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Abstract This paper deals with the problem of estimating
the volume of the excursion set of a function f : RY — R
above a given threshold, under a probability measure on R?
that is assumed to be known. In the industrial world, this cor-
responds to the problem of estimating a probability of failure
of a system. When only an expensive-to-simulate model of
the system is available, the budget for simulations is usually
severely limited and therefore classical Monte Carlo meth-
ods ought to be avoided. One of the main contributions of
this article is to derive SUR (stepwise uncertainty reduction)
strategies from a Bayesian formulation of the problem of es-
timating a probability of failure. These sequential strategies
use a Gaussian process model of f and aim at performing
evaluations of f as efficiently as possible to infer the value
of the probability of failure. We compare these strategies to
other strategies also based on a Gaussian process model for
estimating a probability of failure.
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1 Introduction

The design of a system or a technological product has to take
into account the fact that some design parameters are subject
to unknown variations that may affect the reliability of the
system. In particular, it is important to estimate the proba-
bility of the system to work under abnormal or dangerous
operating conditions due to random dispersions of its char-
acteristic parameters. The probability of failure of a system
is usually expressed as the probability of the excursion set of
a function above a fixed threshold. More precisely, let f be
a measurable real function defined over a probability space
(X, B(X), Px), with X CR?, and let u € R be a threshold.
The problem to be considered in this paper is the estimation
of the volume, under Px, of the excursion set

N={xeX: f(x)>u} €))]

of the function f above the level u. In the context of ro-
bust design, the volume « := Px(I") can be viewed as the
probability of failure of a system: the probability Px models
the uncertainty on the input vector x € X of the system—
the components of which are sometimes called design vari-
ables or factors—and f is some deterministic performance
function derived from the outputs of a deterministic model
of the system.! The evaluation of the outputs of the model

IStochastic simulators are also of considerable practical interest, but
raise specific modeling and computational issues that will not be con-
sidered in this paper.

@ Springer


mailto:julien.bect@supelec.fr
mailto:ling.li@supelec.fr
mailto:emmanuel.vazquez@supelec.fr
mailto:victor.picheny@ecp.fr
mailto:david.ginsbourger@stat.unibe.ch

774

Stat Comput (2012) 22:773-793

for a given set of input factors may involve complex and
time-consuming computer simulations, which turns f into
an expensive-to-evaluate function. Therefore, the estimation
of o must be carried out with a restricted number of evalua-
tions of f, generally excluding the estimation of the proba-
bility of excursion by a Monte Carlo approach. Indeed, con-
sider the empirical estimator

1 m
o 1= — 21: Lif(xi)>u)s (@)
1=

where the X;s are independent random variables with dis-
tribution Px. According to the strong law of large num-
bers, the estimator «,, converges to o almost surely when
m increases. Moreover, it is an unbiased estimator of «, i.e.
E(a;,) = «. Its mean square error is

E((ocm - 05)2) = %a(l — a).

If the probability of failure « is small, then the standard de-
viation of «, is approximately +/o/m. To achieve a given
standard deviation 8o thus requires approximately 1/(8%c)
evaluations, which can be prohibitively high if « is small.
By way of illustration, if o« =2 x 1073 and 8§ = 0.1, we
obtain m = 50000. If one evaluation of f takes, say, one
minute, then the entire estimation procedure will take about
35 days to complete. Of course, a host of refined random
sampling methods have been proposed to improve over the
basic Monte Carlo convergence rate; for instance, meth-
ods based on importance sampling with cross-entropy (Ru-
binstein and Kroese 2004), subset sampling (Au and Beck
2001) or line sampling (Pradlwarter et al. 2007). They will
not be considered here for the sake of brevity and because
the required number of function evaluations is still very
high.

Until recently, all the methods that do not require a
large number of evaluations of f were based on the use
of parametric approximations for either the function f it-
self or the boundary dI" of I". The so-called response sur-
face method falls in the first category (see, e.g., Bucher
and Bourgund 1990; Rajashekhar and Ellingwood 1993, and
references therein). The most popular approaches in the
second category are the first- and second-order reliability
method (FORM and SORM), which are based on a linear
or quadratic approximation of dI" around the most probable
failure point (see, e.g., Bjerager 1990). In all these methods,
the accuracy of the estimator depends on the actual shape
of either f or dI" and its resemblance to the approximant:
they do not provide statistically consistent estimators of the
probability of failure.

