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Abstract

We compare two state-of-the-art non-linear techniques for nonparametric func-

tion estimation via piecewise constant approximation: the taut string and the Un-

balanced Haar methods. While it is well-known that the latter is multiscale, it is

not obvious that the former can also be interpreted as multiscale. We provide a

unified multiscale representation for both methods, which offers an insight into the

relationship between them as well as suggesting lessons both methods can learn from

each other.
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1 Introduction

A canonical problem in nonparametric regression is the estimation of a one-dimensional

function f from noisy observations y in the additive model

yt = f

(

t

n

)

+ ǫt, t = 1, · · · , n, (1)

where the observations {yt}nt=1 are taken on an equispaced grid. In the simplest ver-

sion of (1), the noise {ǫt}nt=1 is assumed to be iid Gaussian, which is not necessarily

a realistic assumption in many applied problems, but serves as an excellent bench-

mark for comparing estimation techniques and gauging their potential performance

in more complex models, in the sense that if a method misperforms in the model

(1) with iid Gaussian noise, there is normally little chance of it performing well in

more complex settings.

In particular, the problem of estimating f using piecewise constant estimators

has attracted considerable attention. The class of piecewise constant functions is

flexible in approximating a wide range of function spaces (e.g. see DeVore (1998)).

Also, piecewise constant estimates are easy to interpret, as breakpoints in the es-

timate indicate significant changes in the mean of the data, while the constant

intervals between the breakpoints represent regions where the mean remains ap-

proximately the same. It is well-known that if the underlying function f is spatially

inhomogeneous, non-linear piecewise constant estimators perform better than linear

estimators. Therefore, in what follows, we discuss non-linear approaches.

Without attempting to be exhaustive, we mention a few recent, well-performing

estimation techniques. Wavelet thresholding estimation was first introduced in

Donoho and Johnstone (1994), where the thresholded estimator was shown to be

theoretically tractable and perform well. By using Haar wavelets, piecewise constant

estimators are obtained. The CART methodology (Breiman et al, 1983, Classifica-

tion and Regression Trees) performs greedy binary splitting to grow a partition,
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whose terminal nodes yield a piecewise constant estimator. In Engel (1997), a

method for locally adaptive histogram construction was introduced, which is based

on a tree of dyadic partitions and hence obtains a multiscale, piecewise constant

estimator. Polzehl and Spokoiny (2000) presented Adaptive Weight Smoothing, a

data-driven local averaging procedure with an adaptive choice of weights, which

iteratively produces a piecewise constant estimator. More recently, methods in-

volving the complexity-penalized likelihood optimization were proposed for estimat-

ing an unknown function by piecewise polynomials (Comte and Rozenholc, 2004;

Kolaczyk and Nowak, 2005), which can be adopted to produce piecewise constant

estimators.

In this paper, we are particularly interested in two methodologies, the Unbal-

anced Haar (UH) technique (Fryzlewicz, 2007) and the taut string (TS) based esti-

mation (see e.g. Barlow et al (1972) and Davies and Kovac (2001)). Both techniques

are computationally fast, achieve theoretical consistency, and exhibit excellent per-

formance in numerical simulation studies. The former involves the decomposition

of the data with respect to orthonormal Haar-like basis vectors with jumps not nec-

essarily in the middle of their support, while the latter finds a piecewise constant

estimator via penalizing its total variation.

Our aim in this paper is to compare these two methods and discover links be-

tween them. The UH technique is multiscale by nature (Fryzlewicz, 2007), yet the

multiscale character of the TS technique is less obvious, and has not been noted in

the literature before. Thus, in order to establish links between the two methods, we

first provide an interesting multiscale interpretation of the TS technique. This then

enables us to better understand similarities and differences between the UH and

TS techniques, and establish a unified estimation methodology, which both the UH

and the TS technique are instances of. Finally, taking advantage of this common

framework, we derive lessons which either method can learn from the other.

The rest of paper is organized as follows. In Section 2, we provide a descrip-
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tion of the UH and TS techniques, as well as flowcharts of their algorithms, which

offer an insight into the relationship between their physical interpretations. Then

follows the comparison study, including the understanding of the two techniques

in the framework of breakpoint detection (Section 3). We conclude the discussion

in Section 4 by listing some ways of possible improvement and extension for both

techniques, which suggest avenues for further research.

