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Abstract We propose an �1-regularized likelihood method
for estimating the inverse covariance matrix in the high-
dimensional multivariate normal model in presence of miss-
ing data. Our method is based on the assumption that the
data are missing at random (MAR) which entails also the
completely missing at random case. The implementation
of the method is non-trivial as the observed negative log-
likelihood generally is a complicated and non-convex func-
tion. We propose an efficient EM algorithm for optimization
with provable numerical convergence properties. Further-
more, we extend the methodology to handle missing values
in a sparse regression context. We demonstrate both meth-
ods on simulated and real data.

Keywords Gaussian graphical model · Lasso · Missing
data · EM algorithm · Two-stage likelihood

1 Introduction

The most common probability model for continuous mul-
tivariate data is the multivariate normal distribution. Many
standard methods for analyzing multivariate data, includ-
ing factor analysis, principal components and discriminant
analysis, are directly based on the sample mean and covari-
ance matrix of the data.

Another important application are Gaussian graphical
models where conditional dependencies among the variables
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are entailed in the inverse of the covariance matrix (Lau-
ritzen 1996). In particular, the inverse covariance matrix and
its estimate should be sparse having some entries equaling
zero since these encode conditional independencies. In the
context of high-dimensional data where the number of vari-
ables p is much larger than sample size n, Meinshausen
and Bühlmann (2006) estimate a sparse Gaussian model by
pursuing many �1-penalized regressions for every node in
the graph and they prove that the procedure can asymptoti-
cally recover the true graph. Later, other authors proposed
algorithms for the exact optimization of the �1-penalized
log-likelihood (Yuan and Lin 2007; Friedman et al. 2007b;
Banerjee et al. 2008; Rothman et al. 2008). It has been
shown in Ravikumar et al. (2008) that such an approach is
also able to recover asymptotically the true graph, but Mein-
shausen (2008) points out that rather restrictive conditions
on the true covariance matrix are necessary. All these ap-
proaches and theoretical analyses have so far been devel-
oped for the case where all data is observed.

However, datasets often suffer from missing values (Lit-
tle and Rubin 1987). Besides many ad hoc approaches to the
missing-value problem, there is a systematic approach based
on likelihoods which is very popular nowadays (Little and
Rubin 1987; Schafer 1997). But even estimation of mean
values and covariance matrices becomes difficult when the
data is incomplete and no explicit maximization of the like-
lihood is possible. A solution addressing this problem is
given by the EM algorithm for solving missing-data prob-
lems based on likelihoods.

In this article we are interested in estimating the (in-
verse) covariance matrix and the mean vector in the high-
dimensional multivariate normal model in presence of miss-
ing data, and this in turn allows for imputation. We present
a new algorithm for maximizing the �1-penalized observed
log-likelihood. The proposed method can be used to es-
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timate sparse undirected graphical models or/and regular-
ized covariance matrices for high-dimensional data where
p � n. Furthermore, once having a regularized covariance
estimation for the incomplete data at hand, we show how to
do �1-penalized regression, when there is an additional re-
sponse variable which is regressed on the incomplete data.

2 �1-regularized inverse covariance estimation with
missing data

2.1 GLasso

Let (X(1), . . . ,X(p)) be Gaussian distributed with mean μ

and covariance Σ , i.e., N (μ,Σ). We wish to estimate the
concentration matrix K = Σ−1. Given a complete random
sample x = (x1, . . . , xn)

T , Yuan and Lin (2007) propose to
minimize the negative �1-penalized log-likelihood

−�(μ,K;x) + λ‖K‖1

= −n

2
log |K| + 1

2

n∑

i=1

(xi − μ)T K(xi − μ) + λ‖K‖1,

(1)

over non-negative definite matrices K (K � 0), where
‖K‖1 =∑p

j,j ′=1 |Kjj ′ |. Here λ > 0 is a tuning parameter.

The minimizer K̂ is easily seen to satisfy

K̂ = arg min
K�0

(−log|K| + tr(KS) + ρ‖K‖1
)

(2)

where S = 1
n

∑n
i=1(xi − x̄)(xi − x̄)T and ρ = 2λ

n
.

Friedman et al. (2007b) propose an elegant and efficient
algorithm, called GLasso, to solve the problem (2). We
briefly review the derivation of their algorithm while de-
tails are given in Friedman et al. (2007b) and Banerjee et al.
(2008). We will make use of this algorithm in the M-Step
of an EM algorithm in a missing data setup, described in
Sect. 2.3.2.

Using duality, formula (2) is seen to be equivalent to the
maximization problem

Σ̂ = arg max
‖Σ−S‖∞≤ρ

log det(Σ). (3)

Problem (3) can be solved by a block coordinate descent
optimization over each row and corresponding column of Σ .
Partitioning Σ and S

Σ =
(

Σ11 σ12

σT
12 σ22

)
, S =

(
S11 s12

sT
12 s22

)

the block solution for the last column σ12 satisfies

σ̂12 = arg min
y:‖(y−s12)‖∞≤ρ

yT Σ−1
11 y. (4)

Using duality it can be seen that solving (4) is equivalent to
the Lasso problem

β̂ = arg min
β

(∥∥∥∥
1

2
Σ

1/2
11 β − Σ

−1/2
11 s12

∥∥∥∥
2

2
+ ρ‖β‖1

)
(5)

where σ̂12 and β̂ are linked through σ̂12 = Σ11β̂/2. Permut-
ing rows and columns so that the target column is always
the last, a Lasso problem like (5) is solved for each col-
umn, updating their estimate of Σ after each stage. Fast co-
ordinate descent algorithms for the Lasso (Friedman et al.
2007a) make this approach very attractive. Although the al-
gorithm solves for Σ , the corresponding estimate of K can
be recovered cheaply.

2.2 MissGLasso

We turn now to the situation where some variables are miss-
ing (i.e., not observed).

As before, we assume (X(1), . . . ,X(p)) ∼ N (μ,Σ) to
be p-variate normally distributed with mean μ and covari-
ance Σ . We then write x = (xobs,xmis), where x represents
a random sample of size n, xobs denotes the set of observed
values, and xmis the missing data. Also, let

xobs = (xobs,1, xobs,2, . . . , xobs,n),

where xobs,i represents the set of variables observed for case
i, i = 1, . . . , n.

A simple way to estimate the concentration matrix K

would be to delete all the cases which contain missing values
and then estimating the covariance by solving the GLasso
problem (2) using only the complete cases. However, ex-
cluding all cases having at least one missing variable can
result in a substantial decrease of the sample size available
for the analysis. When p is large relative to n this problem
is even much more pronounced.

Another ad hoc method would impute the missing val-
ues by the corresponding mean and then solving the GLasso
problem. Such an approach is typically inferior to what we
present below, see also Sects. 4.1.1 and 4.1.4.

Much more promising is to base the inference for μ and
Σ (or K) in presence of missing values on the observed log-
likelihood:

�(μ,Σ;xobs) = −1

2

n∑

i=1

(
log |Σobs,i | + (xobs,i − μobs,i )

T

× (Σobs,i )
−1(xobs,i − μobs,i )

)
(6)

where μobs,i and Σobs,i are the mean and covariance matrix
of the observed components of X (i.e., Xobs) for observa-
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tion i. Formally (6) can be re-written in terms of K

�(μ,K;xobs)

= −1

2

n∑

i=1

(
log |(K−1)obs,i | + (xobs,i − μobs,i )

T

× ((K−1)obs,i
)−1

(xobs,i − μobs,i )
)
. (7)

Inference for μ and K can be based on the log-likelihood
(7) if we assume that the underlying missing data mecha-
nism is ignorable. The missing data mechanism is said to
be ignorable if the probability that an observation is missing
may depend on xobs but not on xmis (Missing at Random)
and if the parameters of the data model and the parameters
of the missingness mechanism are distinct. For a precise de-
finition see Little and Rubin (1987).