This paper focuses on sequential sampling strategies
based on Gaussian processes and kriging, which can be seen
as a nonparametric approximation method. Several strate-
gies of this kind have been proposed recently by Ranjan
et al. (2008), Bichon et al. (2008), Picheny et al. (2010) and
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Echard et al. (2010a, 2010b). The idea is that the Gaussian
process model, which captures prior knowledge about the
unknown function f, makes it possible to assess the un-
certainty about the position of I given a set of evaluation
results. This line of research has its roots in the field of de-
sign and analysis of computer experiments (see, e.g., Sacks
et al. 1989; Currin et al. 1991; Welch et al. 1992; Oakley and
O’Hagan, 2001, 2004; Oakley 2004; Bayarri et al. 2007).
More specifically, kriging-based sequential strategies for the
estimation of a probability of failure are closely related to
the field of Bayesian global optimization (Mockus et al.
1978; Mockus 1989; Jones et al. 1998; Villemonteix 2008;
Villemonteix et al. 2009; Ginsbourger 2009).

The contribution of this paper is twofold. First, we intro-
duce a Bayesian decision-theoretic framework from which
the theoretical form of an optimal strategy for the estima-
tion of a probability of failure can be derived. One-step
lookahead sub-optimal strategies are then proposed,” which
are suitable for numerical evaluation and implementation on
computers. These strategies will be called SUR (stepwise
uncertainty reduction) strategies in reference to the work of
D. Geman and its collaborators (see, e.g. Fleuret and Geman
1999). Second, we provide a review in a unified framework
of all the kriging-based strategies and compare them numer-
ically with the SUR strategies proposed in this paper.

The outline of the paper is as follows. Section 2 intro-
duces the Bayesian framework and recalls the basics of dy-
namic programming and Gaussian processes. Section 3 in-
troduces SUR strategies, from the decision-theoretic under-
pinnings, down to the implementation level. Section 4 pro-
vides a review of other kriging-based strategies proposed in
the literature. Section 5 provides some illustrations and re-
ports an empirical comparison of these sampling criteria. Fi-
nally, Section 6 presents conclusions and offers perspectives
for future work.

2 Bayesian decision-theoretic framework
2.1 Bayes risk and sequential strategies

Let f be a continuous function. We shall assume that f
corresponds to a computer program whose output is not
a closed-form expression of the inputs. Our objective is to
obtain a numerical approximation of the probability of fail-
ure

a(f) =Px{x eX: f(x) >u}

= / ]]-f>u dPx, 3)
X

ZPreliminary accounts of this work have been presented in Vazquez
and Piera-Martinez (2007) and Vazquez and Bect (2009).
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where 1¢., stands for the indicator function of the ex-
cursion set I', such that for any x € X, 17.,(x) equals
one if x € I' and zero otherwise. The approximation of
o(f) has to be built from a set of computer experiments,
where an experiment simply consists in choosing an x €
X and computing the value of f at x. The result of a
pointwise evaluation of f carries information about f and
quantities depending on f and, in particular, about 17,
and a(f). In the context of expensive computer experi-
ments, we shall also suppose that the number of evalu-
ations is limited. Thus, the estimation of «(f) must be
carried out using a fixed number, say N, of evaluations
of f.

A sequential non-randomized algorithm to estimate o ( f)
with a budget of N evaluations is a pair (X, an),

Xy > Xy () = X1, X2(f), ..., Xn(f) e XV,

av:fan(f) Ry,

with the following properties:

(a) There exists x; € X such that X{(f) = x1, i.e. X1 does
not depend on f.

b) Let Z,(f) = f(X,(f)), 1 <n<N.Foralll <n <N,
Xu+1(f) depends measurably3 on Z,(f), where Z,, =
((X1,Z1), ..., (Xn, Zn)).

(¢) an(f) depends measurably on Zy (f).

