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Abstract

Most surrogate models for computer experiments are interpolators, and the most
common interpolator is a Gaussian process (GP) that deliberately omits a small-scale
(measurement) error term called the nugget. The explanation is that computer exper-
iments are, by definition, “deterministic”, and so there is no measurement error. We
think this is too narrow a focus for a computer experiment and a statistically inefficient
way to model them. We show that estimating a (non-zero) nugget can lead to surrogate
models with better statistical properties, such as predictive accuracy and coverage, in
a variety of common situations.
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1 Introduction

To some, interpolation is the defining feature that distinguishes surrogate models (or em-
ulators) for computer experiments from models for ordinary experiments. We think this
is old-fashioned at best and misguided at worst. It is certainly true that a large swath of
computer experiments are “deterministic”, in the sense that once y(x) is known there can
be no uncertainty in the output Y (2’) if 2/ = z, because the simulator does not behave
stochastically. Interpolation would seem natural in this case, and this is typically facilitated
by a zero nugget in a Gaussian process (GP) prior for Y (x). Our first observation is that
many of the more recent computer experiments are indeed stochastic. A typical formula-
tion is as an agent based model or finite element simulation where the purpose is to study
cohort/community effects in independent organisms/agents whose behavior is governed by
simple stochastic rules which cannot be understood analytically. Examples abound in bi-
ology (Johnson|, 2008; Henderson et al. 2009), chemistry (Gillespie, 2001), and industrial
design and engineering (Ankenman et al.| 2009) to name just a few. It is in this sense that
the defining feature of zero-nugget GPs for computer experiments is old-fashioned. Many
computer experiments these days are not deterministic, so in those cases you would include
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a nugget without hesitation. The definition of surrogate model for a computer experiment
needs to be updated.

But that is not what this paper is really about. We shall concentrate on those computer
experiments that really are “deterministic”’—in a sense similar to its usage above but whose
decomposition of meaning in modern experiments is one of the main foci of this paper—and
argue that you should use a nugget anyway. Our arguments for this are not computational,
although the numerical instabilities of zero-nugget models are well-documented (Ababou
et al., [1994; Neal, 1997)). Another established criticism of zero-nugget models, upon which
we will not focus, involves theoretical aspects of smoothness and derivatives. Stein (1999,
pp. 96) proves that the smoother the spatial process, the smaller any error or variability
needs to be in order for it to have negligible effect. Since the standard assumption in the
computer modeling literature is a Gaussian correlation function, this assumption of infinite
differentiability means that the results are highly sensitive to any possible deviations and
thus Stein strongly cautions against omitting a nugget term.

As larger nugget values can impact the fitted values of other parameters (Gramacy and
Lee, 2008b; |[Pepelyshev, 2010), some authors go to great lengths to reconcile numerical stabil-
ity and zero-nugget-like interpolation, usually by using as small a nugget as possible (Ranjan
et al., [2010). Instead, we argue that issues of numerical stability, while they are strong argu-
ments in favor of a nugget, are a bit of a red herring in the face of more serious conceptual
issues. We aim to separate the ideology of forcing interpolation from some important (and
undesirable) consequences of the zero-nugget model. We shall argue that when the data
are sparse or when model assumptions are violated (e.g., stationarity)—and they typically
are—the nugget is crucial for maintaining good statistical properties for the emulator (e.g.,
coverage). Essentially, when modeling computer experiments, we must be pragmatic about
how assumptions map to conclusions (surrogate model fits), and this leads us to conclude
that the most sensible default is to estimate a (nonzero) nugget.

The remainder of the paper is outlined as follows. We conclude this section with a
brief review of GP basics, with further reference to their application as surrogate models
for computer experiments. In Section [2| we elaborate on several conceptual problems with
the zero-nugget approach. Section |3| provides numerical examples, showing how sparseness
of the sample (Section or violations of standard (and uncheckable) assumptions (Sec-
tion can lead to inferior predictive surfaces with the zero-nugget approach. The issue of
“determinism” is explored in Section [3.3| to similar effect. And in Section {4 we revisit these
points on a real-world computer experiment involving CFD simulations of a rocket booster
re-entering the atmosphere. Finally, we conclude with a discussion.