Assuming that p is large relative to n, we propose for the
unknown parameters (μ,K) the estimator:

μ̂, K̂ = arg min
(μ,K):K�0

−�pen(μ,K;xobs) (8)

−�pen(μ,K;xobs) = −�(μ,K;xobs) + λ‖K‖1 (9)

where �(μ,K;xobs) is given in (7). We call this estimator
the MissGLasso.

Despite the concise appearance of (7), the observed log-
likelihood tends to be a complicated (non-convex) function
of the individual μj and Kjj ′ , j, j ′ = 1, . . . , p, for a general
missing data pattern, with possible existence of multiple sta-
tionary points (Murray 1977; Schafer 1997). Optimization
of (8) is a non-trivial issue. An efficient algorithm is pre-
sented in the next section.

2.3 Computation

For the derivation of our algorithm presented in Sect. 2.3.2
we will state first some facts about the conditional distribu-
tion of the Multivariate Normal (MVN) Model.

2.3.1 Conditional distribution of the MVN model and
conditional mean imputation

Consider a partition (X1,X2) ∼ N (μ,Σ). It is well known
that X2|X1 follows a linear regression on X1 with mean
μ2 +Σ21Σ

−1
11 (X1 −μ1) and covariance Σ22 −Σ21Σ

−1
11 Σ12

(Lauritzen 1996). Thus,

X2|X1 ∼ N
(
μ2 +Σ21Σ

−1
11 (X1 −μ1),Σ22 −Σ21Σ

−1
11 Σ12

)
.

(10)

Expanding the identity KΣ = I gives the following useful
expression:
(

K11 K12

K21 K22

)(
Σ11 Σ12

Σ21 Σ22

)
=
(

I 0
0 I

)
. (11)

Using (11) we can re-express (10) in terms of K :

X2|X1 ∼ N
(
μ2 − K−1

22 K21(X1 − μ1),K
−1
22

)
. (12)

Formula (12) will be used later in our developed EM al-
gorithm for estimation of the mean μ and the concentration
matrix K based on a random sample with missing values.

The spirit of this EM algorithm, see Sect. 2.3.2, is cap-
tured by the following method of imputing missing values
by conditional means due to Buck (1960):

1. Estimate (μ,K) by solving the GLasso problem (2) us-
ing only the complete cases (delete the rows with missing
values). This gives estimates μ̂, K̂ .

2. Use these estimates to calculate the least squares linear
regressions of the missing variables on the present vari-
ables, case by case: From the above discussion about the
multivariate normal distribution, the missing variables of
case i, xmis,i , given xobs,i are normally distributed with
mean

E[xmis,i |xobs,i ,μ,K] = μmis − (Kmis,mis)
−1Kmis,obs

× (xobs,i − μobs
)
.

Therefore an imputation of the missing values can be
done by

x̂mis,i := μ̂mis − (K̂mis,mis)
−1K̂mis,obs

(
xobs,i − μ̂obs

)
.

Here, μ̂obs and μ̂mis depend on case i. Furthermore,
K̂mis,mis denotes the sub-matrix of K̂ with rows and
columns corresponding to the missing variables for
case i. Similarly K̂mis,obs denotes the sub-matrix with
rows corresponding to the missing variables and columns
corresponding to the observed variables for case i. Note
that we always notationally suppress the dependence
on i.

3. Finally, re-estimate (μ,K) by solving the GLasso prob-
lem on the completed data in step 2.

2.3.2 �1-norm penalized likelihood estimation via the EM
algorithm

A convenient method for optimizing incomplete data prob-
lems like (8) is the EM algorithm (Dempster et al. 1977).

To derive the EM algorithm for minimizing (8) we note
that the complete data follows a multivariate normal distrib-
ution, which belongs to the regular exponential family with
sufficient statistics

T1 = xT 1 =
(

n∑

i=1

xi1,

n∑

i=1

xi2, . . . ,

n∑

i=1

xip

)

and

T2 = xT x
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=

⎛

⎜⎜⎜⎝

∑n
i=1 x2

i1

∑n
i=1 xi1xi2 . . .

∑n
i=1 xi1xip∑n

i=1 xi2xi1
∑n

i=1 x2
i2 . . .

∑n
i=1 xi2xip

...
...

...∑n
i=1 xipxi1

∑n
i=1 xipxi2 . . .

∑n
i=1 x2

ip

⎞

⎟⎟⎟⎠ .

The complete penalized negative log-likelihood (1) can
be expressed in terms of the sufficient statistics T1 and T2:

−�(μ,K;x) + λ‖K‖1 = −n

2
log |K| + n

2
μT Kμ − μT KT1

+ 1

2
tr(KT2) + λ‖K‖1 (13)

which is linear in T1 and T2. The expected complete penal-
ized log-likelihood is denoted by:

Q(μ,K|μ′,K ′) = −E[�(μ,K;x)|xobs,μ
′,K ′] + λ‖K‖1.

The EM algorithm works by iterating between the E-
and M-Step. Denote the parameter value at iteration m by
(μ(m),K(m)) (m = 0,1,2, . . .), where (μ(0),K(0)) are the
starting values.

E-Step: Compute Q(μ,K|μ(m),K(m)):
As the complete penalized negative log-likelihood in (13)

is linear in T1 and T2, the E-Step consists of calculating:

T(m+1)
1 = E[T1|xobs,μ

(m),K(m)] and

T(m+1)
2 = E[T2|xobs,μ

(m),K(m)].
This involves computation of the conditional expectation

of xij and xij xij ′ , i = 1, . . . , n, j, j ′ = 1, . . . , p. Using for-
mula (12) we find

E[xij |xobs,i ,μ
(m),K(m)] =

{
xij if xij observed
cj if xij missing

where c is defined as

c := μ
(m)
mis − (K

(m)
mis,mis)

−1K
(m)
mis,obs

(
xobs,i − μ

(m)
obs

)
.

Similarly, we compute

E[xij xij ′ |xobs,i ,μ
(m),K(m)]

=

⎧
⎪⎨

⎪⎩

xij xij ′ if xij & xij ′ observed,
xij cj ′ if xij observed, xij ′ missing,

(K
(m)
mis,mis)

−1
jj ′ + cj cj ′ if xij & xij ′ missing.

Here the vector c and the matrix (K
(m)
mis,mis)

−1 are regarded
as naturally embedded in R

p and R
p×p respectively, such

that the obvious indexing makes sense.
The E-Step involves inversion of a sparse matrix, namely

K
(m)
mis,mis, for which we can use sparse linear algebra. Note

also that K
(m)
mis,mis is positive definite and therefore invert-

ible. Furthermore, considerable savings in computation are

obtained if cases with the same pattern of missing X’s are
grouped together.

M-Step: Compute the updates (μ(m+1),K(m+1)) as mini-
mizer of Q(μ,K|μ(m),K(m)):

It is easily seen from (13) that μ(m+1) and K(m+1) fulfill
the following equations:

μ(m+1) = 1

n
T(m+1)

1

K(m+1) = arg min
K�0

(
− log |K| + tr(KS(m+1)) + 2λ

n
‖K‖1

)

where S(m+1) = 1
n

T(m+1)
2 − μ(m+1)(μ(m+1))T . Therefore

the M-Step reduces to a GLasso problem of the form (2),
which can be solved by the algorithm described in Sect. 2.1.

2.3.3 Numerical properties

A nice property of every EM algorithm is that the objective
function is reduced in each iteration,

−�pen(μ
(m+1),K(m+1);xobs) ≤ −�pen(μ

(m),K(m);xobs).

Nevertheless the descent property does not guarantee con-
vergence to a stationary point.

A detailed account of the convergence properties of the
EM algorithm in a general setting has been given by Wu
(1983). Under mild regularity conditions including differen-
tiability and continuity, convergence to stationary points is
proven for the EM algorithm.

For the EM algorithm described in Sect. 2.3.2 which op-
timizes a non-differentiable function we have the following
result:

Proposition 1 Every limit point (μ̄, K̄), with K̄ � 0, of the
sequence {(μ(m),K(m));m = 0,1,2, . . .}, generated by the
EM algorithm, is a stationary point of the criterion function
in (9).

