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Cross-validation prior choice in Bayesian probit

regression with many covariates

D. Lamnisos∗, J. E. Griffin† and M. F. J. Steel∗
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Abstract

This paper examines prior choice in probit regression through a predic-

tive cross-validation criterion. In particular, we focus on situations where the

number of potential covariates is far larger than the number of observations,

such as in gene expression data. Cross-validation avoids the tendency of such

models to fit perfectly. We choose the scale parameter c in the standard

variable selection prior as the minimizer of the log predictive score. Naive

evaluation of the log predictive score requires substantial computational ef-

fort, and we investigate computationally cheaper methods using importance

sampling. We find that K−fold importance densities perform best, in combi-

nation with either mixing over different values of c or with integrating over c

through an auxiliary distribution.

Keywords: Bayesian variable selection, cross-validation, gene expression data, im-

portance sampling, predictive score, ridge prior.

1 Introduction

We are interested in modelling binary variables y = (y1, . . . , yn)
′, which can take the

values 0 or 1. For example, we may want to find genes that discriminate between two
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disease states using samples taken from patients in the first disease state (yi = 1)

or the second one (yi = 0). Typically, the number of measured gene expressions

(covariates), say p, will be much larger than the number of samples, say n. A

popular approach to this problem is variable selection in a probit regression model

(Sha et al., 2004; Lee et al., 2003)1. Usually, it is assumed that the response y can

be modelled in terms of a (small) subset of the p covariates. The 2p possible subset

choices define different models which are indexed by the vector γ = (γ1, . . . , γp)

where γj = 1 if the j-th predictor is included or γj = 0 if it is excluded from the

model. The number of variables included in a model is denoted by pγ =
∑p

j=1 γj.

Let xγi be a 1×pγ vector whose j-th entry is the measurement of the j−th included

covariate (after centring) for the i−th individual and let Xγ = (x′
γ1, . . . ,x

′
γn)

′ be

the n × pγ design matrix of model γ. Under model γ, it is assumed that

yi|α, βγ,xγi ∼ Bernoulli(Φ(ηi)), η = α1 + Xγβγ

where Φ is the cumulative distribution function of a standard normal random

variable, η = (η1, . . . , ηn)′ is a vector of linear predictors, 1 represents an n × 1-

dimensional vector of ones, α is the intercept and βγ is a pγ × 1-dimensional vector

of regression coefficients. We will assume that p ≫ n and denote the model param-

eters by θγ = (α, β′
γ)′ ∈ Θγ. In this framework, identification of discriminating

genes reduces to finding a suitable model γ.

In this paper, a Bayesian framework is adopted to deal with the uncertainty

regarding the inclusion of covariates. The prior is assumed to have a product form

π(α, βγ, γ) = π(βγ|γ)π(α)π(γ). The intercept α represents the overall mean of the

linear predictors since the covariates have been centred and is regarded as a common

parameter to all models. Thus, a non-informative improper prior could be used for

α, as e.g. in Fernández et al. (2001). However, we will follow Sha et al. (2004) and

Brown and Vannucci (1998) by assuming that α ∼ N(0, h). The prior distribution

for the regression coefficients βγ is the so-called ridge prior

π(βγ|γ) = Npγ
(0, cIpγ

), (1)

where Nq(µ,Σ) represents a q-dimensional normal distribution with mean µ and

covariance matrix Σ, and Iq is the q × q identity matrix. This commonly used prior

(see Denison et al, 2002) implies prior independence between the coefficients. Alter-

natively, a g-prior where the prior covariance matrix in (1) is given by gn(Xγ
′ Xγ)−1

1Alternatively, a logistic regression approach is described by Zhou et al. (2004).

2



could be used, as in Liang et al. (2008) or the compromise choice (c−1Ipγ
+(gn)−1Xγ

′ Xγ)−1

which is defined when pγ ≥ n (unlike the g-prior). Finally, we assume that each

regressor is included independently with probability q, which implies that

π(γ) = qpγ (1 − q)p−pγ

and pγ is binomially distributed, pγ ∼ Bin(p, q). Alternatively, Dobra (2009) sug-

gests defining a maximum model size pmax and only consider models for which

pγ < pmax, with a uniform prior placed across all such models.

The choice of the hyperparameters q and c is critical for posterior inference

on the model space since q plays the main role in inducing a model size penalty

and c regularises the regression coefficients. The hyperparameter q has a natural

interpretation as the prior proportion of variables included in the model. Uncer-

tainty about q could be incorporated by choosing a hyperprior for q, as discussed

by Scott and Berger (2006), which allows the prior to adapt more easily to model

size. However, c is harder to choose.

In this work we focus on an empirical Bayes choice of the hyperparameter c

using cross-validation. George and Foster (2000) discuss the application of empir-

ical Bayes methods for estimating c and q by maximizing the marginal likelihood.

In variable selection for gene expression data, Strimenopoulou and Brown (2008)

describe an empirical Bayes method for maximum a posteriori estimation. Fully

Bayesian analysis would place a prior distribution on c and so allow the inclusion

of any uncertainty about c in predictions. However, there is often little prior in-

formation about c and vague priors are routinely used. Cui and George (2008) find

that empirical Bayes approaches provide an adaptive choice for the g−prior hyper-

parameter in Bayesian linear regression and outperform fully Bayesian analysis that

places a prior on c. Our results point in the same direction: prediction using a

diffuse proper prior on c are worse than those using an “optimal” choice of c, even

when the prior has ample mass close to the optimal value.

The optimal value of c is chosen to minimize the log predictive score (Good,

1952), which is used as a measure of predictive performance. The score uses cross-

validation which has been extensively used in statistics as discussed by e.g. Hastie et al.

(2001) and can be justified in a decision theoretic framework if a prior over the model

space cannot be specified (Key et al., 1999). The main aim of this work is to estimate

accurately and efficiently the log predictive score and thus to identify its minimizer.