2 Unbalanced Haar and taut string techniques

In this section, we give an overview of the UH and TS techniques. In particular, we

emphasize the explicit multiscale nature of the UH methodology. One contribution

of this paper is to cast a new light on the TS technique via its new multiscale inter-

pretation, which is achieved by introducing multiscale algorithms for both methods

in Section 2.3. These new algorithms are key to understanding and comparing the

two techniques.

2.1 Unbalanced Haar technique

The UH technique consists of three steps: the transformation of {yt}nt=1 with respect

to an adaptively chosen UH wavelet basis, hard-thresholding of the wavelet coeffi-

cients, and the inverse UH transformation of the thresholded coefficients to yield

an estimate of f . For the principles of traditional wavelet thresholding estimation

(without the adaptive basis selection), the reader is referred to Vidakovic (1999).

The UH wavelet basis vectors were first studied in Girardi and Sweldens (1997)

as an extended version of classical Haar wavelet vectors, the extension being that

the breakpoint was permitted to occur anywhere within their support. Let s and

e denote the start and end of a generic interval, respectively, and let b denote the

location of the breakpoint. Then, a UH vector on the interval [s, e] with breakpoint b,

ψs,b,e, is defined as ψs,b,e(l) =
{

1
b−s+1

− 1
e−s+1

}1/2
I[s,b](l)−

{

1
e−b

− 1
e−s+1

}1/2
I[b+1,e](l),
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for s ≤ l ≤ e. Classical Haar wavelet vectors are a special case with b = (s+e−1)/2.

Denote the vector of observations as ỹ = (y1, . . . , yn)
T and its sub-vector on a

generic support {s, . . . , e} as ỹes = (ys, . . . , ye)
T . Noting that on a given support, the

choice of breakpoints b defines the choice of a UH basis, one way of UH basis selection

is presented in Fryzlewicz (2007). The first breakpoint b1,1 is chosen from {1, . . . , n}

such that the inner product between ỹ and ψ1,b1,1,n is maximized in absolute value,

i.e. b1,1 = argmaxb∈{1,...,n} |〈ỹ, ψ1,b,n〉|. The explicit expression for the UH wavelet

coefficient is given in (5). The next breakpoints are chosen similarly on the supports

defined by the previously chosen breakpoint, {1, . . . , b1,1} and {b1,1 + 1, . . . , n}, and

the same procedure is repeated until it is no longer possible to divide any support

into two. Then ỹ is transformed with respect to the orthonormal basis defined by

the selected breakpoints. The next step is the hard-thresholding of the wavelet co-

efficients by setting to zero those which fall below the universal threshold σ
√
2 logn.

In practice the standard deviation of the noise is unknown but can be estimated

as the median of the sequence {|yt+1 − yt|/
√
2}n−1

t=1 divided by the 0.75-quantile of

the standard normal distribution (which is approximately equal to 0.6745). Finally

the inverse transform is taken to obtain the final estimate f̂UH , which is shown to

be a mean-square consistent estimator for a wide range of functions, uniformly over

those UH bases (however they have been selected) which are not “too unbalanced”

in the sense that each basis vector should satisfy

max

{

b− s+ 1

e− s+ 1
,

e− b

e− s+ 1

}

≤ p, (2)

for a fixed p ∈ [1/2, 1). Thus, in practice, the maximisation of the inner products

as described above is performed in such a way that each time, the maximum is

only taken over those wavelets which satisfy condition (2), to ensure mean-square

consistency of the resulting estimator.

We note that at the outset of the UH basis selection procedure, the entire ob-
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servation vector is scanned in the search for b1,1, but then the scope of the search

is iteratively narrowed down as each “parent” vector of observations gets iteratively

divided into two “children”, i.e. subvectors to the left and to the right of the previ-

ously detected breakpoint. Because of this natural “parent-child” structure of the

search, the UH estimation technique can be viewed as multiscale.

The recursive, binary nature of the UH technique shows its connection to the

CART methodology. However, the UH technique is more than a binary decision tree;

its key ingredient is that it furnishes a decomposition of data into wavelet coefficients,

which can then be processed further depending on the aim of the analysis. In other

words, the user of the UH methodology can enjoy the benefits of it being a wavelet

technique, including generalizations to other (smoother) wavelets.