A proof is given in the Appendix.

2.3.4 Selection of the tuning parameter

In practice a tuning parameter λ has to be chosen in order to
trade-off goodness-of-fit and model complexity. One possi-
bility is to use a modified BIC criterion which minimizes

BIC = −2�(μ̂, K̂;xobs) + log(n)df,

over a grid of candidate values for λ. Here (μ̂, K̂) denotes
the MissGLasso estimator (8) using the tuning parameter λ

and df =∑j≤j ′ 1{K̂jj ′ 	=0} are the degrees of freedom (Yuan
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and Lin 2007). The defined BIC criterion is based on the ob-
served log-likelihood �(μ,K;xobs) which is also suggested
by Ibrahim et al. (2008).

Another possibility to tune λ is to use the popular V-
fold cross-validation method, based on the observed nega-
tive log-likelihood as loss function. We proceed as follows:
First divide all the samples into V disjoint subgroups (folds),
and denote the samples in vth fold by Nv for v = 1, . . . , V .
The V-fold cross-validation score is defined as:

CV (λ) =
V∑

v=1

(∑

i∈Nv

log |(Σ̂−v)obs,i | + (xobs,i − (μ̂−v)obs,i )
T

× ((Σ̂−v)obs,i )
−1(xobs,i − (μ̂−v)obs,i )

)

where Σ̂−v = (K̂−v)
−1, K̂−v and μ̂−v denote the estimates

based on the sample (
⋃V

v′=1 Nv′)/Nv . Then, find the best λ̂

that minimizes CV (λ). Finally, fit the MissGLasso to all the
data using λ̂ to get the final estimator of the inverse covari-
ance matrix.

3 Extension to sparse regression

The MissGLasso could be applied directly to high-dimen-
sional regression with missing values. Suppose a scalar re-
sponse variable Y is regressed on p predictor variables
X(1), . . . ,X(p). If we assume joint multivariate normality
for X̃ = (Y,X(1), . . . ,X(p)) with mean and concentration
matrix given by

μ̃ = (μ̃y, μ̃x), K̃ =
(

k̃yy k̃yx

k̃T
yx K̃xx

)
,

we can estimate (μ̃, K̃) with the MissGLasso. The regres-

sion coefficients β̂ are then given by β̂ = −ˆ̃
k−1
yy

ˆ̃
kyx . This

approach is short-sighted: a zero in the concentration ma-
trix, say K̃jj ′ = 0, means that X̃(j) and X̃(j ′) are condition-
ally independent given all other variables in X̃, where Y is
included in X̃. But we typically care about conditional in-
dependence of X(j) and X(j ′) given all other variables in
X (which does not include Y ). In other words, we think
that sparsity in the concentration matrix K of X (and of
course β) is desirable. However, sparsity in the matrix K is
not enforced by penalizing ‖K̃‖1. This can be seen by not-
ing that K̂ = (̂̃Σxx)

−1 is not sparse for most cases of sparse
estimates ̂̃K . For a similar discussion about this issue, see
Witten and Tibshirani (2009).

We describe in Sect. 3.2 a two-stage procedure which
results in sparse estimates for the concentration matrix K

of X and the regression parameters β . In order to moti-
vate the second stage of this procedure, we first introduce
a likelihood-based method for sparse regression with com-
plete data.

3.1 �1-penalization in the regression model with complete
data

Consider a Gaussian linear model:

Yi = βT Xi + εi, i = 1, . . . , n,

ε1, . . . , εn i.i.d. ∼ N (0, σ 2),

where Xi ∈ R
p are covariates.

In the usual linear regression model, the �1-norm penal-
ized estimator, called the Lasso (Tibshirani 1996), is defined
as:

β̂λ = arg min
β

1

2
‖y − xβ‖2 + λ‖β‖1, (14)

with n× 1 vector y, p × 1 regression vector β and n×p de-
sign matrix x. The Lasso estimator in (14) is not likelihood-
based and does not provide an estimate of the nuisance pa-
rameter σ . In Städler et al. (2010), we suggest to take σ into
the definition and optimization of a penalized likelihood es-
timator: we proceed with the following estimator,

β̂λ, σ̂λ = arg min
β,σ

−�(β,σ ;y|x) + λ
‖β‖1

σ

= arg min
β,σ

(
n log(σ ) + 1

2σ 2
‖y − xβ‖2 + λ

‖β‖1

σ

)
.

(15)

Intuitively the estimator (15) penalizes the �1-norm of the
regression coefficients and small variances σ simultane-
ously. Furthermore this estimator is equivariant under scal-
ing (see Städler et al. 2010). Most importantly if we repara-
metrize ρ = 1/σ and φ = β/σ we get the following convex
optimization problem:

φ̂λ, ρ̂λ = arg min
φ,ρ

(
−n log(ρ) + 1

2
‖ρy − xφ‖2 + λ‖φ‖1

)
.

(16)

This optimization problem can be solved efficiently in a
coordinate-wise fashion. The following algorithm is very
easy to implement, it simply updates, in each iteration, ρ fol-
lowed by the coordinates φj , j = 1, . . . , p, of φ.

Coordinate-wise algorithm for solving (16)

1. Start with initial guesses for φ(0), ρ(0).
2. Update the current estimates φ(m), ρ(m) coordinate-wise

by:

ρ(m+1) = yT xφ(m) +√(yT xφ(m))2 + 4yT yn

2yT y



224 Stat Comput (2012) 22:219–235

φ
(m+1)
j =

⎧
⎨

⎩

0 if |Sj | ≤ λ

(λ − Sj )/xT
j xj if Sj > λ

−(λ + Sj )/xT
j xj if Sj < −λ

where Sj is defined as

Sj = −ρ(m+1)xT
j y +

∑

s<j

φ(m+1)
s xT

j xs +
∑

s>j

φ(m)
s xT

j xs

and j = 1, . . . , p.
3. Iterate step 2 until convergence.

With xj we denote the j th column vector of the n×p ma-
trix x. This algorithm can be implemented very efficiently
as it is the case for the coordinate descent algorithm solv-
ing the usual Lasso problem. For example naive updates,
covariance updates and the active-set strategy described in
Friedman et al. (2007a, 2010) are applicable here as well.

Numerical convergence of the above algorithm is ensured
as follows.

Proposition 2 Every limit point (ρ̄, φ̄) of the sequence
{(ρ(m),φ(m));m = 0,1,2, . . .}, generated by the above al-
gorithm, is a stationary point of the criterion function
in (16).

A proof is given in the Appendix.
Note that the algorithm only involves inner products of x

and y. We will make use of this algorithm in the next section
when treating regression with missing values.

3.2 Two-stage likelihood approach for sparse regression
with missing data

We now develop a two-stage �1-penalized likelihood ap-
proach for sparse regression with potential missing values
in the design matrix x. Consider the Gaussian linear model:

Xi ∼ N (μ,Σ), Xi = (X
(1)
i , . . . ,X

(p)
i ) ∈ R

p

Yi |Xi = βT Xi + εi, εi i.i.d. ∼ N (0, σ 2)

Xi, εi independent of each other and among

i = 1, . . . , n.

(17)

If we assume model (17) it is obvious that (Yi,Xi) follows
again a multivariate normal distribution. The correspond-
ing mean and covariance matrix are given in the following
lemma:

Lemma 1 Assuming model (17), (Yi,Xi) is normally dis-
tributed N (μ̃, Σ̃) with μ̃ = (βT μ,μ) and

Σ̃ =
(

σ 2 + βT Σβ βT Σ

Σβ Σ

)
,

K̃ =
(

1
σ 2 −βT

σ 2

− β

σ 2 K + ββT

σ 2

)
.