The cross-validation density π(yi|y−i, c), where y−i = (y1, . . . , yi−1, yi+1, . . . , yn), is
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the main component of all predictive scores. This cross-validation density does

not have a closed analytic expression in our context and therefore we propose vari-

ous novel importance samplers to estimate it. In comparison to the direct MCMC

methodology for each observation and value of c, importance sampling makes re-

peated use of the same sample, generated from an importance density, to estimate

π(yi|y−i, c) for different i and c. These proposed importance samplers lead to accu-

rate estimates of the optimal value for c with a very considerable saving in compu-

tational effort.

The paper is organized as follows: Section 2 discusses the importance of the

choice of the hyperparameter c in Bayesian Model Averaging (BMA) for probit

regression with p ≫ n, while Section 3 describes the cross-validation approach and

estimates of the log predictive score for some gene expression datasets from DNA

microarray studies. Section 4 introduces the novel importance samplers used here.

Section 5 evaluates and compares the accuracy and efficiency of these samplers in

estimating the log predictive score, and compares our empirical Bayes approach with

a full Bayesian analysis. Finally, Section 6 contains some concluding comments

including guidelines for the implementation of these samplers that optimize their

efficiency and make them more or less automatic procedures. Code to implement

our samplers is freely available at

http://www.warwick.ac.uk/go/msteel/steel_homepage/software/.

2 Influence of the hyperparameter c in BMA

It is well known that the amount of regularisation can have an important impact

on many statistical procedures. Here we illustrate that it is a particularly critical

issue in probit regression with p ≫ n. A value of c that is too small leads to

overshrinkage and bad out-of-sample prediction but a value of c that is too large

leads to Lindley’s paradox (Shafer, 1982) where the smallest model (the model with

no regressors) is favoured regardless of the data. This suggests that there are values

of c between these extremes that lead to good out-of-sample prediction. We illustrate

the effect of c using a study of rheumatoid arthritis and osteoarthritis sufferers where

p = 755 gene expression measurements were taken on n = 31 patients (Sha et al.,

2003). We choose h = 100 and q = 5/755 = 0.0066, implying that the prior mean

number of included variables is 5. The posterior π(θγ, γ|y, c) was sampled using

the Metropolis-Hastings algorithm of Holmes and Held (2006) (which will be used
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throughout the paper). Five independent chains were run generating an MCMC

sample of size T = 190, 000, which is the MCMC sample left after a burn-in period

of 100, 000 and a thinning to every tenth draw. In what follows the MCMC samplers

will have the same burn-in and thinning, unless otherwise stated. This run length

was sufficient for strong agreement between the results for the five chains.

c Genes included in the ten best models

1 20 83 145 170 225 258 290 324 332 395 473 498 665 707 728 740 742

5 43 44 83 145 170 258 290 324 473 489 498 539 584 729 740

10 43 44 83 170 258 290 324 421 461 489 539 584 646 729

30 44 49 170 258 290 324 389 392 395 421 461 489 584 646 665 729

50 43 44 170 208 258 290 389 421 461 489 532 539 584 646 729 754

100 89 170 208 258 290 389 395 421 489 532 584 585 616 671 729 754

Table 1: IDs of genes in the Arthritis dataset included in the ten models with the highest

posterior probability for different values of c. Boxed genes are selected for all c.

Table 1 reports the genes that appeared in the ten highest posterior probability

models for different values of c (the posterior probabilities were calculated from

the combination of five independent MCMC replications). Genes 170, 258 and 290

appeared for all c and genes 489, 584 and 729 appeared for five out of six values

of c. However, many genes are only identified for specific values of c, indicating

substantial differences in variable selection for different values of c. There are also

substantial differences in posterior inclusion probabilities for c = 1 and c = 100, as

illustrated in Figure 1. For example, Gene 290 has posterior inclusion probability

0.45 when c = 1 but 0.2 for c = 100. On the other hand, gene 258 has posterior

inclusion probability 0.15 when c = 1 but 0.4 for c = 100. The scatter-plots show

that these differences occur with many genes and indicate substantial differences in

variable selection for different values of c.

As well as affecting the posterior inclusion probabilities, the hyperparameter

c regularises the amount of shrinkage of the included regression coefficients. The

average absolute coefficient size, i.e.

|βγ| =
1

pγ

pγ
∑

j=1

|βγ,j|,

where βγ,j are the components of the regression coefficient vector βγ, can be used

to judge the level of regularisation. The posterior density, graphed in the left panel
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Figure 1: Estimated posterior gene inclusion probabilities, scatter-plot of the logarithms

and the log absolute differences of the estimated posterior gene inclusion probabilities of

the Arthritis data for different values of c.

of Figure 2, shows probability mass at larger values of |βγ| increasing with c. This

suggests that large values of c may lead to poor predictions since large values of

|βγ| are often associated with overfitting. The right panel of Figure 2 displays the
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Figure 2: Arthritis data: The left panel displays the posterior density function of |βγ|

for different values of the hyperparameter c. The right panel shows the posterior mean of

the linear predictor ηi for each individual i for different values of c.

posterior mean, η̂i, of the linear predictor variable ηi = α+xγiβγ for each individual

of the Arthritis dataset. The first seven individuals have response yi = 1 and the

other twenty-four have yi = 0. Clearly, the absolute value of η̂i is larger for all i

when there is less regularisation (large c). These fitted values are in the tails of

the standard normal distribution for c ≥ 30, indicating that the fitted probabilities
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Φ(η̂i) are very close to 1 when yi = 1 and very close to 0 otherwise. Therefore, the

posterior places more mass on models that perfectly discriminate the n observations

into the two groups when there is less regularisation (large c) on the regression

coefficients. However, perfect model fit typically leads to poor predictions and we

need to carefully consider the specification of c.

The choice of c also strongly affects the posterior distribution of the intercept α,

shown in Figure 3. The absolute value of the posterior mode and the variance of α

clearly increases with c. This is a direct consequence of the perfectly fitting models

associated with large c since moderate changes to α will leave all η̂i in the tails of

the standard normal distribution.
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Figure 3: Arthritis data: Posterior density function of the intercept for different values

of the hyperparameter c. The prior distribution on α is N(0, 100).