1.1 GP basics

The canonical choice of surrogate model for computer experiments is the stationary Gaussian
process (Sacks et al.,[1989; O'Hagan et al., [1999; Santner et al., 2003), which defines a random
process whose evaluation at any finite collection of locations has a multivariate Gaussian
distribution with a specified mean and covariance function that depend only on the relative
positions of the locations. A typical specification of the covariance function is the Gaussian



correlation, so that the covariance between any two points is
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where m is the dimension of the space and d is a vector (the range parameter) which scales the
correlation length in each dimension. This model will interpolate the data, fitting a smooth
curve between observed outputs of the computer simulator. The predictive distribution (or
so-called kriging equations) at new inputs x* are conditionally Gaussian given (x,y) pairs
(x1,¥1),- -+, (Xn,yn) and settings of the parameters 0? and d. Our references contain the
relevant equations; we simply remark here that the variance of this distribution has the
distinctive property that it is zero when x* = x; for one of ¢ = 1,...,n, and increases away
from zero as the distance from x* to the nearest x; increases. When all elements of d are
equal, the process is called isotropic.

An extension of this model is to include a nugget term, specifying the covariance function
as
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where 6.. is the Kronecker delta function and ¢ is the nugget term. Originally introduced
to model small-scale variation in geostatistical models, it is also mathematically equivalent
to adding random noise term into the likelihood. Thus with g > 0, this model no longer
interpolates the data, and returns us to a situation analogous to fitting a mean function with
noisy data. The predictive distribution has many features in common with that obtained
from the zero-nugget/no-nugget model (above). For example, the variance increases away
from the nearest input x;, but is not zero at x* = x;; rather, it is go? at those locations.

There are many ways to infer the parameters o2,d, g given data (xi,v1),- .., (Xn, Yn)-
For example, the resulting multivariate normal likelihood can be maximized numerically,
although the presence of the nugget may lead to a bimodal surface (Gramacy and Lee,
2008b). In this paper we happen to take a Bayesian approach, but all of our arguments hold
true under the frequentist paradigm as well. Our implementation is in R using the GP code
from the tgp library on CRAN (Gramacy], 2007)). The package makes use of a default Inverse—
Gamma prior for o2 that yields a multivariate Student-¢ marginal likelihood (integrating out
o) for yi,..., Yy, given Xy, ..., X, and the parameters d and g. Standard Gamma priors are
placed independently on the d;, components and ¢, and the Metropolis-within-Gibbs MCMC
method is used to sample from the posterior via the Student-t marginal likelihood. The
inputs x; are pre-scaled and the proposals are designed to deal with the bimodal posteriors
that can result.

2 Examining the model assumptions

Most papers in the literature obsess on the zero-nugget model. When a nugget is needed
for computational reasons, one aims to make it as small as possible while still maintaining



numerical stability. The argument is that the closer the nugget is to zero, the more accurate
the surrogate model approximation is to the computer code output. This may be true if
there is sufficient data, but is it even the right thing to be worried about? The measurement
error captured by the nugget (which is presumed to be zero for deterministic computer
simulations) is but one of many possible sources of error. Here we discuss four such sources
of uncertainty which are likely to be of greater importance, so it is boggling why so much
attention is paid to the nugget.

Simulator bias

No computer simulator is a perfect representation of the real world. All simulators are
mathematical models and thus only approximate the real world, so they have some “bias”.
How we deal with this discrepancy depends on whether or not real world data are available.
We take those two cases in turn.

When real data are available, it is well-established that the simulator can be calibrated
using the data, that is, the discrepancy between the simulator and reality can be modeled
using an additional Gaussian process (Kennedy and O’Hagan, 2001; [Santner et al., 2003]).
While this addresses the simulator bias, it introduces a source of noise—that of the real data.
A measurement error term in the likelihood can be shown to be a re-parameterization of a
nugget term in the covariance function (Gramacy, 2005, Appendix B). Thus we get the same
model at the end whether we interpolate then add noise, or whether we just fit a nugget
term. Since the two approaches end up at the same place, we might as well embrace the
nugget while fitting the model.