(18)

A proof is given in the Appendix.
In a first stage of the procedure we estimate the inverse

covariance K = Σ−1 of X using the MissGLasso:

1st stage:

μ̂λ1, K̂λ1 = arg min
(μ,K):K�0

−�(μ,K;xobs) + λ1‖K‖1. (19)

Let now �(β,σ,μ,K;y,xobs) be the observed log-likeli-
hood of the data (y,x). In the second stage of the procedure
we hold μ and K fixed at the values μ̂λ1 and K̂λ1 from the
first stage and estimate β and σ by:

2nd stage:

β̂λ2, σ̂λ2 = arg min
β,σ

−�(β,σ, μ̂λ1, K̂λ1;y,xobs) + λ2
‖β‖1

σ
.

(20)

Note that we use two different tuning parameters for the first
and the second stage, denoted by λ1 and λ2. In practice,
instead of tuning over a two-dimensional grid (λ1, λ2), we
consider the 1st and 2nd stage independently. We tune first
λ1 using BIC or cross-validation as explained in Sect. 2.3.4
and then we use the resulting estimator in the 2nd stage and
tune λ2.

A detailed description of the EM algorithm for solving
the 1st stage problem was given in Sect. 2.3.2. We now
present an EM algorithm for solving the 2nd stage. In the
E-Step of our algorithm, we calculate the conditional expec-
tation of the complete-data log-likelihood given by

�(β,σ, μ̂λ1, K̂λ1;y,x)

= �(β,σ ;y|x) + �(μ̂λ1 , K̂λ1;x)

= �(β,σ ;y|x) + const

= −n log(σ ) − 1

2σ 2
‖y − xβ‖2 + const

= −n log(σ ) −
(

yT y
2σ 2

− yT xβ

σ 2
+ βT xT xβ

2σ 2

)
+ const.

(21)

We see from (21) that the part of the complete log-likelihood
which depends only on the regression parameters β and σ

is linear in the inner products yT y, yT x and xT x. Therefore
we can write the E-Step as:
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E-Step:

T(m+1)
1 = E[yT x|y,xobs, β

(m), σ (m), μ̂λ1, K̂λ1 ]
T(m+1)

2 = E[xT x|y,xobs, β
(m), σ (m), μ̂λ1, K̂λ1 ].

These conditional expectations can be computed as in
Sect. 2.3.2 using Lemma 1. In particular, these computa-
tions involve inversion of the matrices K̃

(m)
mis,mis. Because of

the special structure of K̃
(m)
mis,mis, see Lemma 1, explicit in-

version is possible by exploiting the formula (A+bbT )−1 =
A−1 − A−1bbT A−1/(1 + bT A−1b), where A−1 has been
previously computed in the first stage.

Finally, in the M-Step, we update the regression coeffi-
cients by:

M-Step:

β(m+1), σ (m+1) = arg min
β,σ

(
n log(σ ) + yT y

2σ 2
− T(m+1)

1 β

σ 2

+ βT T(m+1)
2 β

2σ 2
+ λ

‖β‖1

σ

)
. (22)

If we reparametrize ρ = 1/σ and φ = β/σ in (22), we see
that the M-Step has essentially the same form as (16). There-
fore, we can use the algorithm described in Sect. 3.1 but ex-
changing the inner products yT x and xT x for T(m+1)

1 and

T(m+1)
2 .

4 Simulations

4.1 Simulations for sparse inverse covariance estimation

4.1.1 Simulation 1

We consider model 1, model 2, model 3 and model 4 of
Rothman et al. (2008) with p = 10, 50, 100, 200, 300:
X1, . . . ,Xn i.i.d. ∼ N (0,Σ) with

Model 1: n = 100. AR(1), Σjj ′ = 0.7|j ′−j |.
Model 2: n = 150. AR(4), Kjj ′ = I(|j ′−j |=0)+0.4I(|j ′−j |=1)

+0.2I(|j ′−j |=2) + 0.2I(|j ′−j |=3) + 0.1I(|j ′−j |=4).

Model 3: n = 200. K = B + δI, where each off-diagonal
entry in B is generated independently and equals 0.5 with
probability α = 0.1 or 0 with probability 1 − α = 0.9, all
diagonal entries of B are zero, and δ is chosen such that the
condition number of K is p.

Model 4: n = 250. Same as model 3 except α = 0.5.

Note that in all models Σ−1 is sparse. In models 1 and 2
the number of non-zeros in Σ−1 is linear in p, whereas in
models 3 and 4 it is proportional to p2.

For all 20 settings (4 models with p = 10, 50, 100, 200,
300) we make 50 simulation runs. In each run we proceed
as follows:

− We generate n training observations and a separate set of
n validation observations.

− In the training set we delete completely at random
10%,20% and 30% of the data. Per setting, we therefore
get three training sets with different degree of missing
data.

− The MissGLasso estimator is fitted on each of the three
mutilated training sets, with the tuning parameter λ se-
lected by minimizing twice the negative log-likelihood
(log-loss) on the validation data. This results in three dif-
ferent estimators of the concentration matrix K .

We evaluate the concentration matrix estimation perfor-
mance using the Kullback-Leibler loss:

ΔKL(K̂,K) = tr(ΣK̂) − log |ΣK̂| − p.

We compare the MissGLasso with the following estimators:

− MeanImp: Impute the missing values by their cor-
responding column means. Then apply the GLasso
from (2) on the imputed data.

− MissRidge: Estimate K̂ = Σ̂−1 by minimizing

−�(μ,K;xobs) + λ‖K‖2
2.

For optimization we use an EM algorithm with an
�2-penalized (inverse) covariance update in the M-Step.
In the case of complete data, covariance estimation with
an �2-penalty is derived in Witten and Tibshirani (2009).

− MLE: Compute the (unpenalized) maximum likelihood
estimator using the EM algorithm implemented in the
R-package norm (only for p = 10).

Results for all covariance models with different degrees
of missingness are summarized in Tables 1 and 2 which re-
port the average Kullback-Leibler loss and the standard er-
ror. For all settings of models 1 and 3 the MissGLasso out-
performs MeanImp and MissRidge significantly. In model
2 MissGLasso works competitive but sometimes MeanImp
or MissRidge is slightly better. In model 4, the most dense
scenario, MissRidge exhibits the lowest average Kullback-
Leibler loss. Interestingly, in models 1 and 2 with large val-
ues of p, MissRidge works rather poorly in comparison to
MeanImp. The reason is that in very sparse settings the gain
of �1- over �2-regularization dominates the gain of EM-type
estimation over “naive” column-wise mean imputation. For
the lowest dimensional case (p = 10) we further notice that
the MLE estimator performs very badly with high degrees
of missingness whereas the MissGLasso and the MissRidge
remain stable.
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Table 1 Model 1 and Model 2
(strong sparsity): Average (SE)
Kullback-Leibler loss of MLE,
MeanImp, MissRidge and
MissGLasso with different
degrees of missingness. Method
with lowest average
Kullback-Leibler loss in bold
face

Model 1 MLE MeanImp MissRidge MissGLasso

p = 10 10% 0.82 (0.03) 0.66 (0.02) 0.53 (0.02) 0.41 (0.02)

20% 1.34 (0.07) 1.04 (0.03) 0.66 (0.02) 0.50 (0.02)

30% 3.32 (0.39) 1.60 (0.05) 0.79 (0.02) 0.61 (0.02)

p = 50 10% NA 6.49 (0.06) 9.39 (0.06) 4.81 (0.04)

20% NA 9.17 (0.10) 10.84 (0.08) 5.63 (0.06)

30% NA 12.38 (0.10) 12.44 (0.09) 6.62 (0.07)

p = 100 10% NA 16.49 (0.10) 29.79 (0.12) 13.07 (0.08)

20% NA 21.77 (0.12) 33.25 (0.13) 14.99 (0.10)

30% NA 28.65 (0.20) 37.35 (0.14) 17.72 (0.12)

p = 200 10% NA 40.36 (0.14) 85.83 (0.15) 33.79 (0.14)

20% NA 50.61 (0.18) 92.52 (0.15) 38.13 (0.14)

30% NA 64.35 (0.27) 100.03 (0.14) 44.66 (0.18)

p = 300 10% NA 67.20 (0.14) 151.85 (0.15) 57.95 (0.14)

20% NA 82.39 (0.26) 160.85 (0.16) 65.13 (0.17)