We also note that the binary decision tree is only one, “top-down”, way of

choosing a UH basis. Another way, which can be seen as a “bottom-up” approach,

was introduced in Fryzlewicz (2007). However, even the top-down UH estimator

and CART differ significantly in that the former employs the usual universal wavelet

thresholding, whereas the latter employs a “hereditary” mechanism whereby further

subdivision is stopped as soon as a subinterval is judged to be a node. An interesting

connection between the dyadic (i.e. balanced) Haar approach and dyadic CART is

given in Donoho (1997), where again, it is noted that the dyadic CART estimator

differs from the Haar thresholding estimator due to the heredity rule imposed on

the tree structure.

In Section 2.3, we provide a more physical interpretation of the UH technique

along with its flowchart representation.

2.2 Taut strings

The TS technique is introduced in Barlow et al (1972) in the context of isotonic func-

tion estimation. In the more general model (1), it solves a penalized least squares

functional where the penalty is based on the total variation norm (Mammen and van de Geer,
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1997; Davies and Kovac, 2001). That is, it searches for a f̂TS satisfying

f̂TS = argf min

{

‖f − y‖22 + γ
∑

t

|ft+1 − ft|
}

, (3)

where γ is a tuning parameter. This is guaranteed to return a piecewise constant

estimate whose number of breakpoints is a non-increasing function of γ.

One way of describing the computation of f̂TS is using the following “string” and

“tube” arguments, which is referred to as the “uniscale TS algorithm” throughout

this paper. Denote the integrated process of observations {yt}nt=1 as Y := {Yt}nt=1,

i.e. Yt =
∑t

u=1 yu with Y0 = 0. Then imagine the graph of Y on the interval [0, 1]

which connects {(t/n, Yt), 0 ≤ t ≤ n}, and also a tube of radius, say λ > 0 (where λ

is related to the penalty constant γ from (3) as γ = 2λ), surrounding the graph Y.

The tube consists of the lower bound lt := Yt−λ and the upper bound ut := Yt+λ.

Then, suppose there is a string connecting (0, Y0) and (1, Yn), while being constrained

to lie within the tube, and it is now pulled until it is taut, touching the tube on

either side at possibly multiple “knots”. In other words, the taut string has the

smallest length among functions {f : [0, 1] → R; f0 = Y0, fn = Yn, lt ≤ ft ≤ ut}, and

its derivative coincides with f̂TS (Davies and Kovac, 2001).

Note that between two knots at which the string only touches the upper bound,

it coincides with the greatest convex minorant (GCM) of u. Similarly, between two

knots where the string only touches the lower bound, it is the least concave majorant

(LCM) of l. Finally where the string switches from touching u to touching l, a local

maximum occurs in its derivative, and a local minimum occurs in the opposite

manner.

Combined with a multiresolution bound over the empirical residuals, the TS

technique is adopted in Davies and Kovac (2001) for nonparametric regression with

emphasis on consistent estimation of the number and locations of local extremes.

The authors propose a taut string algorithm which simultaneously computes the
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GCM of u and the LCM of l and finds the knots from left to right. In Section 2.3,

we provide an alternative algorithm, accompanied by a flowchart, which reveals the

multiscale nature of the taut string method. It is this multiscale interpretation of

the taut string algorithm through which we derive the similarities and differences

between the UH and TS techniques in Section 3.

2.3 Unified multiscale description of UH and TS algorithms

In introducing the flowcharts of the UH and TS techniques, we revisit the concept of

a string and its knots. Using the same notation as in Section 2.2, consider a string,

denoted by z, which connects (0, Y0) and (1, Yn) with a straight line. We note that

the algorithm for the UH technique is established in an adjusted y-axis: we define a

multiplying factor ρUH on t ∈ [s, e) as

ρUH(t; s, e) =

√

e− s+ 1

(t− s+ 1)(e− t)
, (4)

which adjusts the string and the integrated process to yield z∗t = ρUH(t; s, e) · zt
and Y ∗

t = ρUH(t; s, e) · Yt. The adjusting factor ρUH comes from the UH wavelet

basis used to compute the wavelet coefficient. It is designed such that the wavelet

coefficient defined on the segment [s, e] with a breakpoint at t is equal to the product

of ρUH and the differential term between the local sum (
∑t

u=s yu = Yt − Ys−1) and

the scaled global sum ( t−s+1
e−s+1

· (Ye − Ys−1)) of the observations, see (5) for further

details.