If real data are not available, then the bias cannot be estimated, and that term is typically
ignored and swept under the rug. Yet pretending that the simulator is perfect, even though
we know it is not is clearly ignoring a major source of error. Rather than insist that the
statistical model interpolate the simulator, why not allow the model to smooth the simulator
output? We make this point philosophically, in that we do not see why forcing the model
to interpolate something that is deterministically wrong would be any better than allowing
smoothing, and that smoothing can offer a measure of protection and robustness.

The stationarity assumption

Nearly every analysis in the computer modeling literature makes an assumption of station-
arity, second-order stationarity, or at least piece-wise stationarity. More precisely, a residual
process, arrived at after subtracting off some mean which might be estimated using a fairly
substantial number of regressors (e.g., [Rougier et al., |2009b; Martin and Simpson, 2005)),
is assumed stationary. Such a two-step process can, indeed, lead to good fits. But it can
also be fairly involved as choosing the best regressors in a non-trivial task, and there is
no guarantee that the residuals thus obtained are stationary. In any case, the stationarity
assumption is easily challenged. While it may be reasonable as a close approximation to the
truth, assuming stationarity will not be exactly correct in most cases.

Typically there is not enough data available to fit a fully nonstationary model, and if



there is enough data, then the model becomes too difficult to fit efficiently. Like the bias case,
when there is unknown error, a general statistical principle is that smoothing (or shrinking)
can give better results. Thus a nugget can help protect us in the case of moderate deviations
from stationarity, which would be hard to detect in practice. In Section we show that
even minor violations in the stationarity assumption lead to emulators with poor statistical
properties without a nugget.

Correlation assumptions

There is an underlying assumption that the specified (typically Gaussian) correlation struc-
ture is correct. While this is a nice modeling assumption, it is yet another convenient
approximation to reality. Parameters for the form of the correlation function can be difficult
to fit in practice, and so it is often necessary to simply specify a reasonable guess. Since it
is only an approximation, this is a further reason for allowing smoothing in the model.

The assumption of a deterministic simulator

The modeling assumptions addressed above may indeed be reasonable for a particular true
physical process, but the computer implementation of the solution may still behave in unpre-
dictable ways. The assumption of a deterministic simulator may itself be a problem. Here
we discuss two related possible issues, nonmodelable determinism and theoretical but not
numerical determinism, among other possible problems with the assumption of deterministic
behavior in practice.

Some deterministic functions really are better treated as nondeterministic. As a simple
example, consider a pseudo-random number generator where, for any given seed, an output
is returned deterministically (if not also unpredictably unless you know a lot about numerical
analysis). A version of a computer simulator f(x) approximating a function g(z) numerically
might effectively behave as follows (coded in R):

f <- function(x) {
set.seed(x)
return(g(x) + rnorm(1))

}

This function f(z) is theoretically deterministic, but knowing how it relates to the true func-
tion g(z), it would be irrational to interpolate it. Clearly one would want to smooth out
the pseudo-random noise which would give us a much better fit the underlying g(z), and
this is exactly what the nugget is designed to do. You may argue about the “deterministic”
nature of the £ simulator, but that is to get bogged down in philosophical matters and miss
the practical point. In this “cartoon”, g might represent the mathematical model/equations
that describe a system (perhaps only on paper) whose solutions or realizations aren’t avail-
able analytically and require numerically approximate solutions. This is where computer
implementation in f comes in, which may be deterministic if not otherwise ill-behaved. In



our experience, such scenarios are more the rule than the exception in modern computer
experiments.

Along similar lines, the £ and ¢ relationship might just as easily represent a function
with chaotic behavior, which can happen in complex systems of differential equations, or the
Perlin noise function (Perlin) 2002), which is a deterministic method of generating random-
looking smooth surfaces in computer graphics. Alternatively, the rnorm(1) term may stand
in for the amount by which an iterative approximation algorithm steps over the convergence
threshold. Although we usually we assume that this amount can be made to be arbitrarily
small, this might not always be justified. One reason is the lack of uniformity in machine-
representable floating-point numbers.

