Skip to main content
Log in

Efficient Monte Carlo simulation via the generalized splitting method

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

We describe a new Monte Carlo algorithm for the consistent and unbiased estimation of multidimensional integrals and the efficient sampling from multidimensional densities. The algorithm is inspired by the classical splitting method and can be applied to general static simulation models. We provide examples from rare-event probability estimation, counting, and sampling, demonstrating that the proposed method can outperform existing Markov chain sampling methods in terms of convergence speed and accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Botev, Z.I.: Three examples of a practical exact Markov chain sampling. Postgraduate Seminar Paper, School of Mathematics and Physics, The University of Queensland. http://espace.library.uq.edu.au/view/UQ:130865 (2007)

  • Botev, Z.I.: An algorithm for rare-event probability estimation using the product rule of probability theory. Technical report, School of Mathematics and Physics, The University of Queensland. http://espace.library.uq.edu.au/view/UQ:151299 (2008)

  • Botev, Z.I.: Splitting methods for efficient combinatorial counting and rare-event probability estimation. Technical report, School of Mathematics and Physics, The University of Queensland. http://espace.library.uq.edu.au/view/UQ:178513 (2009)

  • Botev, Z.I., Kroese, D.P.: The generalized cross entropy method, with applications to probability density estimation. Methodol. Comput. Appl. Probab. (2009). doi:10.1007/s11009-009-9133-7

    Google Scholar 

  • Brooks, S.P., Roberts, G.O.: Convergence assessment techniques for Markov Chain Monte Carlo. Stat. Comput. 8, 319–335 (1998)

    Article  Google Scholar 

  • Brooks, S.P., Dellaportas, P., Roberts, G.O.: An approach to diagnosing total variation convergence of MCMC algorithms. J. Comput. Graph. Stat. 1, 251–265 (1997)

    MathSciNet  Google Scholar 

  • Cérou, F., Guyader, A.: Adaptive multilevel splitting for rare event analysis. Stoch. Anal. Appl. 25, 417–443 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Cérou, F., Del Moral, P., Furon, T., Guyader, A.: Rare-event simulation for a static distribution. INRIA-00350762 (2009)

  • Chen, M.H., Shao, Q.M., Ibrahim, J.G.: Monte Carlo Methods in Bayesian Computation. Springer, New York (2000)

    Book  MATH  Google Scholar 

  • Gander, W., Gautschi, W.: Adaptive quadrature—revisited. BIT Numer. Math. 40, 84–101 (2000)

    Article  MathSciNet  Google Scholar 

  • Garvels, M.J.J.: The splitting method in rare event simulation. PhD thesis, University of Twente, The Netherlands, October 2000

  • Garvels, M.J.J., Kroese, D.P.: A comparison of RESTART implementations. In: Proceedings of the 1998 Winter Simulation Conference, pp. 601–609. Washington, DC (1998)

  • Garvels, M.J.J., Kroese, D.P., van Ommeren, J.C.W.: On the importance function in splitting simulation. Eur. Trans. Telecommun. 13(4), 363–371 (2002)

    Article  Google Scholar 

  • Gelman, A., Rubin, D.: Inference from iterative simulation using multiple sequences (with discussion). Stat. Sci. 7, 457–511 (1992)

    Article  Google Scholar 

  • Glasserman, P., Heidelberger, P., Shahabuddin, P., Zajic, T.: A look at multilevel splitting. In: Niederreiter, H. (ed.) Monte Carlo and Quasi Monte Carlo Methods 1996. Lecture Notes in Statistics, vol. 127, pp. 99–108. Springer, New York (1996)

    Google Scholar 

  • Glasserman, P., Heidelberger, P., Shahabuddin, P., Zajic, T.: A large deviations perspective on the efficiency of multilevel splitting. IEEE Trans. Autom. Control 43(12), 1666–1679 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Gu, J., Purdom, P.W., Franco, J., Wah, B.W.: Algorithms for the satisfiability (SAT) problem: a survey. In: Satisfiability Problem: Theory and Applications. DIMACS Series in Discrete Mathematics, vol. 35. American Mathematical Society, Providence (1996)