Next, consider a tube of radius r surrounding the integrated process Y (or its

adjusted version Y∗ in the UH technique); however this time the radius is chosen to

be so large that the string z (z∗) does not touch the tube. With this starting set-up,

our algorithmic interpretation of the two techniques is summarized in the flowcharts

in Figures 1–2.

The two algorithms proceed similarly by squeezing the tube and re-arranging
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yes

no

yes

yes no

UH algorithm

string z 
 integrated process Y 

 (s, e)=(0, n)

adjusted string z* 
 adjusted integrated 

 process Y*
 tube (l, u)

squeeze the tube 
 until it touches z* at t=b/n

radius of tube 
 > lambda?

arrange z to connect 
 (s/n, Y_s), (b/n, Y_b), (e/n, Y_e) 

 with straight lines

(s, e)=(s, b) (s, e)=(b+1, e)

e−s+1>2?

arrange the tube radius 
 to be lambda on (s, e)

algorithm  
 terminated on the 

 segment (s, e)

terminated on 
 every segment?

end

Figure 1: Flowcharts of UH algorithm.
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yes

yes

yes no

no

TS algorithm

string z 
 integrated process Y 

 tube (l, u) 
 (s, e)=(0, n)

squeeze the tube 
 until it touches z at t=b/n

radius of tube 
 > lambda?

attach z to the tube at t=b/n

(s, e)=(s, b) (s, e)=(b+1, e)

e−s+1>2?

arrange the tube radius 
 to be lambda on (s, e)

algorithm  
 terminated on the 

 segment (s, e)

terminated on 
 every segment?

end

Figure 2: Flowcharts of TS algorithm; see Section 3 for the comparison study between the UH
and TS techniques.
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the string simultaneously. By squeezing the tube, the first knot is detected at, say

t = b/n, as the point where the tube first touches z (z∗). If the radius of the

squeezed tube is greater than a pre-specified value λ > 0, the string is re-arranged

(see point (ii) below) and two segments are defined by the knot at t = b/n, i.e.

(0, b/n) and (b/n, 1). The same knot detection and string re-arrangement steps are

repeated on each segment separately, as long as (a) the length of the segment is

large enough for further division of the segment to be possible in the next iteration,

and (b) the squeezed tube radius is greater than λ on the given segment. If, on

any segment, the radius of the tube is found to be less than λ, we set it to λ. The

estimation procedure is finished once the progression of the algorithm is terminated

on every segment, and the estimator is obtained as the derivative of the string z. In

both algorithms, the current “parent” segment is always split into two “children”

subsegments. Therefore the same procedure is applied to the data at multiple scales,

and thus we can conclude that not only the UH technique but also the TS technique

is multiscale.

While the basic steps of the two algorithms are similar (as described above), they

differ in the following details.

(i) The UH algorithm is performed in the adjusted y-axis, while the TS algorithm

is performed in the original y-axis.

(ii) When a knot is detected with the squeezed tube having its radius larger than

λ, the string is re-arranged differently; on a generic segment (s/n, e/n), the UH

algorithm arranges z to connect (s/n, Ys) and (b/n, Yb) with a straight line, as

well as (b/n, Yb) and (e/n, Ye) with a straight line; on the other hand, the TS

algorithm attaches z to the tube at the detected knot and further squeezing of

the tube is applied with z still being attached to it. Note that the tube remains

a symmetric band around the integrated process Y throughout the algorithm.

However, since z consists of straight lines connecting two neighbouring knots

(including (0, Y0) and (1, Yn)), the slope of each line changes constantly as
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the radius of the tube decreases, and as a result, it is a constantly changing

function on [0, 1]. The attachment of z to the tube can be observed in Figure 5,

where the upper right and lower middle figures show the state in between the

detection of two knots. In summary, our TS algorithm returns its estimator

as the derivative of the taut string which is attached to the tube of radius λ

at zero, one or multiple knots and connects neighbouring knots with straight

lines.