Now, the above example may seem pathological, but in Sections & [ we give a
synthetic and real example, respectively, which are essentially the following adaptation:

f2 <- function(x) {
set.seed(x)
y <- runif(1)
if(y < 0.9) return(g(x))
else return(h(x))

}

for some new h(x). The pseudo-random (but deterministic) y is intended to represent the
chance that the computer code was (poorly) initialized such that it may end up converging
to a sub-optimal (but locally converged) solution h(x) 10% of the time rather than the true
globally converged approximation to g(x). This is not an uncommon feature of a modern
computer simulator, i.e., where the final output depends upon an initial “solution” for which
there are defaults that usually work, but sometimes lead to a converged solution which is
different from the one intended. It is clearly sub-optimal to use a zero-nugget model in this
case, because some of the outputs are not the correct values. Despite their deterministic
nature, we show in Section that uncertainty about the true function is best modeled
with a random process that smooths rather than interpolates.

3 Statistically better fits with the nugget

3.1 Protecting against misfits with sparse data

Many computer experiments are expensive to run and the number of datapoints is limited. As
many experiments have higher dimensional input spaces, the curse of dimensionality implies
that the data will be sparse in the input region. When the data are sparse, interpolation can
have unpleasant results (Taddy et al., 2008, Sec. 2.2). We present here a simulated example
where the data are sparse in one dimension, but this represents the concept of sparseness in
higher dimensions with a simpler function or with more data.
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Suppose we only have 20 datapoints available (in practice, we would have more points but
more dimensions). We randomly generated 10000 such datasets (with X generated from a
uniform distribution each time) and fit models both with a nugget and without one. The
table in Figure [1| gives the distribution of the mean square errors of fits under each model,
and the model that includes a nugget does better on average (a paired t-test gives a p-value
of less than 2.2 x 1071¢). The plots in Figure[l|show one of the runs. The data are too sparse
to get a good fit of the function for smaller input values. While the nugget model smooths
and produces reasonable confidence bands, in order to interpolate smoothly the no-nugget
model ends up making predictions well outside the range of the actual data in that region,
and its confidence bands are all over the place.

In practice, if we only had one-dimensional inputs, we would use evenly-spaced points for
small samples, and much of the issue here would go away. However, as the dimension of the
space increases, it becomes impossible to use a regular grid, and random Latin hypercubes
are often used. It can be impossible to understand how well a design really covers a high-
dimensional space. Thus the nugget provides good protection against the strange fits that
interpolation can produce.

estimated nugget, z mean no nugget, z mean

" ;{;“ MSE nug nonug
/ Min. 0.0250 0.0057

~ 5, 1st Qu. | 0.0999 0.0851
fad Median | 0.1262 0.1399

" Mean | 0.1847 0.1929
N v 3rd Qu. | 0.1906 0.2290
Max. 1.2990 1.3510

Figure 1: Plots of one example of a fit (dark solid line), confidence bands (red), and true
function (light grey). The left plot shows the fit using a nugget, the right plot without a
nugget. The table on the right is the summary of the mean square errors under both models
for 10,000 repeated uniform designs.



3.2 Poor coverage

In fact, the nugget offers protection from a slew of problematic scenarios. Here we shall
illustrate that the no-nugget model under-covers the true computer simulator response when
the stationarity assumption is not satisfied. We use three examples.

estimated nugget, z mean no nugget, z mean

1.0
1.0

1

0.9
1

0.8
0.8

1

Mean 0.8517  0.6531
3rd Qu. 0.9570  0.8068

0.7
0.7

\ / coverage nug nonug
' ‘ Min. 0.3210  0.0650
" st Qu. 0.8028  0.5108
- ‘ Median | 0.8915  0.7230
/
/

i Max. 1.0000  0.9960

) ) mah nug  nonug
- - P Min. 7.067  20.020
7 1st Qu. 16.319  47.901

2 g / Median 25.079  91.024

3rd Qu. 45.111 174.876
Max. 560.245 2966.92

0.8
1

. / \ g Mean | 49.928 246.772
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Figure 2: The plots on the left are examples of fits under under two uniform designs in nugget
(left column) and no-nugget (right column) models. The table on the right summarizes of
the coverages and (square root) Mahalanobis distances under both models for 100 repeated
uniform designs.

