Skip to main content
Log in

Global sensitivity analysis using complex linear models

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

A global sensitivity analysis of complex computer codes is usually performed by calculating the Sobol indices. The indices are estimated using Monte Carlo methods. The Monte Carlo simulations are time-consuming even if the computer response is replaced by a metamodel. This paper proposes a new method for calculating sensitivity indices that overcomes the Monte Carlo estimation. The method assumes a discretization of the domain of simulation and uses the expansion of the computer response on an orthogonal basis of complex functions to built a metamodel. This metamodel is then used to derive an analytical estimation of the Sobol indices. This approach is successfully tested on analytical functions and is compared with two alternative methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bailey, R.A.: Factorial designs and abelian groups. Linear Algebra Appl. 70, 349–363 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  • Bates, R.A., Buck, R.J., Riccomagno, E., Wynn, H.P.: Experimental design and observation for large systems. J. R. Stat. Soc. B 58, 77–94 (1996)

    MathSciNet  MATH  Google Scholar 

  • Bates, R.A., Riccomagno, E., Schwabe, R., Wynn, H.P.: Lattices and dual lattices in optimal experimental design for Fourier models. Comput. Stat. Data Anal. 28, 283–296 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Fang, K.T., Li, R., Sudjianto, A.: Design and Modeling for Computer Experiments. Chapman & Hall, London (2006)

    MATH  Google Scholar 

  • Husslage, B., Rennen, G., van Dam, E., den Hertog, D.: Space-filling Latin hypercube designs for computer experiments. CentER Discussion Paper 2008-104. Tilburg University (2008)

  • Johnson, M.E., Moore, L.M., Ylvisaker, D.: Minimax and maximin distance design. J. Stat. Plan. Inference 26, 131–148 (1990)

    Article  MathSciNet  Google Scholar 

  • Kobilinsky, A.: Complex linear models and cyclic designs. Linear Algebra Appl. 127, 227–282 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  • Niederreiter, H.: Random number generation and quasi-Monte Carlo methods. Technical Report no4. CBMS-NSF, SIAM, Philadelphia, Illinois, Dept. of Statistics (1992)

  • Riccomagno, E., Schwabe, R., Wynn, H.P.: Lattice-based D-optimum design for Fourier regression. Ann. Stat. 25, 2313–2327 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Sacks, J., Welch, W.J., Mitchell, T.J., Wynn, H.P.: Design and analysis of computer experiments. Stat. Sci. 4, 409–435 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  • Saltelli, A., Tarantola, S., Chan, K.: A quantitative, model independent method for global sensitivity analysis of model output. Technometrics 41, 39–56 (1999)

    Article  Google Scholar 

  • Saltelli, A., Chan, K., Scott, M. (eds.): Sensitivity Analysis. Wiley Series in Probability and Statistics. Wiley, New York (2000)

    MATH  Google Scholar 

  • Santner, T.J., Williams, B.J., Notz, W.I.: The Design and Analysis of Computer Experiments. Springer Series in Statistics. Springer, New York (2003)

    MATH  Google Scholar 

  • Sobol, I.M.: Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 55, 271–280 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Sudret, B.: Global sensitivity analysis using polynomial chaos expansions. Reliab. Eng. Syst. Saf. 93, 964–979 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Astrid Jourdan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jourdan, A. Global sensitivity analysis using complex linear models. Stat Comput 22, 823–831 (2012). https://doi.org/10.1007/s11222-011-9239-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-011-9239-y

Keywords

Navigation