30% NA 103.03 (0.26) 170.22 (0.14) 75.46 (0.21)

Model 2 MLE MeanImp MissRidge MissGLasso

p = 10 10% 0.53 (0.02) 0.50 (0.01) 0.42 (0.01) 0.44 (0.01)

20% 0.72 (0.03) 0.75 (0.02) 0.48 (0.01) 0.51 (0.01)

30% 1.29 (0.07) 1.25 (0.03) 0.64 (0.02) 0.65 (0.02)

p = 50 10% NA 4.31 (0.03) 6.27 (0.02) 4.33 (0.02)

20% NA 5.32 (0.04) 6.86 (0.02) 4.84 (0.03)

30% NA 7.43 (0.05) 7.49 (0.03) 5.52 (0.04)

p = 100 10% NA 9.66 (0.04) 17.12 (0.03) 9.93 (0.04)

20% NA 11.56 (0.06) 18.05 (0.03) 11.08 (0.04)

30% NA 15.33 (0.06) 18.87 (0.03) 12.28 (0.04)

p = 200 10% NA 21.36 (0.08) 43.46 (0.04) 22.28 (0.07)

20% NA 24.61 (0.10) 44.33 (0.04) 24.72 (0.07)

30% NA 31.34 (0.06) 45.15 (0.04) 27.26 (0.06)

p = 300 10% NA 33.48 (0.06) 71.98 (0.05) 35.44 (0.06)

20% NA 38.42 (0.09) 72.38 (0.05) 38.88 (0.08)

30% NA 47.37 (0.02) 72.72 (0.05) 43.14 (0.07)

To assess the performance of MissGLasso on recover-
ing the sparsity structure in K , we also report the true pos-
itive rate (TPR) and the true negative rate (TNR) defined
as

TPR = #true non-zeros estimated as non-zeros

#true non-zeros
,

TNR = #true zeros estimated as zeros

#true zeros
.

These numbers are reported in Tables 3 and 4. For visual-
ization, we also plot in Fig. 1 heat-maps of the percentage
of times each element was estimated as zero among the 50
simulation runs. We note that our choice of CV-optimal λ

has a tendency to yield too many false positives and thus

too low values for TNR: in the case without missing values,

this finding is theoretically supported in Meinshausen and

Bühlmann (2006).

Finally, we comment on initialization and computational

timings of the MissGLasso. In the above simulation we used

the MeanImp solution as starting values (μ(0),K(0)) for

the MissGLasso. For a typical realization of model 2 with

p = 100, 30% missing data and a prediction optimal tuned

parameter λ, our algorithm converges in 3.58 seconds and

19 EM-iterations. All computations were carried out with

the statistical computing language and environment R on a

AMD Phenom(tm) II X4 925 processor with 800 MHz cpu

and 7.9 GB memory.
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Table 2 Model 3 and Model 4
(weak sparsity): Average (SE)
Kullback-Leibler loss of MLE,
MeanImp, MissRidge and
MissGLasso with different
degrees of missingness. Method
with lowest average
Kullback-Leibler loss in bold
face

Model 3 MLE MeanImp MissRidge MissGLasso

p = 10 10% 0.38 (0.01) 0.31 (0.01) 0.30 (0.01) 0.22 (0.01)

20% 0.51 (0.02) 0.53 (0.01) 0.36 (0.01) 0.26 (0.01)

30% 0.78 (0.03) 0.98 (0.02) 0.45 (0.01) 0.33 (0.01)

p = 50 10% NA 3.56 (0.03) 4.71 (0.02) 3.04 (0.02)

20% NA 5.05 (0.04) 5.30 (0.03) 3.63 (0.03)

30% NA 7.36 (0.07) 5.98 (0.03) 4.41 (0.04)

p = 100 10% NA 10.45 (0.05) 13.86 (0.04) 9.53 (0.05)

20% NA 13.41 (0.07) 15.06 (0.04) 11.05 (0.06)

30% NA 18.15 (0.10) 16.42 (0.05) 13.01 (0.06)

p = 200 10% NA 31.92 (0.08) 38.97 (0.05) 30.74 (0.07)

20% NA 37.49 (0.11) 41.13 (0.06) 34.23 (0.09)

30% NA 46.18 (0.16) 43.67 (0.06) 38.15 (0.08)

p = 300 10% NA 60.69 (0.10) 71.39 (0.07) 59.13 (0.10)

20% NA 69.60 (0.16) 74.92 (0.08) 64.98 (0.12)

30% NA 83.12 (0.19) 79.39 (0.08) 71.58 (0.11)

Model 4 MLE MeanImp MissRidge MissGLasso

p = 10 10% 0.30 (0.01) 0.29 (0.01) 0.24 (0.01) 0.23 (0.01)

20% 0.40 (0.01) 0.54 (0.02) 0.30 (0.01) 0.29 (0.01)

30% 0.56 (0.02) 0.94 (0.02) 0.36 (0.01) 0.37 (0.01)

p = 50 10% NA 5.23 (0.03) 4.27 (0.02) 5.04 (0.03)

20% NA 6.66 (0.04) 4.88 (0.03) 5.77 (0.03)

30% NA 8.95 (0.07) 5.50 (0.03) 6.55 (0.04)

p = 100 10% NA 14.23 (0.04) 12.69 (0.03) 14.02 (0.04)

20% NA 16.79 (0.06) 13.93 (0.03) 15.37 (0.04)

30% NA 21.27 (0.10) 15.25 (0.05) 16.83 (0.05)

p = 200 10% NA 39.43 (0.09) 37.00 (0.07) 39.11 (0.08)

20% NA 44.62 (0.12) 39.51 (0.07) 42.19 (0.08)

30% NA 53.48 (0.19) 42.41 (0.07) 45.64 (0.08)

p = 300 10% NA 65.44 (0.09) 65.24 (0.07) 65.43 (0.08)

20% NA 72.43 (0.12) 68.97 (0.06) 69.62 (0.08)

30% NA 85.19 (0.17) 73.59 (0.07) 74.19 (0.09)

4.1.2 Simulation 2: MissGLasso under MCAR, MAR and
NMAR

In the simulation of Sect. 4.1.1 the missing values are pro-
duced completely at random (MCAR), i.e., missingness
does not depend on the values of the data. As mentioned
in Sect. 2.2 the MissGLasso is based on a weaker assump-
tion, namely that the data are missing at random (MAR), in
the sense that the probability that a value is missing may
depend on the observed values but does not depend on the
missing values. A missing data mechanism where missing-
ness depends also on the missing values is called not miss-
ing at random (NMAR), see for example Little and Rubin
(1987). In this section we will show exemplarily that our
method performs differently under the MCAR, MAR and
NMAR assumption.

We consider a Gaussian model with p = 30, n = 100 and
with a block-diagonal covariance matrix

Σ =

⎡

⎢⎢⎢⎢⎣

B 0 · · · 0

0 B
...

...
. . . 0

0 · · · 0 B

⎤

⎥⎥⎥⎥⎦
, B =

⎛

⎝
1 0.7 0.72

0.7 1 0.7
0.72 0.7 1

⎞

⎠ .

Note that the concentration matrix K is again block-
diagonal and therefore a sparse matrix.