The first example is a 1-d function which is clearly nonstationary, but otherwise mim-
ics typical features of a computer code. The response is given by y(z) = sin(xz) — 0.02 -
t1(z,1.57,0.05) where ¢,(+, u,0) is a Cauchy density with mean p and spread o. The two
rows of Figure [2 show fits for two typical random uniform designs of size ten. The difference
between smoothing (estimated nugget; left panels) and interpolation (no nugget; right pan-
els) is clear. We see that the no-nugget model under-covers the truth (in gray) and can have
wildly different (i.e., narrow or wide) 90% predictive credible intervals. This experiment was
repeated 100 times and the percentage of the area of the input space where the true y(x)
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was covered (pointwise) by the 90% interval was recorded. A table summarizing the results
numerically is on the right in the figure. We see from this table that the under-coverage of
the no-nugget model can be drastic. For one of the random designs it only covered 6.5% of
y(x) and 3/4 of the trials under-covered by more than 10%. By contrast, the model which
estimates a nugget has good coverage properties. Its median and mean coverages are close
to 90% and the central 50% region tightly brackets the truth. Clearly, connecting the dots
comes at the expense of other, arguably more important, statistical measures of goodness of
fit.

Although it is intuitive, pointwise coverage via might not be an ideal metric for comparing
model fit because it ignores correlation aspects of the posterior predictive distribution—mis-
coverage at one input is indicative of miscoverage at a continuum of nearby inputs. A metric
based on the Mahalanobis distance, proposed by Bastos and O’Hagan| (2009)) for GP models,
allows such correlation in the predicted outputs to be taken into account. For completeness,
we report a summary of the square root of these distances in Figure[2|as well. The conclusions
based on this metric are largely the same: estimating a nugget leads to a superior fit (smaller
distances) compared to the zero-nugget interpolating approach.

exp data fried data

coverage nug nonug coverage nug nonug
Min. 0.5479 0.3965 Min. 0.5480 0.4580
1st Qu. 0.8623 0.8242 Ist Qu. | 0.8930 0.8350
Median 0.9185 0.8936 Median | 0.9320 0.8890
Mean 0.8962 0.8691 Mean 0.9205 0.8762
3rd Qu. 0.9492 0.9395 3rd Qu. | 0.9580 0.9310
Max. 1.0000 1.0000 Max. 0.9990 1.0000

mah nug nonug mah nug nonug
Min. 3.181 3.857 Min. 14.312 15.816
Ist Qu. 20.870 25.850 Ist Qu. | 24.203 30.760
Median 34.840 48.270 Median | 28.676 36.100
Mean 78.020 96.960 Mean 29.271 36.794
3rd Qu. 67.260 100.500 3rd Qu. | 33.621 41.968
Max. 1971.000 21820.000 Max. 55.435 69.111

Table 1: Left are coverages and square-root Mahalanobis distances for the 2-d exponential
data; right for the 5-d Friedman data.

We performed similar experiments on two higher-dimensional data sets. The first is a 2-d
exponential function y(x) = x;exp{—z? — 22}, which less clearly violates the stationarity
assumption. From the left side of Table [1| we see a similar under-coverage of the no-nugget
model with repeated uniform designs of size 20. Mahalanobis distances are included for
completeness. Our second experiment involved the first Friedman data function (Friedman),
1991)) with five inputs where the response is y(z) = 10 sin(rz122) +20(x3 —0.5)*+ 1024+ 5xs.



This function is better behaved (i.e., stationarity may be a reasonable assumption). However,
it is apparent that correlation in the response would decay at different rates along the
five coordinates—clear anisotropy. To illustrate how the effect of an inappropriate choice
of correlation function is felt more strongly in the no-nugget model we used an isotropic
Gaussian correlation function and uniform designs of size 25. The results are shown on the
right in the table.

It is worth pointing out that as the size of the designs are increased, and/or as the
data less obviously violate assumptions, both models (nugget and no-nugget) will tend to
over cover in practice. This is because we are fitting a model (GP) which always yields
positive posterior predictive error away from the (discrete set of) design points, i.e., over
an uncountably large region. Since the function we are modeling is deterministic, we know
that as the size of the design tends to (countable) infinity we should be able to obtain a
“perfect” fit with a high degree polynomial. So a GP is the wrong model in this case. Since
over-coverage is inevitable, under-coverage should be our primary concern, and to avoid
under-covering we can see that a nugget is needed.