As opposed to the uniscale TS algorithm presented in Section 2.2, the TS al-

gorithm from our unified approach is referred to as the “multiscale TS algorithm”

throughout the paper. We emphasize that the multiscale TS algorithm returns ex-

actly the same estimator as that obtained from the uniscale TS algorithm, and thus

it also solves the penalized least squares problem in (3). While applying the multi-

scale TS algorithm, when the first knot is detected with the tube squeezed so that

its radius equals λ1, the string in that state is equal to the string from the uniscale

TS algorithm with the tube radius equal to λ1. Then recursively applying the same

argument, it can be seen that the multiscale TS algorithm produces exactly the

same state of the tube and the string as the uniscale TS algorithm.

We note that the UH algorithm as presented in the flowchart (Figure 1) is a mod-

ification of the description in Section 2.1. The modification simplifies the graphical

representation as well as the comparison between two techniques. In the flowchart,

the algorithm terminates on a segment if the squeezed tube radius is smaller than

λ, while the original algorithm terminates only when the length of the segment is

too small (but then applies thresholding with the threshold set equal to λ). This

difference can affect the adaptivity of the final estimate f̂UH depending on the shape

of underlying function f , and is further discussed in Section 4. We also note that

the algorithm in Figure 1 does not take into account the condition imposed in (2)

when selecting b ∈ (s, e), unlike the original UH algorithm as proposed in Fryzlewicz

(2007). However, this condition can easily be incorporated in both UH and TS al-
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gorithms and is only omitted for the simplicity of presentation.

We conclude this section by showing, in Figures 4–5, iteration-by-iteration pro-

gression of both algorithms from our unified approach as applied to the toy example

from Figure 3. Iteration (j, k) indicates that the knot is detected in the jth iteration

on the kth segment from the left.

3 Comparison of UH and TS techniques

Based on the multiscale algorithms established above, we now provide a detailed

comparison study between the two techniques. Firstly, in Section 3.1, we define

the “locating” functions for both techniques, which are used to find the locations

of knots in a given segment. The comparison study continues in Section 3.2 in the

framework of breakpoint detection, which provides an insight into reasons why the

UH and TS techniques often perform differently.

3.1 Locating functions of UH and TS techniques

In the UH technique, the selection of a UH basis on a generic interval [s, e] involves

the computation of the inner product between ỹes and a set of UH wavelet vectors

ψs,t,e for t ∈ (s, e). The break in a wavelet vector, b, corresponds to the knot on the

segment (s/n, e/n) in the UH algorithm, and it is located as

b = arg max
t∈(s,e)

|〈ỹes, ψs,t,e〉|

= arg max
t∈(s,e)

∣

∣

∣

∣

∣

√

e− t

(e− s+ 1)(t− s+ 1)
(Yt − Ys−1)−

√

t− s+ 1

(e− s+ 1)(e− t)
(Ye − Yt)

∣

∣

∣

∣

∣

= arg max
t∈(s,e)

∣

∣

∣

∣

∣

√

e− s+ 1

(t− s+ 1)(e− t)

{

t− s+ 1

e− s+ 1
(Ye − Ys−1)− (Yt − Ys−1)

}

∣

∣

∣

∣

∣

= arg max
t∈(s,e)

cUH(t; s, e). (5)

cUH(b; s, e) can be seen as the radius of the tube in its adjusted y-axis when
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Figure 3: A toy example; yt (dots), f (solid), f̂UH (dashed), f̂TS (broken).
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Figure 4: An application of UH algorithm to the model in Figure 3; adjusted integrated process
(solid), string (broken), tube (dotted), and the locations of the knots (vertical, dotted)
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Figure 5: An application of TS algorithm to the model in Figure 3; integrated process (solid),
string (broken), tube (dotted), and the locations of the knots (vertical, dotted); the upper left
figure shows the state of the tube and string at the beginning of algorithm; the upper right and
lower middle figures show the state in between the detection of knots.
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it touches the string at b/n, as well as having the interpretation of being the UH

wavelet coefficient of ỹes in absolute value. Therefore the step comparing the squeezed

tube radius to λ is equivalent to the hard-thresholding of the wavelet coefficients

and it justifies setting λ equal to the universal threshold.