We now delete values from the training data according to
the following missing data mechanisms:

1. for all b = 1, . . . ,10 and i = 1, . . . , n:

xi,3·b is missing if ηi,b = 1,
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Table 3 Model 1 and Model 2 (strong sparsity): Average (SE) of True
Positive Rate (TPR) and True Negative Rate (TNR) of the MissGLasso
estimator for inferring the zeros in K = Σ−1. All numbers are percent-
ages

Model 1 TPR [%] TNR [%]

p = 10 10% 100 (0.00) 39.06 (1.45)

20% 100 (0.00) 42.06 (1.32)

30% 100 (0.00) 43.94 (1.33)

p = 50 10% 100 (0.00) 67.78 (0.34)

20% 100 (0.00) 67.64 (0.39)

30% 100 (0.00) 69.78 (0.24)

p = 100 10% 100 (0.00) 77.05 (0.23)

20% 100 (0.00) 77.01 (0.24)

30% 99.99 (0.01) 78.75 (0.09)

p = 200 10% 100 (0.00) 83.89 (0.17)

20% 100 (0.00) 85.10 (0.04)

30% 99.98 (0.01) 85.24 (0.15)

p = 300 10% 100 (0.00) 87.36 (0.13)

20% 100 (0.00) 88.41 (0.03)

30% 100 (0.00) 88.44 (0.07)

Model 2 TPR [%] TNR [%]

p = 10 10% 93.14 (1.06) 21.07 (2.36)

20% 88.46 (1.46) 25.60 (2.59)

30% 80.51 (1.58) 36.13 (2.66)

p = 50 10% 57.75 (0.35) 74.13 (0.31)

20% 53.20 (0.59) 76.50 (0.60)

30% 49.47 (0.59) 79.39 (0.55)

p = 100 10% 48.81 (0.29) 85.01 (0.21)

20% 46.72 (0.41) 85.35 (0.43)

30% 43.60 (0.25) 86.94 (0.09)

p = 200 10% 44.28 (0.13) 90.40 (0.05)

20% 41.40 (0.35) 91.26 (0.30)

30% 37.53 (0.15) 92.41 (0.04)

p = 300 10% 41.74 (0.25) 93.21 (0.20)

20% 39.19 (0.12) 93.47 (0.03)

30% 32.56 (0.16) 96.04 (0.07)

where ηi,b are i.i.d. Bernoulli random variables taking
value 1 with probability π and 0 with probability 1 − π .

2. for all b = 1, . . . ,10 and i = 1, . . . , n:

xi,3·b is missing if xi,3·b−2 < T.

3. for all b = 1, . . . ,10 and i = 1, . . . , n:

xi,3·b is missing if xi,3·b < T .

In all mechanisms the first and second variable of each
block are completely observed. Only the third variable of
each block has missing values. Mechanism 1 is clearly

Table 4 Model 3 and Model 4 (weak sparsity): Average (SE) of True
Positive Rate (TPR) and True Negative Rate (TNR) of the MissGLasso
estimator for inferring the zeros in K = Σ−1. All numbers are percent-
ages

Model 3 TPR [%] TNR [%]

p = 10 10% 100 (0.00) 43.15 (1.63)

20% 100 (0.00) 44.05 (1.69)

30% 100 (0.00) 43.50 (1.16)

p = 50 10% 99.75 (0.06) 63.55 (0.40)

20% 98.92 (0.14) 64.86 (0.32)

30% 97.22 (0.20) 67.12 (0.27)

p = 100 10% 94.52 (0.14) 70.92 (0.08)

20% 89.78 (0.20) 74.47 (0.09)

30% 82.56 (0.25) 77.93 (0.08)

p = 200 10% 73.60 (0.15) 78.06 (0.05)

20% 64.66 (0.17) 81.20 (0.05)

30% 54.49 (0.17) 84.17 (0.05)

p = 300 10% 61.19 (0.10) 82.35 (0.03)

20% 52.47 (0.10) 84.91 (0.03)

30% 43.19 (0.12) 87.31 (0.03)

Model 4 TPR [%] TNR [%]

p = 10 10% 100 (0.00) 26.50 (1.60)

20% 100 (0.00) 24.42 (1.45)

30% 99.38 (0.25) 26.58 (1.68)

p = 50 10% 80.29 (0.29) 34.35 (0.36)

20% 72.78 (0.42) 39.88 (0.43)

30% 64.12 (0.51) 46.31 (0.51)

p = 100 10% 54.33 (0.40) 53.67 (0.39)

20% 47.54 (0.36) 58.91 (0.37)

30% 40.13 (0.29) 65.02 (0.31)

p = 200 10% 36.65 (0.22) 67.62 (0.22)

20% 31.39 (0.23) 72.01 (0.23)

30% 26.81 (0.25) 76.13 (0.25)

p = 300 10% 26.73 (0.35) 75.64 (0.34)

20% 23.35 (0.32) 78.53 (0.32)

30% 20.62 (0.13) 80.99 (0.14)

MCAR, mechanism 2 is MAR and mechanism 3 is NMAR.
The probability π and the truncation constant T deter-
mine the amount of missing values. In our simulation we
use three different degrees of missingness: (a) π = 0.25,
T = Φ−1(0.25), (b) π = 0.5, T = Φ−1(0.5) = 0 and (c)
π = 0.75, T = Φ−1(0.75). Here, Φ(·) is the standard nor-
mal cumulative distribution function. Setting (a) results in
about 8 1

3 %, (b) in 16 2
3 % and (c) in 25% missing data. In

Fig. 2, box-plots of the Kullback-Leibler loss over 50 simu-
lation runs are shown. As expected we see that MissGLasso
performs worse in the NMAR case. This observation is more
pronounced for larger percentages of missing data.
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Fig. 1 Heat-maps of the identified zeros in the concentration matrix
K among 50 simulation runs of models 1–4 with p = 50. White color
stands for zero in each of the 50 simulation runs. Black stands for
non-zero in all runs. Left column: True concentration matrix. Middle
column: Concentration matrix from GLasso applied on complete data.
Right column: Concentration matrix from MissGLasso applied on data
with 30% of the values missing

4.1.3 Simulation 3: BIC and cross-validation

So far, we tuned the parameter λ by minimizing twice
the negative log-likelihood (log-loss) on validation data.
However, in practice, it is more appropriate to use cross-
validation or the BIC criterion presented in Sect. 2.3.4.

Figure 3 shows the Kullback-Leibler loss, the true posi-
tive rate and the true negative rate for the MissGLasso ap-
plied on model 1 with p = 50. We see from the plots that
cross-validation and tuning using additional validation data
of size 100 lead to very similar results. On the other hand
BIC performs inferior in terms of Kullback-Leibler loss, but
slightly better regarding the true negative rate.

4.1.4 Scenario 4: isoprenoid gene network in Arabidopsis
thaliana

For illustration, we apply our approach for modeling the iso-
prenoid gene network in Arabidopsis thaliana. The number
of genes in the network is p = 39. The number of observa-
tions, corresponding to different experimental conditions, is
n = 118. More details about the data can be found in Wille
et al. (2004). The dataset is completely observed. Neverthe-
less, we produce missing values completely at random and
examine the performance of MissGLasso. We consider the
following experiments.

First experiment: predictive performance in terms of log-
loss. Besides MissGLasso, MeanImp and MissRidge we
consider here a fourth method based on K-nearest neigh-
bors imputation (Troyanskaya et al. 2001). For the latter we
impute the missing values by K-nearest neighbors imputa-
tion and then we estimate the inverse covariance by using

Fig. 2 Kullback-Leibler loss over 50 simulation runs for different missing data mechanisms (MCAR, MAR, NMAR) and different degrees of
missingness: (a) π = 25%, T = Φ−1(0.25), (b) π = 50%, T = 0, (c) π = 75%, T = Φ−1(0.75)
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Fig. 3 KLloss, TPR, TNR of
the MissGLasso estimator tuned
with either additional validation
data, cross-validation or BIC.
Model 1 with p = 50, n = 100
and 10%–30% missing values,
based on 50 simulation runs

GLasso on the imputed data. The number of nearest neigh-
bors is chosen in advance in order to obtain minimal impu-
tation error.

Based on the original data we create 50 datasets by delet-
ing (completely at random) each time 30% of the values. For
each of these datasets we compute a 10-fold cross-validation
error as follows: We split the dataset into 10 equal-sized
parts. We fit for various λ-values the different estimators
on every nine tenth of the (incomplete) dataset and evalu-
ate the prediction error (based on out-sample negative log-
likelihood) on the left-out part of the original (complete)
data. The cross-validation error (cv error) is then the aver-
age over the 10 different prediction errors for an optimal
λ-value. The box-plots in the left panel of Fig. 4 show the
cv errors over the 50 datasets. MissGLasso, MissRidge and
KnnImp lead to a significant gain in prediction accuracy over
MeanImp. In this example MissRidge performs best.