3.3 Challenging determinism in computer simulation

Some computer experiments are deterministic in a technical sense, but not necessarily in
a way that translates into sensible assumptions for the building of a surrogate model. We
may reasonably presume that codes implementing the algorithms and calculations behind
the experiment are nontrivial. They are expensive to program and expensive to execute, re-
quiring long iterations to convergence and the (sometimes arbitrary) specification of tuning
parameters, tolerances, and grid/mesh sizes. As a rule more than an exception, the resulting
apparatus works better for some choices of inputs than for others. The most important
issue is in detecting global convergence of the code, whose properties usually depend cru-
cially on other implementation choices. It is essentially impossible to guarantee good global
convergence properties, and so this the main target of our attack on the modeling of such
“deterministic” computer simulations without a nugget.
Consider the following computer simulator coded in R below.

## 2-d function
f2d <- function(xl, x2) {
w <- function(y) {
return(exp(-(y-1)~2) + exp(-0.8%(y+1)"2) - 0.05*sin(8*(y+0.1)))
}
return(-w(x2)*w(x1))

}

## find the minimum of a projection of the 2-d function
f <- function(x) {
return(optim(par=x, fn=f2d, x2=x)$value)

}
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The true underlying function f(x), evaluated by f(z) in R, is arg min,, f(z1,x) where

f(z1,29) = —w(zq)w(xe), and
w(y) = exp (—(y — 1)%) +exp (—0.8(y + 1)) — 0.05sin (8(y + 0.1)) .
The optimization method used by the code above is the optim function in R initialized at

r1 = .

deterministic [estimated nugget], z mean

@
S -
I
(2]
d —
I
N
o
_i —
I
- true f(x)
< simulated f(x)
—— posterior mean
—— posterior CI
T T T T T T T
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Figure 3: GP fit (with an estimated nugget) to a deterministic function which is the result
of an iterative procedure.

Figure |3|shows the true f(z) (dashed-green) and the output of the simulator f(z) (gray)
for x € [-1.5,1.5]. We can see that the result of numerically finding the optimal value of
the objective function (initialized somewhat arbitrarily, but not pathologically) is that the
simulations f(z) are biased, and behave badly/unpredictably in some parts of the input
space. It is worth noting that both behaviors persist with a different static initialization
scheme; the f(x,x,) surface has about a dozen local minima. Also, the implementation
f(x) is completely deterministic in a technical sense. However, f(z) is exhibiting “random”
behavior of the sort alluded to in Section [2| as the initialization scheme causes the algorithm
to converge to different local minima in a way that is not (easily) predictable. There are
three places where the initialization causes it to have discontinuities (even though the true
f(z) is smooth everywhere), and it is particularly unstable near x = 0 since (0, 0) is more or
less equidistant from the many local minima of f(x;,z5) in the 2-d space.

The figure also shows a fit to the computer simulator (f(x)) output obtained from a
gridded design of 100 input—output pairs using a GP with an estimated nugget. The fit
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is sensible given the discontinuities and otherwise “noisy” behavior of the simulator. It is
not possible to fit this data without a nugget, or even with a small one, due to numerical
instabilities. However, it is possible to do so with a reduced design of about 20 points or
so. To connect with the coverage results in the last section (where stationarity was the

computer f computer f truth f
coverage | nug nonug mah nug nonug nug nonug
Min. 0.433 0.2280 Min. 14.07 36.88 41.90 279.17
1st Qu. | 0.787 0.6665 Ist Qu. 33.24 139.39 104.44  8544.02
Median | 0.875 0.7345 Median 56.87 292.17 213.78 12932.55
Mean 0.846 0.7276 Mean 183.45  1163.17 855.44  15402.05
3rd Qu. | 0.938 0.8362 3rd Qu. | 136.59 811.23 617.03 19392.16
Max. 0.993 0.9760 Max. 3212.00 14561.06 | 12271.41 49362.90

Table 2: Summaries of coverage of the “deterministic” computer simulated f (x) data, and
the square-root Mahalanobis distances to f (x) and the analytic solution f(x).

issue) we calculated the coverage of £(z) with 100 repeated uniform random designs of size
20 under the estimated nugget and no-nugget models, and the story is much the same as
before. The results are shown in Table[2] Square-root Mahalanobis distances are also shown,
as are the distances to the true f(z). They show that when “determinism” is challenged as
an assumption on the nature of the data-generating mechanism, a nugget for smoothing is
clearly preferred to interpolation in the surrogate model.