These features of the inference are common to many gene expression data sets.

For example, we found similar results with the Colon Tumour dataset described by

Alon et al. (1999), which contains n = 62 observations of tumour and normal colon

groups with p = 1224 (setting q = 5/1224 = 0.0041).

3 Estimation of c using predictive criteria

The parameter c is part of the Bayesian model and different values of c indicate alter-

native prior beliefs and consequently alternative models. Gelfand and Dey (1994)

and Gelfand et al. (1992) argue that predictive distributions should be used for

model comparison because these are directly comparable and, typically, prediction

is a primary purpose for the chosen model. Fernández et al. (2001) use a log predic-
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tive score to evaluate different choices for the g-prior hyperparameter in Bayesian

linear regression. In the typical areas of application we consider in this paper, the

key concern is often variable selection, but good predictive performance tends to be

linked to successful variable selection.

In our context, the log predictive score suggested by Gelfand et al. (1992) would

be

S(c) = −
1

n

n
∑

i=1

ln π(yi|y−i, c)

where π(yi|y−i, c) is the cross-validation density mentioned in the Introduction. In a

pairwise model comparison this results in the log pseudo-Bayes factor (Geisser and Eddy,

1979). Calculating this leave-one-out cross-validation criterion may be computation-

ally intensive in practice since it involves fitting the model to n different subsets of

the data. An alternative is K−fold cross-validation where the sample is partitioned

into K subsets and the score becomes

S(c) = −
1

n

n
∑

i=1

ln π(yi|y−κ(i), c) (2)

where κ(i) ∈ {1, . . . , K} represents the partition to which yi is allocated, and

y−κ(i) are the observations from the remaining partitions. The random-fold cross-

validation of Gneiting and Raftery (2007) (which corresponds to the Bayes factor)

could also be considered. The value of c that minimizes S(c) will be our preferred

choice for c. Other proper score functions for binary variables (Gneiting and Raftery,

2007) could replace the logarithmic score function in (2). In the present paper, we

also investigate the use of the quadratic or Brier predictive score and the spherical

predictive score.

The cross-validation density π(yi|y−κ(i), c) is the main component of all predictive

scores. This density for the i-th individual is given by

π(yi|y−κ(i), c) =
∑

γ

∫

Θγ

π(yi|θγ, γ) π(θγ, γ|y−κ(i), c) dθγ = E[π(yi|θγ, γ)] , (3)

where the expectation is taken with respect to the joint posterior distribution

π(θγ, γ|y−κ(i), c). It does not have a closed analytic expression but can be esti-

mated by

π̂(yi|y−κ(i), c) =
1

T

T
∑

j=1

Φ(x̃γiθ
(j)
γ )yi (1 − Φ(x̃γiθ

(j)
γ ))1−yi, (4)
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where (θ
(1)
γ , γ(1)), . . . , (θ

(T )
γ , γ(T )) is an MCMC sample with stationary distribution

π(θγ, γ|y−κ(i), c) and x̃γi = (1,xγi) is a 1×(pγ +1)-dimensional vector. The MCMC

estimate of the log predictive score is given by replacing π(yi|y−κ(i), c) in (2) by

π̂(yi|y−κ(i), c).

The K−fold log predictive score is estimated at l = 12 values of c equally spaced

in the logarithmic scale with lower value 0.1 and upper value 1000 for the two

datasets. This covers values of c inducing a lot of regularisation as well as values

inducing very little and significantly extends the guideline range of Sha et al. (2004)

for these data. Applying their guidelines leads to a range of (0.1, 2.27) for the

Arthritis dataset and (0.1, 2.26) for the Colon Tumour dataset. MCMC samples of

size T = 80, 000 (after thinning to every fifth draw) were generated for each data

partition in the sum in (2) and each value of c. We used K = n, that is κ(i) = i, for

the Arthritis dataset and K = 9 for the Colon Tumour dataset (using a randomly

chosen partition, with 7 observations in each set but one, which has 6 observations).

Results for K = n are very similar for the latter data, but execution time is then

multiplied by more than n/K (62/9 = 6.89 in our case).
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Figure 4: MCMC estimates and smooth estimated curves of different predictive score

functions for the Arthritis and Colon Tumour datasets.

The right-hand panels of Figure 4 display both the MCMC estimates and a

smooth estimated curve for S(c) (estimated using cubic smoothing splines). In both
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datasets S(c) is roughly convex and so a unique minimizer can be determined. This

value of c is around 1 for the Arthritis dataset, but is less clear-cut for the Colon

Tumour dataset since any value of c in the interval (15, 145) (log(c) in the interval

(2.7, 5)) results in quite similar estimates of S(c). In both cases, Bayesian variable

selection for the extremes of c (and thus of regularisation) is associated with poorer

predictive performance. The guideline range for c suggested by Sha et al. (2004)

includes the optimal value of c in the case of the Arthritis dataset, but the optimal

value of c is well outside this range for the Colon Tumour dataset.

The other panels of Figure 4 display the MCMC estimates and a smooth esti-

mated curve of alternative predictive scores. The estimated curves of all predictive

scores are very similar in shape to the ones with the log predictive score and have

the same minimizer. Thus, the optimal c is very robust to the choice of predictive

score, and we will focus on the log predictive score in the sequel.

This direct MCMC methodology needs Kl MCMC runs for K data partitions

to estimate the log predictive score at l points. Table 2 reports the CPU time

in minutes needed (using code in Matlab 7.4.0 on a dual core PC with a 2.2GHz

CPU and 3.24GB of RAM) to estimate the log predictive scores of Figure 4. It is

obviously a computationally expensive task to use the direct MCMC methodology.

This motivates us to employ importance sampling methods to estimate π(yi|y−κ(i), c)

using fewer MCMC runs. Ideally, the importance samplers should have similar

accuracy in estimating S(c) but need much less CPU time. The right-hand panels

of Figure 4 will be used to compare and evaluate the accuracy of the different

importance sampling methods introduced in the following section.