Second experiment: edge selection. First, we select using
the GLasso on the original (complete) data (prediction op-
timal tuned) the twenty most important edges according to

the estimated partial correlations given by

ρ̂jj ′|rest = |K̂jj ′ |
√

K̂jj K̂j ′j ′
, j, j ′ = 1, . . . , p.

Then, we create 50 datasets by producing completely at ran-
dom m% missing values and select using the MissGLasso
for each of the 50 datasets the twenty most important edges
according to the partial correlations ρ̂jj ′|rest. We do this for
m = 5,10,15,20,25,30. Finally, we identify the overlap of
the selected edges without missing values and of the se-
lected edges with m% missing data. The box-plots in the
right panel of Fig. 4 visualize the size of this overlap. Even
with 30% missing data, the MissGLasso detects about 13 of
the twenty most important edges of the complete data.

4.2 Simulations for sparse regression

4.2.1 Simulation 1

In this section we will explore the performance of the two-
stage likelihood method developed in Sect. 3.2. In particular,
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Fig. 4 Arabidopsis thaliana
data (n = 118,p = 39). Left
panel: Cross-validation error of
MeanImp, KnnImp(=K-nearest
neighbors imputation followed
by the GLasso), MissRidge and
MissGLasso over 50 datasets.
For each dataset, 30% of the
original data are deleted. Right
panel: Box-plots of the overlap
of the twenty most important
edges from GLasso and
MissGLasso with and without
missing values over 50 datasets

we compare our new method with alternative ways of treat-
ing high-dimensional regression with missing values.

Consider the Gaussian linear model

Yi = βT Xi + εi, i = 1, . . . , n,

ε1, . . . , εn i.i.d. ∼ N (0, σ 2),

where the covariates Xi ∈ R
p, i = 1, . . . , n, are either fixed

or i.i.d. ∼ N (0,Σ). In all simulations training- and valida-
tion data are generated from this model. Assuming that there
are missing values only in the x matrix of the training data
we apply one of the following methods:

− MeanImp: Impute the missing values by their corre-
sponding column means. Then apply the Lasso-estimator
(14) on the imputed data.

− KnnImp: Impute the missing values by the K-nearest
neighbors imputation method (Troyanskaya et al. 2001).
Then apply the Lasso on the imputed data.

− MissGLImp: Compute (μ̂, K̂) with the MissGLasso es-
timator. Then, use this estimate to impute the missing
values by conditional mean imputation, i.e., replace the
missing values in observation i by

x̂mis,i := E[xmis,i |xobs,i , μ̂, K̂].
Finally, apply the Lasso on the imputed data.

− Miss2stg: This is the method introduced in Sect. 3.2. (1st
stage: solve the MissGLasso problem; 2nd stage: esti-
mate β and σ by minimizing a penalized negative log-
likelihood, see (20), where we fixed μ and K in the like-
lihood at the values from the 1st stage; initialization of
EM with β ≡ 0 and σ 2 = empirical variance of y)

All methods, except for MeanImp, involve two tuning pa-
rameters. Regarding the first parameter, the number of near-

est neighbors in KnnImp or the regularization parameter for
the MissGLasso are chosen by cross-validation on the train-
ing data. The second tuning parameter in the Lasso or in the
2nd stage of the Miss2stg approach, respectively, are chosen
to minimize the prediction error on the validation data.

To assess the performances of all methods we use the
L2-distance between the estimate β̂ and the true parameter
β , ‖β̂ − β‖2

2.

First experiment:

Model 5: p = 8, Σjj ′ = τ |j−j ′| and β = (3,1.5,0,0,2,

0,0,0).

We focus on four different versions of this model with differ-
ent combinations of n/τ/σ , namely 20/0.5/3;
40/0.5/1; 40/0.95/1; 100/0.5/0.5. The values n/τ/σ =
20/0.5/3 correspond to the model which was considered in
the original Lasso paper (Tibshirani 1996).

The box-plots in Fig. 5 of the L2-distances, summarize
the performance of the different methods for different com-
binations n/τ/σ . In this experiment, 20% of the training
data were deleted completely at random. For reference, we
added a box-plot for the L2-distances for the Lasso carried
out on complete data, i.e., before deleting 20% in the train-
ing data.

For the model from the original Lasso paper, namely the
combination n/τ/σ = 20/0.5/3, we see that the Lasso on
complete data does not perform substantially better than
simple mean imputation on data with 20% of the values re-
moved. This is due to the high noise level in this model. By
increasing n and/or scaling down σ , we reduce the noise
level and increase the signal in the data. Indeed, in the
setup n/τ/σ = 40/0.5/1, the analysis with complete data
performs now much better than all analyses carried out on
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Fig. 5 Model 5. Box-plots of
the L2-distances for different
values for n, τ and σ over 50
simulation runs with 20% of the
training data deleted completely
at random. Compl: Lasso on
complete data (before deleting
20% of the data).
Mean(=MeanImp): Mean
imputation followed by the
Lasso. Knn(=KnnImp): Knn
imputation followed by the
Lasso. MissGL(=MissGLImp):
MissGLasso and conditional
mean imputation followed by
the Lasso. 2stg(=Miss2stg):
Two-stage likelihood approach
introduced in Sect. 3.2

data with missing values. We also see that the Miss2stg
method is slightly better than the other methods. In the setup
n/τ/σ = 40/0.95/1 we increase the correlation between
the covariates by setting τ from 0.5 to 0.95 and we notice
that now KnnImp, MissGLImp and Miss2stg outperform the
“naive” MeanImp which ignores the correlation among the
different variables in the imputation step. Finally in the last
setup, n/τ/σ = 100/0.5/0.5, where n is increased and σ is
reduced again, the Miss2stg method is much better than the
other methods. Thus, for the cases considered where missing
data imply a clear information loss (e.g., when the difference
between complete and mean imputed data is large), the new
two-stage procedure is best.

Second experiment: Consider the following models:

Model 6: n = 100; p = 50 and p = 200; Σjj ′ = 0.8 ×
I(j,j ′≤9) for j 	= j ′, and Σjj = 1; βj = 2 for j = 1, . . . ,8
and zero elsewhere; σ = 0.5.

Model 7: n = 100; p = 50 and p = 200; Σjj ′ = I(j=j ′);
β = (3,1.5,0,0,2,0,0,0, . . .); σ = 0.5.

Model 8: n = 118; p = 39; x: data from isoprenoid gene
network in Arabidopsis thaliana (see Sect. 4.1.4); βj = 2
for j = 1,2,3 and zero elsewhere; σ = 0.5.

We delete 10%, 20% and 30% of the training data com-
pletely at random. The results (L2-distances) are reported

in Table 5. We read off from this table, that the Miss2stg
method performs best in all three models. We further no-
tice that in model 7, KnnImp and MissGLImp do not per-
form better than simple MeanImp whereas Miss2stg works
much better than all other methods. The explanation is that
KnnImp and MissGLImp use the information present in the
covariance matrix of X, which is the identity matrix for
model 7, for imputation. On the other hand, our two-stage
likelihood approach involves the joint distribution of (Y,X)

which seems to be the main reason for its better perfor-
mance.