The mapping X,, will be referred to as a strategy, or pol-
icy, or design of experiments, and ay will be called an
estimator. The algorithm (X, ,ay) describes a sequence
of decisions, made from an increasing amount of informa-
tion: X1(f) = x is chosen prior to any evaluation; for each
n=1,..., N — 1, the algorithm uses information Z,( f) to
choose the next evaluation point X,1(f); the estimation
an(f) of a(f) is the terminal decision. In some applica-
tions, the class of sequential algorithms must be further re-
stricted: for instance, when K computer simulations can be
run in parallel, algorithms that query batches of K evalua-
tions at a time may be preferred (see, e.g. Ginsbourger et al.
2010). In this paper no such restriction is imposed.

The choice of the estimator oy will be addressed in
Sect. 2.4: for now, we simply assume that an estimator
has been chosen, and focus on the problem of finding a
good strategy X, ; that is, one that will produce a good
final approximation ay (f) of a(f). Let Ay be the class
of all strategies X,, that query sequentially N evaluations
of f. Given a loss function L : R x R — R, we define
the error of approximation of a strategy X, € Ay on f
as €(Xy, f) = L@n(f),a(f)). In this paper, we shall

3Le., there is a measurable map ¢, : (X x R)" - X such that X, 4| =
@noIy.

consider the quadratic loss function, so that e(X,,, f) =
@ (f) —e(f)*.

We adopt a Bayesian approach to this decision problem:
the unknown function f is considered as a sample path of
a real-valued random process £ defined on some probability
space (2, B, Pg) with parameter in x € X, and a good strat-
egy is a strategy that achieves, or gets close to, the Bayes
risk

inf Eo(e(Xy, £)),

B =
)_(NE-AN

where Eq denotes the expectation with respect to Py. From a
subjective Bayesian point of view, the stochastic model £ is
a representation of our uncertain initial knowledge about f.
From a more pragmatic perspective, the prior distribution
can be seen as a tool to define a notion of a good strat-
egy in an average sense. Another interesting route, not fol-
lowed in this paper, would have been to consider the mini-
max risk infy e 4y maxy e(Xy, f) over some class of func-
tions.

Notation From now on, we shall consider the stochastic
model & instead of the deterministic function f and, for
abbreviation, the explicit dependence on £ will be dropped
when there is no risk of confusion; e.g., @y will denote the
random variable @y (£), X, will denote the random vari-
able X, (£), etc. We will use the notations F;,, P, and E,, to
denote respectively the o -algebra generated by Z,,, the con-
ditional distribution Po(- | F;,) and the conditional expec-
tation Eg(- | F;,). Note that the dependence of X, on Z,
can be rephrased by saying that X, is F,-measurable.
Recall that E,,(Z) is F,-measurable, and thus can be seen
as a measurable function of Z,, for any random vari-
able Z.

2.2 Optimal and k-step lookahead strategies

It is well-known (see, e.g., Berry and Fristedt 1985; Mockus
1989; Bertsekas 1995) that an optimal strategy for such a
finite horizon problem*, i.e. a strategy X% € Ay such that
Eo(e(XY,§)) = rg, can be formally obtained by dynamic
programming: let Ry = En(e(Xy,§)) = En((@n — a)?)
denote the terminal risk and define by backward induc-
tion

R, =minE, (R X =x),
n {rnelgil n( nt1 | Xnt x)
n=N-—1,...,0. @)

To get an insight into (4), notice that R,41, n =0,...,
N — 1, depends measurably on 7,41 = (Z,,, X, 41, Zn+1),

“In other words, a sequential decision problem where the total number
of steps to be performed is known from the start.
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so that E, (R, 41 | X»+1 = x) is in fact an expectation with
respect to Z,+1, and R, is an J;,-measurable random vari-
able. Then, we have Ry = rp, and the strategy )_(}'\, defined
by