Dataset CPU

Arthritis 4849

Colon Tumour 2048

Table 2: The CPU time in minutes needed by the MCMC methodology to estimate the

log predictive scores of the Arthritis and Colon Tumour datasets.

4 Computational approaches

The predictive densities needed to calculate S(c) will be estimated using importance

sampling (Liu, 2001; Robert and Casella, 2004). In general, this method approxi-
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mates the integral

Ef [h(X)] =

∫

X

h(x) f(x) dx

/
∫

X

f(x) dx

by
T

∑

j=1

w(j)h
(

x(j)
)

/

T
∑

j=1

w(j), (5)

where a sample x(1), . . . , x(T ) is generated from a given distribution g and the im-

portance weight is w(j) = f(x(j))/g(x(j)). The (possibly unnormalized) densities f

and g are called the target and importance density respectively.

The accuracy of the approximation is controlled by the difference between the

importance and target densities and can be measured by the effective sample size. If

T independent samples are generated from the importance density, then the effective

sample size is

ESS =
T

1 + cv2
,

where cv2 denotes the coefficient of variation of the importance weights (Liu, 2001).

This is interpreted in the sense that the weighted samples are worth ESS independent

and identically drawn samples from the target density. In other words, the variance

of the importance weights needs to be small to avoid a few drawings dominating

the estimate in (5). The ESS will be used as a measure of the efficiency of the

importance samplers introduced in the following subsections.

4.1 Importance Samplers Using All Observations

Gelfand et al. (1992) and Gelfand and Dey (1994) suggest using the posterior dis-

tribution of the model parameters given all the data as the importance density to

estimate cross-validation densities. In our context, this involves choosing a value

c0 and using π(θγ, γ|y, c0) as an importance density (which can be sampled using

MCMC) to estimate π(yi|y−κ(i), c), given by (3), for all i and all values of c. As

this idea implies large potential computational gains, it is the one we investigated

first by calculating the ESS for all data partitions and values of c. Figure 5 plots

the mean ESS over all observations at each c and shows the efficiency of the sam-

pler in estimating the log predictive score at c. For both the Arthritis and Colon

Tumour datasets, the mean ESS is high when c is close to c0 and low for the other

values of c. This indicates that the importance density π(θγ, γ|y, c0) is quite differ-

ent from π(θγ, γ|y−κ(i), c) when c0 is not close to c, resulting in estimates of S(c)
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Figure 5: The log mean ESS of the importance densities π(θγ, γ|y, c0) at some

values of c for the Arthritis and Colon Tumour dataset. The vertical lines indicate

the log c0 values.

with high variance. Therefore we only use the importance density π(θγ, γ|y, c0)

when π(θγ, γ|y−κ(i), c0) is the target density and π(yi|y−κ(i), c0) is the quantity to

be estimated.

Figure 6 displays the resulting importance estimates of the log predictive score

S(c) for the Arthritis and Colon Tumour datasets. In comparison with Figure 4 the

log predictive scores are underestimated for large c which suggests that π(yi|y−κ(i), c)

is overestimated. This is perhaps surprising given the unbiasedness of importance

sampling estimates but is an example of “pseudo-bias” (Ventura, 2002). The large

number of variables combined with the potential for overfitting (especially for large

c) means that there can be substantial differences between π(θγ, γ|y−κ(i), c0) and

π(θγ, γ|y, c0). The importance weights adjust for this difference but some models

with substantially more mass under π(θγ, γ|y−κ(i), c0) than π(θγ, γ|y, c0) may not
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Figure 6: Importance estimates of the log predictive score S(c) for the Arthritis and

Colon Tumour datasets.

be sampled and so are excluded from (5). This leads to bad estimates of both

numerator and denominator. It seems reasonable to assume that models sam-

pled under π(θγ, γ|y, c0) will tend to predict yi better than those sampled under

π(θγ, γ|y−κ(i), c0) leading to the overestimation.

4.2 K-fold Importance Samplers

An alternative approach to the one taken in the previous subsection uses the pos-

terior conditioned on the correct subset of the data, π(θγ, γ|y−κ(i), c0), as the im-

portance density when the target density is π(θγ, γ|y−κ(i), c). This approach will

be termed a K−fold standard importance sampler. The estimates of the log pre-

dictive score S(c) are improved but at the cost of longer computing times since K

MCMC chains, one for each data partition, must be run. However, the number

of chains is still l times smaller than the direct MCMC methodology of Section

3. But choosing a value of c0 is difficult and restricts the range of c for which

the log predictive score S(c) can be well estimated. One solution is Deterministic

Mixture Sampling (Owen and Zhou, 2000) which combines estimates using different

values of c0. In general, suppose that we have M importance sampling densities

g1, g2, . . . , gM (where gm is a probability density function) and we have samples of

x
(1)
m , x

(2)
m , . . . , x

(T )
m from gm. A new estimator of Ef [h(X)] is constructed by using the

mixture g̃(x) = 1
M

∑M
m=1 gm(x) as the importance sampling density leading to the

estimate
M

∑

m=1

T
∑

j=1

w(j)
m h

(

x(j)
m

)

/

M
∑

m=1

T
∑

j=1

w(j)
m , (6)
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where the importance weights are w
(j)
m = f

(

x
(j)
m

)/

g̃
(

x
(j)
m

)

. Our problem is slightly

different since we only know gm up to proportionality and (6) requires the normal-

izing constant for each m. Geyer (1994) describes a version of this estimator for

MCMC output and introduces a method for approximating the normalizing con-

stants. We propose two novel importance sampling methods which avoid estimation

of normalizing constants.