4 A modern computer experiment

The Langley Glide-Back Booster (LGBB) is a rocket booster that underwent design phases
at NASA primarily through the use of computational fluid dynamics simulators that numeri-
cally solve the relevant inviscid Euler equations over a mesh of 1.4 million cells (Rogers et al.|
2003)). The simulator models the forces felt by the rocket at the moment it is re-entering
the atmosphere as a function of three inputs describing its state: speed (measured by Mach
number), angle of attack (the alpha angle), and sideslip angle (the beta angle). As a free
body in space, there are six degrees of freedom, so the six relevant forces/outputs are lift,
drag, pitch, side-force, yaw, and roll. While theoretically deterministic, the simulator can fail
to converge. Some nonconvergent runs are caught by an automated checker, and re-run with
a new schedule of initial conditions, but some are erroneously accepted even after converging
to a clearly inferior solution. Input configurations arbitrarily close to one another can fail to
achieve the same estimated convergence, even after satisfying the same stopping criterion.
Here we focus on the roll force output on a data set comprised of simulator runs at 3041
locations. See Figure [4] for a 2-d slice of this response. Previous work has focused on the lift
force (Gramacy and Lee, [2008a)) which exhibited many similar features, and on a sequential
design task taking account of all outputs simultaneously (Gramacy and Lee, [2009). The
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Figure 4: Linearly interpolated slice of the roll response plotted in perspective (left) and
image/contour (right) as a function of speed (Mach) and angle of attach (alpha), with the
slide slip angle (beta) fixed to 2. In the image plot, dark/red values are lower and light /yellow
values higher in the image plot; the perspective plot is rotated for visualization purposes so
that the closest corner corresponds to low speed and high angle of attack.

experimental design is a combination of an initial grid followed by two hand-designed finer
grids focused around Mach one, as the initial run showed that the most interesting part of the
input space was generally around the sound barrier, where the physics behind the simulator
changes abruptly from a subsonic regime to a supersonic one. What happens close to and
along the boundary is the most difficult part of the simulation. The regime changes across this
boundary cause the stationarity assumption to be violated. Also note the string of anomalies
around Mach four, which appear to converge to local, rather than global, solutions. So this
experiment comprises two challenging aspects—impractical determinism due to convergence
issues and failed assumptions of stationarity due to physical regime changes—and we aim
to show that the nugget is important in mitigating their effects when building a surrogate
model.

Towards this end we calculated the coverages of predictive surfaces obtained with and
without the nugget on a 20-fold partition of the 3041 input/output pairs. We iterated over
the folds, training on 1/20%" of the data, about 159 pairs, and predicting at the remaining
3009-odd locations in an (inverse) cross-validation fashion. The results of this experiment,
repeated 100 times for 2000 total coverages for each predictor, are shown on the [left in
Table 3] Note that this is not a uniform coverage rate (over the input area), since the design
is more heavily concentrated around Mach one. However, the results here are as expected.
The no-nugget model can severely under-cover in certain examples (with coverage as low
as 57%), and gives the target coverage of 90% less than 1/4 of the time. The model using
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GP TGP
coverage nug nonug coverage nug nonug
Min. 0.7547 0.5726 Min. 0.7627 0.5180
Ist Qu. | 0.9022 0.8427 Ist Qu. | 0.8757 0.7195
Median | 0.9239 0.8793 Median | 0.8978 0.7670
Mean 0.9187 0.8703 Mean 0.8954 0.7606
3rd Qu. | 0.9396 0.9059 3rd Qu. | 0.9186 0.8051
Max. 0.9777 0.9741 Max. 0.9771 0.9305

Table 3: Coverage of the roll response for the LGBB computer experiment data using a
Gaussian process (left) and a treed Gaussian process (right).

an estimated nugget is much better behaved. However, it does seem to slightly over-cover.
Although less of a concern, we think that the main cause of this is the nonuniformity of
the design and our choice of priors for both the range and nugget parameters in the face of
nonstationarity and nonconvergence issues.