Xoi1= argminEn(RnJr] | Xnt1 Zx),
xeX

L N-—1, &)

is optimal.5 It is crucial to observe here that, for this dy-
namic programming problem, both the space of possible
actions and the space of possible outcomes at each step
are continuous, and the state space (X x R)" at step n
is of dimension n(d 4+ 1). Any direct attempt at solv-
ing (4)—(5) numerically, over an horizon N of more than
a few steps, will suffer from the curse of dimensional-
ity.
Using (4), the optimal strategy can be expanded as

Xni1= argminEn(min E,t1 I%vn Ex_1RN ) X+ :x).

xeX Xn+2

A very general approach to construct sub-optimal—but
hopefully good—strategies is to truncate this expansion af-
ter k terms, replacing the exact risk R,4, by any available
surrogate ﬁn-{—k- Examples of such surrogates will be given
in Sects. 3 and 4. The resulting strategy,

X,4+1 = argminE, (min Ent1---min Eyyp—1 Rtk
xeX Xn+2 Xu+k

X1 = x) (6)

is called a k-step lookahead strategy (see, e.g., Bertsekas
1995, Sect. 6.3). Note that both the optimal strategy (5) and
the k-step lookahead strategy implicitly define a sampling
criterion J,(x), JF,-measurable, the minimum of which in-
dicates the next evaluation to be performed. For instance, in
the case of the k-step lookahead strategy, the sampling cri-
terion is

Ju(x) =E, <§(mn Ent1--- ;(nin Enti—1 En-{-k ‘ Xut1 =x> .

n+2 n+k

In the rest of the paper, we restrict our attention to the class
of one-step lookahead strategies, which is, as we shall see in
Sect. 3, large enough to provide very efficient algorithms.
We leave aside the interesting question of whether more

5Proving rigorously that, for a given Py and @y, (4) and (5) actually
define a (measurable!) strategy X3, € Ay is a technical problem that
is not of primary interest in this paper. This can be done for instance,
in the case of a Gaussian process with continuous covariance function
(as considered later), by proving that x > E,(R,+1 | Xp+1(§) = x)
is a continuous function on X and then using a measurable selection
theorem.
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complex k-step lookahead strategies (with k > 2) could pro-
vide a significant improvement over the strategies examined
in this paper.

Remark 1 In practice, the analysis of a computer code usu-
ally begins with an exploratory phase, during which the out-
put of the code is computed on a space-filling design of size
ng < N (see, e.g., Santner et al. 2003). Such an exploratory
phase will be colloquially referred to as the initial design.
Sequential strategies such as (5) and (6) are meant to be used
after this initial design, at steps no+ 1, ..., N. An important
(and largely open) question is the choice of the size ng of
the initial design, for a given global budget N. As a rule of
thumb, some authors recommend to start with a sample size
proportional to the dimension d of the input space X, for
instance ng = 10d; see Loeppky et al. (2009) and the refer-
ences therein.

2.3 Gaussian process priors

Restricting & to be a Gaussian process makes it possible
to deal with the conditional distributions P,, and condi-
tional expectations E, that appear in the strategies above.
The idea of modeling an unknown function f by a Gaus-
sian process has originally been introduced approximately
in 1960 in time series analysis (Parzen 1962), optimization
theory (Kushner 1964) and geostatistics (see, e.g., Chiles
and Delfiner 1999, and the references therein). Today, the
Gaussian process model plays a central role in the de-
sign and analysis of computer experiments (see, e.g., Sacks
et al. 1989; Currin et al. 1991; Welch et al. 1992; Sant-
ner et al. 2003). Recall that the distribution of a Gaus-
sian process & is uniquely determined by its mean func-
tion m(x) := Eg(&(x)), x € X, and its covariance function
k(x,y) :=Eo((§(x) —m(x))(§(y) —m(y))), x, y € X. Here-
after, we shall use the notation & ~ GP(m, k) to say that &
is a Gaussian process with mean function m and covariance
function k.