4.2.1 The Auxiliary Importance Sampler

A similar method to Deterministic Mixture Sampling introduces a probability distri-

bution, πA(c0), for c0 and updates its value in the MCMC sampler. This distribution

is not a prior but leads to a heavier-tailed importance density

πA(θγ, γ|y−κ(i)) ∝ π(y−κ(i)|θγ, γ)πA(θγ|γ)π(γ)

where πA(θγ|γ) = π(α)
∫

π(βγ|γ, c0)πA(c0) dc0. We refer to πA(c0) as an auxiliary

distribution and the resulting sampling method as an Auxiliary Importance Sampler.

In practice, it is more straightforward to sample T values from

πA(θγ, γ, c0|y−κ(i)) ∝ π(y−κ(i)|θγ, γ)π(θγ|γ, c0)π(γ)πA(c0)

using MCMC and estimate π(yi|y−κ(i), c) by

π̂(yi|y−κ(i), c) =

∑T
j=1 w(j)π(yi|θ

(j)
γ , γ(j))

∑T
j=1 w(j)

, (7)

where the importance weight for the j-th sample is given by

w(j) =
π

(

β
(j)
γ

∣

∣

∣
γ(j), c

)

πA

(

β
(j)
γ

∣

∣

∣
γ(j)

) ,

which can easily be calculated if πA(βγ|γ) has an analytic form. In comparison with

the Deterministic Mixture Sampler, this method concentrates more sampling effort

on values of c0 which have larger marginal pseudo-posterior density πA(c0|y−κ(i))

and so reduces the variance of the estimates of S(c) at those values.

The auxiliary distribution πA(c0) is chosen to be an Inverse Gamma distribu-

tion with shape parameter a, scale parameter b, denoted by IG(a, b), with density

function

πA(c0) =
ba

Γ(a)
c
−(a+1)
0 exp

{

−
b

c0

}

, c0 > 0 and a, b > 0.
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The distribution πA(βγ|γ) is then a multivariate Student t distribution with density

πA(βγ|γ) =
Γ(pγ

2
+ a) ba

(2π)pγ /2 Γ(a)

(

βγ
′βγ

2
+ b

)−(
pγ

2
+a)

and the full conditional distribution of c0 is given by

c0|βγ, γ, y−κ(i) ∼ IG (pγ/2 + a, βγ
′βγ/2 + b) .

We have experimented with other auxiliary distributions, but we found the In-

verse Gamma specification described above provides the best performance.

4.2.2 A Multiple Importance Sampler

The previous method avoids the need to approximate normalizing constants and

concentrates sampling effort on promising values of c0. However, the variance of

the estimates of S(c) will be increased at values of c which are not supported by

the pseudo-posterior. Alternatively, we can use a Multiple Importance Sampler

(Veach and Guibas, 1995; Owen and Zhou, 2000) which, again, avoids calculating

normalizing constants. We define a positive, increasing sequence c1, c2, . . . , cM and

let π̂ck
(yi|y−κ(i), c) be the importance sampling estimate of π(yi|y−κ(i), c) using the

importance sampling density π(yi|y−κ(i), ck) which leads to the estimator

π̂ck
(yi|y−κ(i), c) =

∑T
j=1 w

(j)
k π(yi|θ

(j)
γ , γ(j))

∑T
j=1 w

(j)
k

where the weights are

wk
(j) =

π
(

β
(j)
γ

∣

∣

∣
γ(j), c

)

π
(

β
(j)
γ

∣

∣

∣
γ(j), ck

) .

Since the values of cm are ordered and increasing, the last value of the MCMC sample

from π(θγ, γ|y−κ(i), cm) could be used as the initial value of the MCMC chain with

stationary distribution π(θγ, γ|y−κ(i), cm+1). Therefore the MCMC samplers do not

need a long burn-in period. The estimator for each data partition uses a kernel

weighted average to combine the estimates at the values c1, c2, . . . , cM which has the

form

π̂(yi|y−κ(i), c) =

M
∑

m=1

Kλ(dm) π̂cm
(yi|y−κ(i), c)

/

M
∑

m=1

Kλ(dm),

15



where dm = log(c)− log(cm) and Kλ(x) is a kernel with window size parameter λ for

which Kλ(0) = 1 and Kλ(x) is monotonically decreasing away from 0. For example,

we adopt a Gaussian kernel Kλ(x) = exp{−x2/(2λ)} in our examples.

The variance of π̂ck
(yi|y−κ(i), c) is proportional to the reciprocal of the ESS and

tends to be smaller for values of ck closer to c. Any combined estimator needs to take

this effect into account2. In our estimator we can choose c1, . . . , cM , Kλ(x) and λ to

downweigh estimates π̂ck
(yi|y−κ(i), c) which tend to have larger variances. The kernel

weights should be proportional to the reciprocal of the variance of each estimate

and this suggests making Kλ(dm) roughly proportional to ESS. In our examples, we

have found that placing c1, . . . , cM to be equally spaced on the logarithmic scale and

setting λ to be the difference between log(cm+1) and log(cm) is a good proxy.

In the special case that c1, . . . , cM are the 12 equally spaced points stated in Sec-

tion 3, there are two main differences between the multiple importance sampler and

the direct MCMC methodology. Firstly, the multiple importance sampler involves

shorter MCMC runs with smaller burn-in. Secondly, the multiple importance sam-

pler uses M different MCMC chains to estimate π(yi|y−κ(i), cm) whereas the direct

MCMC methodology only uses a single chain. In comparison with the K−fold stan-

dard importance sampler, the multiple importance sampler involves shorter MCMC

runs with smaller burn-in and a mixing over c0 values. This mixing over c0 could

result in more accurate estimates of S(c) for all c in the studied range and could pro-

vide robustness to the specification of c0. Finally, Table 3 summarizes the proposed

importance samplers discussed in this section.