We now derive the locating function for the TS algorithm. Conditional on the

string touching the tube at time t, let gt indicate whether it touches its upper (gt = 1)

or lower (gt = −1) bound. Initially, as the bounds of the tube approach the string,

we note that the first knot is chosen as

b = argt∈(0,n) max
gt=±1

gt ·
(

t

n
Yn − Yt

)

. (6)

With the convention that g0 = gn = 0, further knots on a generic interval (s, e) are

located as b = argt∈(s,e)maxgt=±1 c
TS(t; s, e), where

cTS(t; s, e) =























gt ·
{

t−s+1
e−s+1

(Ye − Ys−1)− (Yt − Ys−1)
}

if gs−1 = ge,

e−s+1
(e−s+1)(gt−gs−1)−(t−s+1)(ge−gs−1)

{

t−s+1
e−s+1

(Ye − Ys−1)− (Yt − Ys−1)
}

if gs−1 6= ge.

Comparing cUH and cTS shows that the two methods can be regarded as both

“integrated” and “differential” in the sense that they are applied to the integrated

processY (up to the adjusting factor ρUH for the UH estimator) and their test statis-

tics share the term
(

t−s+1
e−s+1

(Ye − Ys−1)− (Yt − Ys−1)
)

, the differential term between

the scaled global sum and the local sum on a given segment. To see the difference

between their multiplying factors, we quote the following lemma from Venkatraman

(1993). In our context, Lemma 1 implies that when signal f is piecewise constant

and there is no noise in the observations, the maximum of cUH is attained only at

the true breakpoints of f at every iteration of the UH algorithm.

Lemma 1 (Lemma 2.2 in Venkatraman (1993)). Let l > 0 be an integer and 0 =

a0 < a1 < . . . < al < al+1 = 1. Assume a piecewise constant function f(x) with
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breakpoints ai, i = 1, . . . , l and let f(x) = λi for x ∈ (ai, ai+1], where λi 6= λi+1.

Finally we assume that
∑l

i=0(ai+1 − ai)λi = 0. Define the function hUH as

hUH(x) =

∑i
j=1(aj − aj−1)λj−1 + (x− ai)λi

√

x(1 − x)
, (7)

for x ∈ [ai, ai+1]; 0 ≤ i ≤ l. Denote h∗ = maxx∈(0,1)
∣

∣hUH(x)
∣

∣ and x∗ as where the

maximum value is attained, i.e. hUH(x∗) = h∗. Then there exists 1 ≤ i ≤ l such

that ai = x∗, i.e., the maximum of |hUH | can only be attained at one of ai’s.

Simple algebra shows that hUH is equivalent to cUH for x = t/n ∈ (0, 1). The

equivalent of hUH for the TS technique is defined in the notation of Lemma 1 as

hTS(x) =

∑i
j=1(aj − aj−1)λj−1 + (x− ai)λi

α1x+ α2(1− x)
(8)

where αk ∈ {0,±1,±2}; k = 1, 2, subject to |α1 + α2| = 2,

for x ∈ [ai, ai+1]; 0 ≤ i ≤ l. The particular values taken by α1, α2 depend on whether

the string touches the lower or upper bound at the start and end of the segment

defined by [ai, ai+1]. Figure 6 shows interesting characteristics of the two locating

functions, where the UH and TS algorithms are applied to both noiseless and noisy

observations of (9) with n = 300,

f(u) =























−4 for u ∈ (0, 1/3],

0 for u ∈ (1/3, 2/3],

5 for u ∈ (2/3, 1].

(9)

First, consider the example with noiseless observations (dashed lines). The upper

panel shows cUH at first two iterations ((s, e) : (1, 300) → (1, 200)), where it is clear

that the (local) maxima are attained exactly at the true breakpoints (t = 100, 200).

The lower panel shows cTS at first two iterations, where two different shapes of

the locating function are observed. cTS is piecewise linear at the first iteration,
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Figure 6: (a), (b)
∣

∣cUH(t; s, e)
∣

∣ at iteration 1, 2; (c), (d)
∣

∣cTS(t; s, e)
∣

∣ at iteration 1, 2; vertical
dotted: true breakpoints, dashed: noiseless observations, solid: noisy observations.

and, at the second iteration, it reaches a plateau at t = 100 and remains constant

on [100, 200). For a piecewise constant signal function f , either shape can occur

depending on which side of the tube the string has been attached to in previous

iterations, i.e. on the values of gs, ge, and gb.