Let &£ ~ GP(0, k) be a zero-mean Gaussian process. The
best linear unbiased predictor (BLUP) of £(x) from obser-
vations £(x;), i =1, ..., n, also called the kriging predictor
of £(x), is the orthogonal projection

E(rix,) =Y Ailxix,)E(x) (7

i=1

of &(x) onto span{é(x;),i =1, ..., n}. Here, the notation x
stands for the set of points x,, = {x1, ..., x,}. The weights
Ai(x; x,,) are the solutions of a system of linear equations

k(x,, x,)A(x; x,) =k(x,x,) ®)

where k(x,,, x,,) stands for the n x n covariance matrix of the
observation vector, A(x; x,,) = (A1 (x;x,), ..., A, (x; &n))T,
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and k(x, x,) is a vector with entries k(x, x;). The function
x — £(x; x,) conditioned on £(x1) = f(x1),...,E(x,) =
f(x,), is deterministic, and provides a cheap surrogate
model for the true function f (see, e.g., Santner et al. 2003).
The covariance function of the error of prediction, also
called kriging covariance is given by

k(x,y:x,) = cov (£(x) —E(x1x,),E(») —E(: x,))
= k(r,y) = ) hi(xix,) k(v xi). ©)

The variance of the prediction error, also called the kriging
variance, is defined as o2 (x: x,) =k(x,x; x,). One funda-
mental property of a zero-mean Gaussian process is the fol-
lowing (see, e.g., Chiles and Delfiner 1999, Chap. 3):

Proposition 1 If & ~ GP(0, k), then the random pro-
cess & conditioned on the o-algebra F, generated by
E(x1), ..., E(xp), which we shall denote by & | F,, is a Gaus-
sian process with mean ’S\( .; x,,) given by (7)—(8) and co-
variance k( -, +; x,,) given by (9). In particular, E(x; X,) =
Eo(&(x) | Fn) is the best F,-measurable predictor of &(x),
forall x e X.

In the domain of computer experiments, the mean of a
Gaussian process is generally written as a linear parametric
function

m(+)=BTh(), (10)

where $ is an /-dimensional vector of unknown parameters,
and h = (hy,..., hl)T is an [-dimensional vector of func-
tions (in practice, polynomials). The simplest case is when
the mean function is assumed to be an unknown constant m,
in which case we can take 8 =m and h : x € X+ 1. The
covariance function is generally chosen to be a translation-
invariant function:

k:(x,y)eX? > o2 pg(x —y),

where o is the variance of the (stationary) Gaussian pro-
cess and pyp is the correlation function, which generally de-
pends on a parameter vector 6. When the mean is written
under the form (10), the kriging predictor is again a linear
combination of the observations, as in (7), and the weights
Ai(x; x,,) are again solutions of a system of linear equations
(see, e.g., Chiles and Delfiner 1999), which can be written
under a matrix form as

k(x,,x,) )T\ (A0sx)\  (kxx,) an
h(x,) 0 pe) )\ h )7
where h(x,) is an [ x n matrix with entries h;(x;), i =

1,...,1, j=1,...,n, uis an [-dimensional vector of La-
grange coefficients (k(x,,, x,), A(x; x,), k(x, x,,) as above).

The kriging covariance function is given in this case by

k(x, y;x,) 1= cov (£(x) —E(x; x,), £(») —E(: x,,))
= k(x,y) — 2(x; x,)Tk(y, x,,) — () Th().
(12)

The following result holds (Kimeldorf and Wahba 1970;
O’Hagan 1978):

Proposition 2 Let k be a covariance function.

&|m~GP(m, k)
m:x+— BThx),p ~ Upi

then &|F, ~GP(E(+;x,), k(+, - x,)),

If

where Uy stands for the (improper) uniform distribution
over R!, and where &(;x,) and k(-, +; x,) are given
by (7), (11) and (12).

Proposition 2 justifies the use of kriging in a Bayesian
framework provided that the covariance function of & is
known. However, the covariance function is rarely assumed
to be known in applications. Instead, the covariance func-
tion is generally taken in some parametric class (in this
paper, we use the so-called Matérn covariance function,
see Appendix A). A fully Bayesian approach also requires
to choose a prior distribution for the unknown parame-
ters of the covariance (see, e.g., Handcock and Stein 1993;
Kennedy and O’Hagan 2001; Paulo 2005). Sampling tech-
niques (Monte Carlo Markov Chains, Sequential Monte
Carlo. ..) are then generally used to approximate the pos-
terior distribution of the unknown covariance parameters.
Very often, the popular empirical Bayes approach is used
instead, which consists in plugging-in the maximum likeli-
hood (ML) estimate to approximate the posterior distribu-
tion of £. This approach has been used in previous papers
about contour estimation or probability of failure estimation
(Picheny et al. 2010; Ranjan et al. 2008; Bichon et al. 2008).
In Sect. 5.2 we will adopt a plug-in approach as well.