Sampler Density Weight Estimate of π(yi|y−κ(i), c)

K-fold Standard π(θγ,γ|y−κ(i), c0) w =
π(βγ |γ,c)
π(βγ |γ,c0)

∑T
j=1 w(j)π(yi|θ

(j)
γ ,γ(j))

∑T
j=1 w(j)

K-fold Auxiliary π(θγ,γ|y−κ(i)) w =
π(βγ |γ,c)
π(βγ |γ)

∑T
j=1 w(j)π(yi|θ

(j)
γ ,γ(j))

∑T
j=1 w(j)

K-fold Multiple
π(θγ,γ|y−κ(i), cm),

m = 1, . . . ,M
wm =

π(βγ |γ,c)
π(βγ |γ,cm)

∑M
m=1 Kλ(dm) π̂cm(yi|y−κ(i),c)

∑M
m=1 Kλ(dm)

,

dm = log(c) − log(cm)

π̂cm(yi|y−κ(i), c) =
∑T

j=1 w
(j)
m π(yi|θ

(j)
γ ,γ(j))

∑T
j=1 w

(j)
m

Table 3: The importance density, weight and estimate of π(yi|y−κ(i), c) for each impor-

tance sampler.

2Owen and Zhou (2000) discuss how this happens in the Deterministic Mixture Sampler.
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5 Results

5.1 Comparison of K-Fold Importance Samplers

The K−fold log predictive score S(c) is estimated at the 12 equally spaced points

stated in Section 3 using the K-fold standard importance sampler, the multiple

importance sampler and the auxiliary importance sampler. In each case, the different

samplers are run on each partition of the data. The direct MCMC output will be

used as a “gold standard”. Comparing the results to the MCMC runs in Section

3 allows us to measure the accuracy of the importance samplers. We will use the

following measures: the mean squared error of the importance estimates of S(c)

evaluated at the 12 equally spaced points (MSE) and the number of times (out of

5 replications) that the importance minimizer of S(c) is the same (i.e. selecting the

same of the 12 equally spaced points in the log scale in [0.1,1000]) as the direct

MCMC minimizer (SMin).
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Figure 7: K−fold standard importance estimates of the Arthritis and Colon Tumour log

predictive scores for selected values of c0: (a) estimates averaged over 5 replications and

(b) the standard deviation over 5 replications.

The K−fold standard importance sampler was implemented for c0 = 1, 10, 50, 100, 150.

We generated an MCMC sample of size T = 80, 000 (after thinning to every fifth

draw) with stationary distribution π(θγ, γ|y−κ(i), c0). The average estimated ESS

is high when c is close to c0 and low for the other values of c. This indicates that

the importance density π(θγ, γ|y−κ(i), c0) is quite different from the target density

π(θγ, γ|y−κ(i), c) when c is not close to c0 and this may result in estimates of S(c)

with large variances. Figure 7 displays the sample mean and standard deviation of
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the Arthritis log predictive score estimates for c0 = 10, 50, 100 (left-hand panel)

and the Colon Tumour log predictive score estimates for c0 = 1, 50, 100 (right-hand

panel) over the 5 replications. These values of c0 were specifically selected so that

the importance estimates are similar to those in Figure 4 and these results are the

best that we can hope to get with the K−fold standard importance sampler.

Arthritis Colon Tumour

c0 CPU MSE SMin CPU MSE SMin

1 427 0.03 5 195 0.006 1

10 428 0.03 5 193 0.014 0

50 426 0.01 4 194 0.007 4

100 426 0.02 5 193 0.013 5

150 434 0.03 2 194 0.011 4

Table 4: The average CPU time in minutes of the standard importance samplers

π(θγ,γ|y−κ(i), c0) for some c0 values, the mean squared error of the importance estimates

of S(c) and the number of times (out of 5 replications) the importance minimizer of S(c)

is the same as that with direct MCMC.

Table 4 presents the average (over the 5 replications) CPU time in minutes, MSE

and SMin of each K−fold standard importance sampler. Some K−fold standard

importance samplers estimate the log predictive score and the minimizer with vir-

tually the same accuracy as the direct MCMC methodology. However, the required

CPU time is more than ten times smaller than the direct MCMC methodology. Un-

fortunately, the large differences in performance for the two data sets for the same

c0 suggests that finding a default value of c0 for use with other data sets would be

virtually impossible and motivates our development of the multiple and auxiliary

importance samplers.

The multiple importance sampler was implemented with M = 20, λ = 0.5 and

cm chosen equally spaced on the log scale from 0.1 to 1000. This implies that λ is

roughly the difference between log(cm+1) and log(cm). Three multiple importance

samplers have been used with different run lengths, described in Table 5. In each

case the chain had been thinned to every fifth value. The sample mean of the

estimated log predictive scores, over 5 replications, are shown in Figure 8(a) and

give quite similar results to the MCMC log predictive scores depicted in Figure

4. The standard deviation for all three multiple importance samplers are smaller

for smaller values of c and larger for larger values of c compared to the standard
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Arthritis Colon Tumour

Sampler Burn-in Sample CPU MSE SMin CPU MSE SMin

1 50,000 30,000 2898 0.003 5 1289 0.009 4

2 20,000 16,000 1434 0.006 4 642 0.014 4

3 20,000 6000 712 0.013 5 320 0.04 3

Table 5: The specifications of three MCMC samplers involved in each multiple importance

sampler with the average CPU time in minutes, MSE and SMin.
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Figure 8: Importance estimates of the log predictive scores for the Arthritis and Colon

Tumour using each multiple importance sampler: (a) estimates averaged over 5 replications

and (b) the standard deviation over 5 replications. The sample size of the MCMC samplers

involved in each multiple importance sampler is denoted by T .

deviations shown in Figure 7. This is due to the choice of c1, . . . , cM which are

concentrated on those smaller values of c. This leads to more consistent results for

SMin than using the K−fold standard importance sampler at the expense of longer

run times (Table 5).

The previous estimates use a Gaussian kernel for Kλ(x) and pre-specified window

size λ. We also looked at the Gaussian, Epanechnikov and Tri-Cube kernels for λ

equal to 0.2, 0.4, 0.6, 0.8 and 1. The results showed that the mean squared errors

decreased as λ increased within each kernel and was smaller with the Gaussian

kernel than with the other two kernels for all λ. However, the differences were small

suggesting the results are fairly robust to the choice of Kλ(x).