4.2.2 Scenario 2: riboflavin production in Bacillus Subtilis

We finally illustrate the proposed two-stage likelihood ap-
proach on a real dataset of riboflavin (vitamin B2) produc-
tion by Bacillus Subtilis. The data has been provided by
DSM (Switzerland). The real-valued response variable is
the logarithm of the riboflavin production rate. There are
p = 4088 covariates (genes) measuring the logarithm of
the expression level of 4088 genes and measurements of
n = 146 genetically engineered mutants of Bacillus Subtilis.
We compare the estimators MeanImp, KnnImp, MissGLImp
and Miss2stg by carrying out a cross-validation analysis
as in the first experiment of Sect. 4.1.4. Here, we use the
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Table 5 Models 6-8: Average (SE) L2-distance of MeanImp, KnnImp,
MissGLImp and Miss2stg with different degrees of missingness

Model 6 MeanImp KnnImp MissGLImp Miss2stg

p = 50 10% 2.59 (0.18) 1.22 (0.12) 0.42 (0.04) 0.32 (0.02)

20% 5.87 (0.56) 2.88 (0.23) 1.16 (0.11) 0.96 (0.08)

30% 7.05 (0.47) 5.61 (0.45) 2.03 (0.18) 1.46 (0.10)

p = 200 10% 2.55 (0.23) 2.22 (0.20) 0.49 (0.04) 0.48 (0.04)

20% 5.44 (0.44) 5.16 (0.42) 1.20 (0.10) 1.23 (0.08)

30% 8.10 (0.65) 7.63 (0.59) 2.00 (0.18) 1.67 (0.11)

Model 7 MeanImp KnnImp MissGLImp Miss2stg

p = 50 10% 0.22 (0.02) 0.25 (0.02) 0.22 (0.02) 0.05 (0.00)

20% 0.56 (0.05) 0.63 (0.06) 0.56 (0.05) 0.09 (0.01)

30% 0.77 (0.05) 0.92 (0.06) 0.80 (0.05) 0.13 (0.01)

p = 200 10% 0.41 (0.04) 0.41 (0.03) 0.43 (0.04) 0.09 (0.01)

20% 0.80 (0.06) 0.81 (0.06) 0.86 (0.07) 0.15 (0.02)

30% 1.38 (0.10) 1.42 (0.10) 1.44 (0.11) 0.57 (0.08)

Model 8 MeanImp KnnImp MissGLImp Miss2stg

10% 1.59 (0.15) 0.49 (0.06) 0.29 (0.04) 0.13 (0.02)

20% 3.04 (0.17) 1.37 (0.13) 0.66 (0.06) 0.25 (0.03)

30% 4.29 (0.22) 2.38 (0.15) 1.30 (0.12) 0.62 (0.06)

squared error loss (y − βT x)2 to evaluate the prediction er-
rors. To keep the computational effort reasonable, we use
only the 100 covariates (genes) exhibiting the highest em-
pirical variances. The cv errors over 50 datasets (for each
dataset, 30% of the complete gene expression matrix are
deleted completely at random) are shown in Fig. 6. Mean-
Imp is worst. Our Miss2stg performs slightly better than Kn-
nImp and MissGLImp.

5 Discussion

We presented an �1-penalized (negative) log-likelihood
method for estimating the inverse covariance matrix in the
multivariate normal model in presence of missing data. Our
method is based on the observed likelihood and therefore
works in the missing at random (MAR) setup which is more
general than the missing completely at random (MCAR)
framework. As argued in Sect. 4.1.2, the method cannot han-
dle missingness pattern which are not at random (NMAR),
i.e., “systematic” missingness. For optimization, we use a
simple and efficient EM algorithm which works in a high-
dimensional setup and which can cope with high degrees
of missing values. In sparse settings, the method works
substantially better than �2-regularization. In Sect. 3, the
methodology was extended for high-dimensional regres-
sion with missing values in the covariates. We developed a
two-stage likelihood approach which was found to be never

Fig. 6 Cross-validated prediction error (y − βT x)2 of MeanImp, Kn-
nImp, MissGLImp and Miss2stg over 50 datasets, where for each
dataset 30% of the riboflavin data are deleted

worse but sometimes much better than K-nearest neighbors
or using the straightforward imputation with a penalized co-
variance (and mean) estimate from incomplete data.
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Appendix: Proofs

Proof of Proposition 1 Denote by fc(x|μ,K) the multivari-
ate Gaussian density of the complete data. fobs(xobs|μ,K)

the density of the observed data. Furthermore, the condi-
tional density of the complete data given the observed data is
k(x|xobs,μ,K) = fc(x|μ,K)/fobs(xobs|μ,K). The penal-
ized observed log-likelihood (9) fulfills the equation

−�pen(μ,K) = − logfobs(xobs|μ,K) + λ‖K‖1

= Q(μ,K|μ′,K ′) − H(μ,K|μ′,K ′), (23)

where

Q(μ,K|μ′,K ′) = −E[�(μ,K;x)|xobs,μ
′,K ′] + λ‖K‖1

H(μ,K|μ′,K ′) = −E[logk(x|xobs,μ,K)|xobs,μ
′,K ′].

By Jensen’s inequality we get the following important rela-
tionship:

H(μ,K|μ′,K ′) ≥ H(μ′,K ′|μ′,K ′), (24)
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see also Wu (1983). �pen(μ,K), Q(μ,K|μ′,K ′) and
H(μ,K|μ′,K ′) are all continuous functions in all ar-
guments. Further, H(μ,K|μ′,K ′) is differentiable as a
function of (μ,K). If we think of Q(μ,K|μ′,K ′) and
H(μ,K|μ′,K ′) as functions of (μ,K) we write also
Q(μ′,K ′)(μ,K) and H(μ′,K ′)(μ,K).

Let θm = (μ(m),K(m)) be the sequence generated by
the EM algorithm. We need to prove that for a converging
subsequence θmj → θ̄ (j → ∞) the directional derivative
−�′

pen(θ̄;d) is bigger or equal to zero for all directions d

(Tseng 2001). Taking directional derivatives of (23) yields

−�′
pen(θ̄;d) = Q′̄

θ
(θ̄;d) − 〈∇ Hθ̄(θ̄), d〉.

Note that ∇ Hθ̄(θ̄) = 0 as Hθ̄(x) is minimized for x = θ̄ (24).
Therefore, it remains to show that Q′̄

θ
(θ̄;d) ≥ 0. From the

descent property of the algorithm ((23) and (24)) we have:

−�pen(θ
0) ≥ −�pen(θ

1) ≥ · · · ≥ −�pen(θ
m) ≥ −�pen(θ

m+1).

(25)

Equation (25) and the converging subsequence imply that

{�pen(θ
m);m = 0,1,2, . . .}

converges to �pen(θ̄). Further we have:

0 ≤ Qθm(θm) − Qθm(θm+1) = −�pen(θ
m) + �pen(θ

m+1)

+Hθm(θm) − Hθm(θm+1)︸ ︷︷ ︸
≤0

≤ −�pen(θ
m) + �pen(θ

m+1)
︸ ︷︷ ︸

m→∞−−−−→−�pen(θ̄)+�pen(θ̄)=0

.

The first inequality follows from the definition of the
M-Step. We conclude

Qθm(θm) − Qθm(θm+1)
m→∞−−−−→ 0. (26)

In each M-Step we minimize the function Qθm(x) with re-
spect to x. Therefore we have:

Qθ
mj (θmj +1) − Qθ

mj (θmj )
︸ ︷︷ ︸

j→∞−−−→0 (26)

+ Qθ
mj (θmj )

︸ ︷︷ ︸
j→∞−−−→Qθ̄ (θ̄)

≤ Qθ
mj (x)

︸ ︷︷ ︸
j→∞−−−→Qθ̄ (x)

.

(27)

Using continuity, (26) and (27) we get

Qθ̄(θ̄) ≤ Qθ̄(x) ∀x

and therefore, we have proven that Q′̄
θ
(θ̄;d) ≥ 0 for all di-

rections d . �

Proof of Proposition 2 The result follows from Proposi-
tion 5.1 and Lemma 3.1 in Tseng (2001). �

Proof of Lemma 1 We have

(εi,Xi) ∼ N
(

(0,μ),

(
σ 2 0
0 Σ

))
and

(
Yi

Xi

)
=
(

1 βT

0 1

)(
εi

Xi

)
.

(28)

From (28) we see that the joint distribution of (Yi,Xi) fol-
lows a (p + 1)-variate normal distribution with mean and
covariance given by

μ̃ = (βT μ,μ), Σ̃ =
(

σ 2 + βT Σβ βT Σ

Σβ Σ

)
.

The expression for the concentration matrix K̃ = Σ̃−1 can
be derived by using the identity Σ̃K̃ = I . �
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