Simplified notation In the rest of the paper, we shall use
the following simplified notations when there is no risk of
confusion: &,(x) :=&(x; X,,), onz(x) =02(x; X).

2.4 Estimators of the probability of failure

Given a random process £ and a strategy Xy, the opti-
mal estimator that minimizes Eqo((ox — @p)?%) among all F,-
measurable estimators &,, 1 <n < N, is

G0 = En (@) =E» (/X Leou dPX) _ /Xpn Py, (13)

@ Springer
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where
Pnix € Xt P, {E(x) > u}. (14)

When £ is a Gaussian process, the probability p,(x) of ex-
ceeding u at x € X given Z, has a simple closed-form ex-
pression:

Pn(x)=1_q><w)=q><m>’ (15)

on(x) on(x)

where @ is the cumulative distribution function of the nor-
mal distribution. Thus, in the Gaussian case, the estima-
tor (13) is amenable to a numerical approximation, by inte-
grating the excess probability p, over X (for instance using
Monte Carlo sampling, see Sect. 3.3).

Another natural way to obtain an estimator of o given
1, is to approximate the excess indicator 1¢-, by a hard
classifier n, : X — {0, 1}, where “hard” refers to the fact
that 1, takes its values in {0, 1}. If , is close in some sense
to 1¢~y, the estimator

6Z}’L:/ nadPx (16)
X

should be close to «. More precisely,

B (@ —)?) =E, [( [ - ]l§>u)dpx>2i|

< [& (- teon?)eP D

Let 7, (x) = Pp{nn(x) # Le(xy>u} = En((n (x) — jlé(x)>u)2)
be the probability of misclassification; that is, the probability
to predict a point above (resp. under) the threshold when the
true value is under (resp. above) the threshold. Thus, (17)
shows that it is desirable to use a classifier 7, such that t, is
small for all x € X. For instance, the method called SMART
(Deheeger and Lemaire 2007) uses a support vector machine
to build n,. Note that

T (x) = pn(x) + (1 = 2pp(x)) 1a (x).

Therefore, the right-hand side of (17) is minimized if we set
Mn(x) =1p,)>1/2 =L, (x)>u> (18)

where &, (x) denotes the posterior median of & (x). Then, we
have

Tp(x) =min(p, (x), 1 — pp(x)).

In the case of a Gaussian process, the posterior median
and the posterior mean are equal. Then, the classifier that
minimizes t,(x) for each x € X is 5, = ]l§n>u, in which

@ Springer

case
T,(x) = Py (E(x) — u) (&, (x) —u) < 0)

:1_¢<|§n(x)_u|). (19)

on(x)

Notice that for n, = ]lgn ~u» We have 0, = a(’g}). Therefore,
this approach to obtain an estimator of o can be seen as a
type of plug-in estimation.

Standing assumption It will assumed in the rest of the pa-
per that £ is a Gaussian process, or more generally that
E|Fy~ GP@,, k(-, +; x,)) for all n > 1 as in Proposi-
tion 2.

3 Stepwise uncertainty reduction
3.1 Principle

A very natural and straightforward way of building a one-
step lookahead strategy is to select greedily each evalua-
tion as if it were the last one. This kind of strategy, some-
times called myopic, has been successfully applied in the
field of Bayesian global optimization (Mockus et al. 1978;
Mockus 1989), yielding the famous expected improvement
criterion later popularized in the Efficient Global Optimiza-
tion (EGO) algorithm of Jones et al. (1998).