In either case, it is clear that cTS does not “point out” the locations of true

breakpoints as distinctively as cUH does since the change in the derivative of cTS is

not as dramatic as in that of cUH around each breakpoint. Thus we conclude that

there is no theoretical equivalent of Lemma 1 for hTS. This difference may lead to

the TS estimate reflecting the true breakpoint structure less accurately than the UH

estimate.
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3.2 Link to breakpoint detection

A theoretical study of a family of test statistics for breakpoint detection is performed

in Brodsky and Darkhovsky (1993). Their study, in light of the relationship of these

test statistics to cUH and cTS, adds further strength to our arguments from the pre-

vious section. In Chapter 3.5 of the book, the problem of a posteriori (retrospective)

breakpoint detection is considered, where the task is to find an abrupt change in

the mean value of a random sequence. Let {xt}nt=1 be a realization of a Gaussian

process with at most one breakpoint in its mean and otherwise iid, and Xt be the

integrated process of xt, i.e. Xt =
∑t

u=1 xu. Then a family of test statistics indexed

by δ was proposed as

dδ(t) =

{

t

n

(

1− t

n

)}δ {
1

t
Xt −

1

n− t
(Xn −Xt)

}

, (10)

where t ∈ {1, . . . , n} and δ ∈ [0, 1]. A breakpoint candidate is chosen as b̂δ =

argmaxt |dδ(t)|, and if |dδ(b̂δ)| exceeds a test criterion, b̂δ becomes the estimated

breakpoint. It can be shown with simple algebra that d1/2 corresponds to cUH , and

d1 to c
TS (at the first iteration of the TS algorithm and each time when gs = ge later

on, i.e. when the string is attached to the same side of tube at t = s and t = e).

Below we summarize the asymptotic results from Brodsky and Darkhovsky (1993)

on the probabilities of type 1 error (false alarm, i.e. the test statistic exceeding the

test criterion although there is no breakpoint), type 2 error (false tranquillity, i.e.

the test statistic being smaller than the test criterion although there is a break-

point), and the estimation error in the distance between the estimated and true

breakpoints. Note that the single breakpoint in the following (ii), (iii) is constrained

to exist within [a1, a2] where 0 < a1 < a2 < 1, which is in accordance with the

assumption (2) for the UH technique.

(i) When there is no breakpoint present in the observations, the asymptotic rate

of convergence for the probability of a type 1 error increases in δ, i.e. d1 is
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asymptotically the best in not causing any false alarm.

(ii) When there is a single breakpoint, the asymptotic rate of convergence for the

probability of a type 2 error decreases in δ, i.e. d0 is asymptotically the best

at detecting that there is a breakpoint.

(iii) When there is a single breakpoint, say b, the asymptotic rate of convergence

for the estimation error probability P

(
∣

∣

∣
b̂δ − b

∣

∣

∣
> ξ
)

−→ 0 is maximized when

δ = 1/2, i.e., d1/2 is asymptotically the best at estimating the location of the

breakpoint.

Note that the above (i) and (ii) are obtained under the assumption that the same

critical value is used for all dδ(t), δ ∈ [0, 1]. Then, for a fixed critical value, the rate

of convergence for the probabilities of type 1 and type 2 errors are optimized when

δ = 0 and δ = 1, respectively.

Suppose now that we choose the critical value cδ (depending on δ) such that the

probability of a type 1 error is fixed at α. Since the iid noise satisfies ǫt ∼ N (0, 1),

Theorem 3.5.1 of Brodsky and Darkhovsky (1993) implies that

c0 =

√

2A

∆n
, c1/2 =

√

2A

n
, and c1 =

√

A

2n
, (11)

where A = − log(α) and ∆ = min(a1(1− a1), a2(1− a2)).