    Google Scholar 

  • Hoos, H.H., Stützle, T.: SATLIB: an online resource for research on SAT. In: Gent, I.P., Maaren, H.V., Walsh, T. (eds.) SAT 2000, pp. 283–292. IOS Press, The Netherlands (2000). www.satlib.org

    Google Scholar 

  • Johansen, A.M., Del Moral, P., Doucet, A.: Sequential Monte Carlo samplers for rare events. In: Proc. 6th International Workshop on Rare Event Simulation (2006)

  • Kahn, H., Harris, T.E.: Estimation of Particle Transmission by Random Sampling. National Bureau of Standards Applied Mathematics Series (1951)

  • Kou, S.C., Zhou, Q., Wong, W.H.: Equi-energy sampler with applications in statistical inference and statistical mechanics. Ann. Stat. 34, 1581–1619 (2006)

    Article  MathSciNet  Google Scholar 

  • Lagnoux-Renaudie, A.: Rare event simulation. Probab. Eng. Inf. Sci. 20(1), 45–66 (2006)

    MathSciNet  Google Scholar 

  • Lagnoux-Renaudie, A.: Rare event simulation: effective splitting model under cost constraint. In: Stochastic Processes and Their Applications, pp. 1820–1851 (2008)

  • L’Ecuyer, P., Demers, V., Tuffin, B.: Splitting for rare-event simulation. In: Proceedings of the 2006 Winter Simulation Conference, pp. 137–148 (2006)

  • L’Ecuyer, P., Demers, V., Tuffin, B.: Rare events, splitting, and quasi-Monte Carlo. ACM Trans. Model. Comput. Simul. 17(2), 1–44 (2007)

    Google Scholar 

  • Liu, J.S.: Monte Carlo Strategies in Scientific Computing. Springer, New York (2001)

    MATH  Google Scholar 

  • Del Moral, P.: Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications. Springer, New York (2004)

    MATH  Google Scholar 

  • Del Moral, P., Doucet, A., Jasra, A.: Sequential Monte Carlo samplers. J. R. Stat. Soc. B 68(3), 411–436 (2006)

    Article  MATH  Google Scholar 

  • Robert, C.P., Casella, G.: Monte Carlo Statistical Methods, 2nd edn. Springer, New York (2004)

    MATH  Google Scholar 

  • Rubinstein, R.Y., Kroese, D.P.: The Cross-Entropy Method. Springer, New York (2004)

    MATH  Google Scholar 

  • Rubinstein, R.Y., Kroese, D.P.: Simulation and the Monte Carlo Method, 2nd edn. Wiley, New York (2007)

    Book  Google Scholar 

  • Villén-Altamirano, M., Villén-Altamirano, J.: RESTART: a method for accelerating rare event simulations. In: Cohen, J.W., Pack, C.D. (eds.) Proceedings of the 13th International Teletraffic Congress, Queueing, Performance and Control in ATM, pp. 71–76 (1991)

  • Villén-Altamirano, M., Villén-Altamirano, J.: RESTART: a straightforward method for fast simulation of rare events. In: Tew, J.D., Manivannan, S., Sadowski, D.A., Seila, A.F. (eds.) Proceedings of the 1994 Winter Simulation Conference, pp. 282–289 (1994)

  • Villén-Altamirano, M., Villén-Altamirano, J.: About the efficiency of RESTART. In: Proceedings of the RESIM’99 Workshop, pp. 99–128. University of Twente, The Netherlands (1999)

    Google Scholar 

  • Welsh, D.J.A.: Complexity: Knots, Coloring and Counting. Cambridge University Press, Cambridge (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zdravko I. Botev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Botev, Z.I., Kroese, D.P. Efficient Monte Carlo simulation via the generalized splitting method. Stat Comput 22, 1–16 (2012). https://doi.org/10.1007/s11222-010-9201-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-010-9201-4

Keywords

Navigation