We conclude that the multiple importance samplers estimate the log predictive

score with similar accuracy to the direct MCMC methodology and lead to very
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similar minimizers. The CPU times of the second and third sampler are a factor

3 and almost 6.5 smaller than for the direct MCMC method. The first multiple

importance sampler estimates the log predictive score with similar accuracy to the

basic K−fold standard importance sampler with an “optimal” value of c0 but avoids

finding this optimal value (leading to a more “automatic” procedure). However, the

method comes with a higher computational cost.
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Figure 9: Auxiliary importance estimates of the Arthritis and Colon Tumour log pre-

dictive scores for different Inverse Gamma auxiliary distributions on c0: (a) estimates

averaged over 5 replications and (b) the standard deviation over 5 replications.

The auxiliary importance sampler offers an alternative method to combine dif-

ferent values of c in the importance sampling distribution. An MCMC sample

of size T = 80, 000 (after thinning to every fifth draw) with stationary distribu-

tion πA(θγ, γ|y−κ(i)) was generated. Different Inverse Gamma auxiliary distribu-

tions on c have been used with shape parameter a = 0.001 and scale parameters

b = 1, 0.1, 0.02. These parameters yield heavy tailed density functions and are not

specifically chosen to concentrate the mass on the range of c over which the log

predictive score is estimated. If we choose the parameters of the Inverse Gamma

in such a way that the tails are thinner and we try to concentrate the mass on the

region of interest for c, we find less accurate results that are comparable to those

obtained with a Gamma auxiliary distribution. The Arthritis and Colon Tumour

log predictive scores are estimated at the values of c stated in Section 3, for each

Inverse Gamma auxiliary distribution.

The average log predictive scores over 5 replications, shown in Figure 9(a) for

three typical Inverse Gamma auxiliary distributions on c, are quite similar to the

direct MCMC results depicted in Figure 4. The Mean Squared Errors (shown in
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Table 6) are small and the methods provide very similar minimizers of the log

predictive score. Figure 9(b) indicates that replicates are closer than the other

importance samplers for all cases and values of c. The CPU time of these samplers

Arthritis Colon Tumour

IG(a, b) CPU MSE SMin CPU MSE SMin

a = 0.001, b = 1 475 0.01 5 215 0.006 4

a = 0.001, b = 0.1 481 0.008 5 217 0.012 4

a = 0.001, b = 0.02 483 0.004 5 217 0.007 4

Table 6: The average CPU time in minutes, MSE and SMin for different Inverse Gamma

auxiliary importance samplers.

is about ten times smaller than with the MCMC methodology and considerably less

than with the multiple importance sampler, indicating a substantial computational

gain.
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Figure 10: The average log mean ESS of the Inverse Gamma auxiliary importance sam-

plers as a function of c for the Arthritis and Colon Tumour data.

Figure 10 shows the average (over 5 replications) log mean (over i) ESS of the

Inverse Gamma auxiliary importance samplers at each c for the Arthritis and Colon

Tumour datasets. Mean ESS is a (mostly) increasing function of c, quite in contrast

to the standard K-fold importance sampler. Also, we can see that the Inverse

Gamma auxiliary distributions with scale parameters b = 0.1 and 0.02 result in

reasonable high mean ESS for values of c around the optimal value.
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5.2 Comparison to Fully Bayesian Inference

An alternative to the empirical Bayes approach taken in this paper is fully Bayesian

inference where a prior is placed on c. In the context of linear splines, the formal

Bayesian approach for the ridge prior is studied by Denison et al. (2002) and for

linear regression with a g-prior it is studied by Celeux et al. (2006), Liang et al.

(2008) and Cui and George (2008). This approach is a natural way to account for

uncertainty in the estimation of c and is often believed to increase robustness to the

specification of c. However, results can be sensitive to the choice of prior on c which

can be particular acute when there is little information in the data and the prior is

chosen to be diffuse (to represent a lack of prior knowledge).

The approaches were compared using out-of-sample3 prediction accuracy on the

Arthritis dataset and a larger dataset regarding prostate cancer. This data comprises

n = 136 observations, divided into prostate tumour and nontumour groups, with

p = 10150 gene expression measurements (Singh et al., 2002). The datasets were

partitioned into K = 12 subsets, where 10 subsets formed the training set and two

subsets formed the test set. The empirical Bayes method was applied using 10-fold

cross-validation on the training set with the auxiliary importance sampler. The

minimizers of the log predictive score were c = 1.23 for the Arthritis dataset and

c = 15.2 for the Prostate data. Fitting the Bayesian probit regression model with

these fixed values of c leads to log predictive scores for the test dataset of 0.21 for

the Arthritis data and 0.08 for the Prostate data.

IG(a, b) Arthritis Prostate

a = 0.001, b = 1 0.30 0.12

a = 0.001, b = 0.1 0.28 0.10

a = 0.001, b = 0.02 0.29 0.13

Table 7: MCMC estimates of the out-of-sample log predictive scores for the Arthritis and

Prostate datasets and three representative Inverse Gamma priors on c.

We implemented a fully Bayesian approach with an Inverse Gamma prior distri-

bution for c which is the standard, conditionally conjugate prior and is made diffuse

3We compare out-of-sample predictions in this case, since the empirical Bayes approach specif-

ically selected c to optimize cross-validation prediction. Using the latter criterion to compare

empirical Bayes and fully Bayes procedures leads to similar conclusions.
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by choosing a small shape parameter (in fact, the same values for the hyperparam-

eters are chosen as for the auxiliary distribution in the previous subsection). The

methods were compared using out-of-sample log predictive scores. MCMC samples

of size T = 190, 000 after thinning to every tenth draw were generated for the train-

ing dataset using the algorithm of Holmes and Held (2006). Table 7 shows that the

empirical Bayes approach had much smaller out-of-sample log predictive scores than

the fully Bayesian method indicating better predictions.