With the above critical values, we can compare the rate of convergence at which

the probability of a type 2 error tends to 0 for different choices of δ. Let βδ(n) denote

the probability of a type 2 error for each δ, h be the magnitude of the jump at the

breakpoint, and p := b(1− b) ≤ 1/4. It is noted in Brodsky and Darkhovsky (1993)

that when the critical value does not satisfy cδ < hpδ, the probability of a type 2

error is positive for all n and tends to 1 as n → ∞. Therefore assuming cδ < hpδ,

we obtain the following from their Theorem 3.5.2,

βδ(n) ∼ exp

(

−n(hp
δ − cδ)

2

2p2δ−1

)

= exp

(

−nCδ

2

)

. (12)
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By plugging in cδ from (11), each Cδ is obtained as

C0 =

(

h
√
p−

√

2pA

∆n

)2

, C1/2 =

(

h
√
p−

√

2A

n

)2

, C1 =

(

h
√
p−

√

A

2pn

)2

.

Recalling that the true breakpoint (if it exists) satisfies b ∈ [a1, a2], p ≥ ∆ and thus

we have 2p/∆ ≥ 2 and 1/(2p) ≥ 2. Therefore C1/2 ≥ Cδ, δ = 0, 1, i.e. when the

type 1 error probability is fixed, the rate of convergence for probability of a type 2

error is better for δ = 1/2 than for δ = 0, 1.

In the above sense, cUH is more alert at breakpoint detection, in detecting both

its presence and its location, in comparison to cTS. Combined with the observation

made in Section 3.1, when estimating a piecewise constant signal with the emphasis

on breakpoint detection, it is likely that the UH technique would perform better

than the TS technique.

4 Possible lessons and directions for future re-

search

While the comparison study between the UH and TS techniques is interesting in

itself, it also provides, by establishing links between them, common “ground” on

which the two methods can learn lessons from each other, potentially leading to

new developments in the area of nonparametric function estimation.

Choice of threshold. The UH algorithm uses the universal threshold σ
√
2 logn

as the critical radius λ. By comparing the multiplying factors of cUH and

cTS, we can derive the corresponding critical radius for the multiscale TS

algorithm. The equivalent of ρUH for the multiscale TS algorithm, say ρTS,

satisfies ρTS(b; s, e)/ρUH(b; s, e) = Cα

√
e− s+ 1, where α = (b−s+1)/(e−s+

1) and Cα is a constant depending on α, gs, ge, and gb. Therefore Cασ
√
2n logn

can be used as the stopping radius in the multiscale TS algorithm.
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UH basis selection. The mean-square consistency result given in Fryzlewicz (2007)

holds for any UH basis as long as the breakpoint in each wavelet vector is not

too “unbalanced”. The TS algorithm provides yet another way of constructing

a UH basis.

Local squeezing. To improve the convergence rate at local extremes, Davies and Kovac

(2001) combine the taut string technique with a multiresolution bound over

estimated residuals, applying an additional local squeezing step to the taut

string estimate. It may be possible to derive a similar theoretical result on the

estimated UH residuals y− f̂UH and apply a similar local squeezing to obtain

a sharper estimate.

Although it does not contain explicit local squeezing, the original UH algorithm

as presented in Fryzlewicz (2007) obtains the UH wavelet decomposition down

to the finest scale and then applies the thresholding of wavelet coefficients.

This can be seen as a replacement for / equivalent of the local squeezing used

in the TS technique, as it enhances the adaptivity of the UH estimator. Similar

modification can readily be made to our version of the TS algorithm.

Controlling the total variation. The total variation penalty in (3) restricts the

string to be attached to one of the bounds of the tube. Therefore by modifying

the re-arrangement of the string in the UH algorithm, similar control over the

total variation of the estimated function could be achieved.

Extensions to non-Gaussian error distributions. In practice, the assumption

of Gaussianity is violated in many nonparametric estimation problems, such

as Poisson intensity or volatility estimation. In Dümbgen and Kovac (2009),

the extensions of taut strings are discussed under the assumption that the

noise follows a distribution from the exponential family. Their final estimate

is obtained by transforming f̂TS, the estimate from the least squares setting in

(3), via a known function. The same arguments may be applied to f̂UH when
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the prior knowledge on the noise distribution is available.

On the other hand, for the cases where the exact form of the relationship

between the mean and variance functions is unknown, a data-driven wavelet-

based estimation technique is proposed in Fryzlewicz (2008), where the use

of UH wavelets is readily applicable. By treating the variance stabilization

step as the adjustment of the y-axis, its extension to the TS technique is also

feasible via applying an appropriate multiplying factor to the string and the

integrated process.
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