo-log-likelihood

L(K|X) =

p∑
i=1

(
n∑

k=1

logP(Xk
i |Xk

\i; Ki)

)
, (16)

associated to a sample of size n drawn independently from the multivariate
Gaussian vector X ∼ N (0p,Σ) reads

L(K|X) =
n

2
log det(D)− n

2
Tr
(
D−

1
2 KSKD−

1
2

)
− np

2
log(2π) ,

where S = n−1XᵀX is the empirical variance-covariance matrix and D is the
diagonal matrix such that Dii = Kii, for i = 1, . . . , p.

Proof. Since the joint distribution of Xk is Gaussian, the distributions of Xk
i

conditioned on the remaining variables Xk
\i are also Gaussian. Their parameters

(µk
i , σi) are given by

µk
i = Σᵀ

i\iΣ
−1
\i\iX

k
\i , σi = Σii −Σᵀ

i\iΣ
−1
\i\iΣi\i . (17)

where Σ\i\i is matrix Σ deprived of its ith column and its ith line, Σi\i is the
ith column of matrix Σ deprived of its ith element.

As K = Σ−1, reordering the rows and columns of the matrices yields[
Σ\i\i Σi\i
Σᵀ

i\i Σii

]
×
[
K\i\i Ki\i
Kᵀ

i\i Kii

]
=

[
Ip−1 0

0 1

]
,

where K\i\i is matrix K deprived of its ith column and its ith line, Ki\i is the
ith column of matrix K deprived of its ith element, and Ip−1 is the identity
matrix of size p− 1. Two of these blockwise equalities are rewritten as follows:

Σii = (1−Σᵀ
i\iKi\i)/Kii ,

Σ−1\i\iΣi\i = −Ki\i/Kii .
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Using the above identities in (17), we obtain

σi = (1−Σᵀ
i\iKi\i)/Kii + Σᵀ

i\iKi\i/Kii = 1/Kii ,

µi = −Kᵀ
i\iX

ᵀ
\i/Kii.

where µi = (µ1
i , . . . , µ

n
i )ᵀ.

Using these notations and the corresponding blockwise notations for S (Sii =
n−1Xᵀ

i Xi, Si\i = n−1Xᵀ
\iXi and S\i\i = n−1Xᵀ

\iX\i), Equation (16) reads

L(K|X) = −n
2

p∑
i=1

log σi −
p∑

i=1

1

2σi
(Xi − µi)

ᵀ(Xi − µi)−
np

2
log(2π)

=
n

2

p∑
i=1

logKii −
np

2
log(2π)

− n

2

p∑
i=1

Kii

(
Sii +

2

Kii
Sᵀ
i\iKi\i +

1

K2
ii

Kᵀ
i\iS\i\iKi\i

)
(18)

=
n

2
log det D− np

2
log(2π)− n

2

p∑
i=1

1

Kii
(Kᵀ

i SKi) ,

where Ki is the ith column of K and D is the diagonal matrix such that Dii =
Kii. Finally, we use that

∑p
i=1

1
Kii

(Kᵀ
i SKi) = Tr(D−

1
2 KSKD−

1
2 ) to conclude

the proof.

A.2. Blockwise Optimization of the pseudo-log-likelihood

Proof of Proposition 1. From (18), we have

L(K|S) = −n
2

p∑
i=1

(
2Sᵀ

i\iKi\i +
1

Kii
Kᵀ

i\iS\i\iKi\i

)
+ c, (19)

where c does not depend on Kij with j 6= i. Thus, if we discard the symmetry
constraint on K, maximizing the pseudo-likelihood (19) with respect to the non-
diagonal entries of K amounts to solve p independent maximization problems
with respect to Ki\i , i = 1, . . . , p. The summands of (19) can be rewritten as

− n

2Kii

(
2KiiS

ᵀ
i\iKi\i + Kᵀ

i\iS\i\iKi\i

)
= −nKii

2

∥∥∥K−1ii S
1/2
\i\iKi\i + S

−1/2
\i\i Si\i

∥∥∥2
2

+ c′,

where c′ = n/2KiiS
ᵀ
i\iS\i\iSi\i does not depend on Kij with j 6= i. Adding

an `1 penalty term on Ki\i and defining β = K−1ii Ki\i leads to the objective
function of Problem (5), which concludes the proof.