An alternative empirical Bayes approach is described by Strimenopoulou and Brown

(2008) who minimize minus log-likelihood error (equation (4) of their paper) on the

training data. They suggest estimating the regression coefficients using a maximum

a posteriori approach. The log predictive scores for the test data were 0.19 for the

Arthritis dataset and 0.09 for the Prostate dataset. These values are quite similar

to those found by the empirical Bayes approach proposed in the article.
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Figure 11: Prior and posterior density functions of log c for the Arthritis data set

(top row) and Prostate dataset (bottom row).

Figure 11 shows the posterior distribution of log(c) for both data sets under the

three priors. These posteriors place some mass at the value of c that minimizes

S(c) but this tends to be in the left-hand tail of the distribution and far from the

mode. Furthermore, they place substantial mass on large values of log(c), which are

associated with poor prediction performance due to overfitting. This explains the

poor performance of fully Bayesian inference in these examples. The choice of prior
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distribution for c which encourages good prediction is an area that we are currently

investigating. This choice becomes increasingly important when p is much larger

than n and the prior has a substantial effect on the inference.

6 Conclusions

The “ridge” hyperparameter c crucially affects Bayesian variable selection in pro-

bit regression with p ≫ n. In particular, it controls the amount of shrinkage of

the regression coefficients and when there is less regularisation (large c) the best

models fit the data perfectly. This results in variable selection that discriminates

perfectly within-sample but may not discriminate between the groups out-of-sample.

Therefore, we propose to use a predictive criterion like the log predictive score to

determine the value of c. In our examples the log predictive score is roughly convex

and the value of c that minimizes the log predictive score is the preferred choice

for c. Alternative proper score functions lead to very similar minimizers. Since

cross-validation densities are employed to determine c, the resulting Bayesian vari-

able selection has better out-of-sample predictive properties. The latter is typically

linked to successful variable selection, which is our main concern in the type of appli-

cations considered here. Interestingly, the guideline range for choosing c proposed

in Sha et al. (2004) covers our preferred value in one of the datasets we examine

here, but remains very far from this optimal value in the other4.

In this paper we have focused on the accurate and efficient estimation of the log

predictive score and thus the identification of the log predictive score minimizer.

The cross-validation density π(yi|y−κ(i), c) is the main component of all predictive

scores, but it does not have a closed analytical expression. Therefore, we employ

importance sampling methods that use the same sample (generated from the impor-

tance density) repeatedly to estimate π(yi|y−κ(i), c) for different i and c. Importance

samplers that condition on the entire sample result in inaccurate estimates of the log

predictive score. This is mainly a consequence of the perfect fit to the data for large

values of c which results in an overestimation of π(yi|θγ, γ). Thus, we propose to

use K−fold importance samplers with importance densities π(θγ, γ|y−κ(i), c0) and

π(θγ, γ|y−κ(i)) to estimate π(yi|y−κ(i), c) for different values of c.

4For the prostate data mentioned in Subsection 5.2, the Sha et al. (2004) guidelines lead to the

range (0.004, 0.1) for c, again not covering the minimizer of the log predictive score, which is in

the interval (1.6, 20).
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The K−fold standard importance sampler can result in quite accurate estimates

of the Arthritis and Colon Tumour log predictive scores for some values of c0. The

CPU time for this sampler is almost ten time smaller than that required for the direct

MCMC methodology. A potential guideline for choosing an appropriate value of c0

suggests the values c0 = 50, 100. However, a mis-specified choice of c0 can lead to

misleading estimates of S(c). Thus, we introduce the K−fold multiple and auxiliary

importance samplers, which avoid choosing a particular value for c0.

The K−fold multiple importance sampler involves shorter run MCMC chains and

mixes over c0 values, resulting in a six-fold improvement in CPU time over the direct

MCMC methodology. The K−fold auxiliary importance samplers provide quite

accurate estimates of the Arthritis and Colon Tumour log predictive scores with

a ten-fold computational improvement over the MCMC approach. The preferred

choice for the auxiliary distribution is an Inverted Gamma with small values for

both parameters.

Thus, we suggest employing the K−fold multiple and Inverse Gamma auxiliary

importance samplers to estimate the log predictive score and find the best value for

c. The parameters of the Inverse Gamma auxiliary distributions on c are chosen

to yield heavy tailed density functions and there is no need for further user input.

The multiple importance sampler requires predetermined values c1, . . . , cM and we

recommend choosing them to be equally spaced in the logarithmic scale and to cover

the relevant range of c with M = 20.

The procedures described should also work well in other cross-validation con-

texts, such as random-fold cross-validation (Gneiting and Raftery, 2007). We also

successfully used both procedures on the much larger prostate cancer dataset, where

n = 136 and p = 10150. Here the demand in CPU time of the direct MCMC was

of the order of 5.5 days (with K = 12), which was reduced to 0.5 days by using the

auxiliary importance sampler, representing an 11-fold decrease in computational ef-

fort. The improvements in computational efficiency would be even more pronounced

if the log predictive score is estimated at a larger number of points l. The proposed

methods could be extended to choosing the hyperparameter vector (q, c). In the case

of the auxiliary importance sampler, a Beta(a, b) distribution could be a reasonable

auxiliary distribution on q.

Fully Bayesian inference where a prior is placed on c could be used but default,

diffuse priors tend to produce poor predictions which suggests that an empirical

Bayes approach, such as ours, will be useful in the context of regression with many
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more regressors than observations.

Acknowledgements

We gratefully acknowledge insightful comments by two anonymous referees.

References

Alon, U., N. Barkai, D. A. Notterman, K. Gish, S. Ybarra, D. Mack, and A. J.

Levine (1999). Broad patterns of gene expression revealed by clustering analysis

of tumor and normal colon tissues probed by oligonucleotide arrays. Proceedings of

the National Academy of Sciences of the United States of America 96, 6745–6750.

Brown, P. J. and M. Vannucci (1998). Multivariate Bayesian variable selection and

prediction. Journal of the Royal Statistical Society 60 (3), 627–641.

Celeux, G., J.-M. Marin, and C. P. Robert (2006). Sélection bayésienne de variables
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