The treed Gaussian process (TGP, Gramacy and Lee, |2008a) model was designed to
handle the axis-aligned nonstationarity that arises due to regime changes—exactly the sort
exhibited by this data. In essence, the TGP model learns an axis-aligned partition of the data
wherein the process is well-fit by separate stationary GP models. We performed an identical
experiment using TGP and the results are summarized on the right in Table [3. We can see
that the coverage of the version of TGP which estimates the nugget is improved (with better
centering around 90%), but the no-nugget version is not (showing a more consistent tendency
to undercover). We are left with the impression that the nugget is even more important when
a nonstationary model is used, especially in the case of nonconvergent computer experiments
where the assumption of “determinism”, while technically valid, may be challenged from a
practical standpoint.

5 Discussion

Several authors have previously argued in favor of a nugget term for reasons of numerical
stability even when fitting a deterministic model. We go well beyond numerical convenience,
raising fundamental issues of a variety of modeling assumptions and argue that the use of a
nugget helps protect against poor fits when they are violated.

In many ways, the themes harped on in this paper are just reminders of the usual statis-
tical insights, like exploiting bias variance tradeoffs and shrinkage, which are well-known to
lead to improved estimators and predictors. It is true that some applications call for specific
features in estimators/predictors, like interpolation for deterministic computer experiments,
which might cause us to eschew those good practices. At first glance it would seem like forc-
ing a zero nugget, versus estimating one, is just one of these situations. But our experience
with fitting GPs to real computer simulation output has shown us time and time again that
the ideal of an interpolating (zero-nugget) emulator is not ideal at all. In addition to show-
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ing, in this paper, a subset of examples illustrating why we prefer the nugget for statistical
purposes, we have touched on high level arguments as to why the zero-nugget model will be
inferior in practice.

In reflecting further on these arguments, thanks to helpful comments from our referees,
we have come to the following perspective on the matter. The idealized model for the
experiment is the following.

a
real data from physical process — computer model

Computer model realizations are expensive so we deploy an emulator [at (a)] based on GP
interpolation of the computer model output to save on cost/time. The reality is probably
more like the following.

c e
real data — physical process — mathematical model — computer code — emulator

In other words, the real data is a measurement of the physical process, so there is noise
or measurement error [at (b)]. This is not controversial. Now, the the computer model is
actually two things in one. It is a mathematical model which approximates [(c)] the physical
model, and although it does not perfectly describe the system—it is biased—it is still an
idealization. The computer implementation adds a further layer of “approximation” [(d)],
often with erratic if still technically deterministic behavior, which can be an unavoidable
nuisance. We try to find the knobs/settings in the code that give the best results, but
it is never perfect. If we interpolate [(e)] the output of the computer code, then we are
interpolating its idiosyncrasies. If we use a nugget, we might not be precisely where we
want to be (closer to the mathematical model and thus the physical process [at (c)]), but
we have a fighting chance since we’ll smooth out the “rough edges” in the computer code.
While this schematic representation is a simplification, it shows the multiple stages where
approximations are made and our empirical work on real and synthetic data suggest that
there is something to it.

Instead of using a nugget, Rougier et al.| (2009a) advocate using a “rougher”—but still
interpolating—correlation function like the Matern (e.g., Stein), 1999)). This may lead to
an improved fit, and better numerical properties/decompositions of matrices, compared to
smoother correlation functions like the Gaussian . There are a few complications with
this approach, like the burden specifying an extra smoothing parameter which is hard to
infer statistically. But more importantly, one wonders whether better interpolations of id-
iosyncratic computer code is really what you want? We think it would be better to use a
nugget and smoother correlation function because, in our experience, the true solutions to
the mathematical equations underlying the model are well-behaved, i.e., smooth. It is also
just an easier default option.
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