A.3. Subdifferential for the Cooperative-LASSO

By definition, for a convex function g, the subdifferential is

∂g|β0
=
{
θ : ∀β , g(β)− g(β0) ≥ θ>(β − β0)

}
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The function g(β) =
∥∥(β)+

∥∥
2

+
∥∥(−β)+

∥∥
2

has kinks whenever β has at least
one zero component and that it has either no positive or no negative component.
There are thus three situations where the subdifferential does not reduce to the
gradient :

1.
∥∥(β0)+

∥∥
2

= 0 and
∥∥(−β0)+

∥∥
2
6= 0,

2.
∥∥(β0)+

∥∥
2
6= 0 and

∥∥(−β0)+
∥∥
2

= 0,

3.
∥∥(β0)+

∥∥
2

= 0 and
∥∥(−β0)+

∥∥
2

= 0, i.e. β0 = 0.

For the first situation, denoting A the index of non-zero entries of β0 and Ac

its complement, the subdifferential is defined as{∥∥(−β0)+
∥∥−1
2
β0 + θ : θA = 0

and ∀βAc ,
∥∥(βAc)+

∥∥
2
≥ θ>AcβAc

}
. (20)

The set of admissible θ is explicitly given by{
θ : θA = 0 ,

∥∥(θAc)+
∥∥
2
≤ 1 and

∥∥(−θAc)+
∥∥
2

= 0
}

. (21)

Proof. We first show that, for any θ in the set defined in (21), the inequality in
definition (20) always holds. Dropping the subscript Ac for readability, we have:

θ>β = (θ)
>
+ β − (−θ)

>
+ β

= (θ)
>
+ β

= (θ)
>
+ (β)+ − (θ)

>
+ (−β)+

≤ (θ)
>
+ (β)+ ≤

∥∥(θ)+
∥∥
2

∥∥(β)+
∥∥
2
≤
∥∥(β)+

∥∥
2
.

To finish the proof, it is sufficient to exhibit some β such that the inequality
in definition (20) does not hold when

∥∥(θ)+
∥∥
2
> 1 or when

∥∥(−θ)+
∥∥
2
> 0.

For
∥∥(θ)+

∥∥
2
> 1, we choose β = (θ)+, yielding θ>β =

∥∥(θ)+
∥∥2
2
, and∥∥(β)+

∥∥
2

=
∥∥(θ)+

∥∥
2
<
∥∥(θ)+

∥∥2
2
, hence

∥∥(β)+
∥∥
2
< θ>β; for

∥∥(−θ)+
∥∥
2
> 0, we

choose β = − (−θ)+, yielding θ>β =
∥∥(−θ)+

∥∥2
2
> 0, and

∥∥(β)+
∥∥
2

= 0, hence∥∥(β)+
∥∥
2
< θ>β.

The second situation is treated as the first one, yielding

∂g|β0
=
{ ∥∥∥(β0)+

∥∥∥−1

2
β0 + θ : θA = 0 ,

∥∥∥(−θAc)+

∥∥∥
2
≤ 1

and
∥∥(θAc)+

∥∥
2

= 0
}
.

For the last situation, the subdifferential, defined as

∂g|β0
=
{
θ : ∀β ,

∥∥(β)+
∥∥
2

+
∥∥(−β)+

∥∥
2
≥ θ>β

}
, (22)

reads
∂g|β0

=
{
θ : max

(∥∥(θ)+
∥∥
2
,
∥∥(−θ)+

∥∥
2

)
≤ 1
}

, (23)
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Proof. We first show that, for all the elements of ∂g as explicitly defined in (23),
the inequality in definition (22) always holds:

θ>β = (θ)
>
+ β − (−θ)

>
+ β

≤ (θ)
>
+ (β)+ + (−θ)

>
+ (−β)+

≤
∥∥(θ)+

∥∥
2

∥∥(β)+
∥∥
2

+
∥∥(−θ)+

∥∥
2

∥∥(−β)+
∥∥
2

≤ max
(∥∥(θ)+

∥∥
2
,
∥∥(−θ)+

∥∥
2

)(∥∥(β)+
∥∥
2

+
∥∥(−β)+

∥∥
2

)
.

To finish the proof, it is sufficient to exhibit some β such that the inequality

in definition (22) does not hold for max
(∥∥(θ)+

∥∥
2
,
∥∥(−θ)+

∥∥
2

)
> 1. Without

loss of generality, we assume
∥∥(θ)+

∥∥
2
> 1, and choose β = (θ)+, yielding

θ>β =
∥∥(θ)+

∥∥2
2
, and

∥∥(β)+
∥∥
2

+
∥∥(−β)+

∥∥
2

=
∥∥(β)+

∥∥
2

=
∥∥(θ)+

∥∥
2
<
∥∥(θ)+

∥∥2
2
,

hence
∥∥(β)+

∥∥
2

+
∥∥(−β)+

∥∥
2
< θ>β.
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