When the Bayesian risk provides a measure of the esti-
mation error or uncertainty (as in the present case), we call
such a strategy a stepwise uncertainty reduction (SUR) strat-
egy. In the field of global optimization, the Informational
Approach to Global Optimization (IAGO) of Villemonteix
et al. (2009) is an example of a SUR strategy, where the
Shannon entropy of the minimizer is used instead of the
quadratic cost. When considered in terms of utility rather
than cost, such strategies have also been called knowledge
gradient policies by Frazier et al. (2008).

Given a sequence of estimators (&), 1, a direct applica-
tion of the above principle using the quadratic loss function
yields the sampling criterion (to be minimized)

Jn(¥) = En (@ = @rs1)? | Xyt =x) (20)

Having found no closed-form expression for this criterion,
and no efficient numerical procedure for its approximation,
we will proceed by upper-bounding and discretizing (20) in
order to get an expression that will lend itself to a numer-
ically tractable approximation. By doing so, several SUR
strategies will be derived, depending on the choice of esti-
mator (the posterior mean (13) or the plug-in estimator (16)
with (18)) and bounding technique.
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3.2 Upper bounds of the SUR sampling criterion

Recall that 7,(x) = min(p,(x),1 — p,(x)) is the proba-
bility of misclassification at x using the optimal classi-
fier 1z (x)=u- Let us further denote by v, (x) := p,(x)(1 —
Dn(x)) the variance of the excess indicator Lg(x)>y.

Proposition 3 Assume that either @, = E,(a) or a, =

[1z.,dPx. Define G, := [y /vn(y)dPx for all n €
10, N = 1}, with

Vp =pu(l — pp) =1 (1 — 1),
lfan =E, (a),
Ty = min(py, 1 — pu),

if oy =f]l’§nzudpx.

Then, for all x e X and alln € {0, ..., N — 1},

Vn =

3 = Ty =By (G2 | Xy =x).

Note that y;,(x) is a function of p,(x) that vanishes at 0
and 1, and reaches its maximum at 1/2; that is, when the
uncertainty on 1z )., is maximal (see Fig. 1).

Proof First, observe that, forall n > 0, « — @, = [ U, dPx,
with

:ﬂ-E(x)>u — Pn ()C)

) Aann B
Uy ixeXe Uyy=] Ton=En@ @1)

]LS(X)>M - ]lg,(x)>u
if @ = [1z,-,dPx.

Moreover, note that y, = ||U, ||5 in both cases, where || « ||, :
L*(Q,B,P) — L*(Q, Fn,P), W — E,(W?)/2, Then, us-
ing the generalized Minkowski inequality (see, e.g., Vestrup
2003, Sect. 10.7) we get that

H/ U, dPx

< / |Unlln dPs;
n

=/mdPX=Gn. (22)

Finally, it follows from the tower property of conditional ex-
pectations and (22) that, for all n > 0,

) = En (et =@t 21 | X1 =)

2
= En(H/ Un+1dPx ‘ Xn+1 =X)
n+l

<En (G%H | Xnt1 =x) . O

Note that two other upper-bounding sampling criteria
readily follow from those of Proposition 3, by using the

0.5
| Tn = pn(l - pn)
| Tn = min(Pm 1 _pn)
0.4F |
|
|
0.3 |
<
&
02} :
|
0.1t :
|
0 . . | . .
0 0.2 0.4 0.6 0.8 1

Fig. 1 y, as a function of p, (see Proposition 3). In both cases, y, is
maximum at p, = 1/2

Cauchy-Schwarz inequality in L2(X, B(X), Px):

Ja(x) <E, (/ Ynt+1dPx ’ Xn+1 =X> : (23)

As a result, we can write four SUR criteria, whose expres-
sions are summarized in Table 1. Criterion JEER has been
proposed in the PhD thesis of Piera-Martinez (2008) and
in conference papers (Vazquez and Piera-Martinez 2007,
Vazquez and Bect 2009); the other ones, to the best of
our knowledge, are new. Each criterion is expressed as the
conditional expectation of some (possibly squared) F,41-
measurable integral criterion, with an integrand that can be
expressed as a function of the probability of misclassifica-
tion 7,41. It is interesting to note that the integral in JfUR
is the integrated mean square error (IMSE)® for the pro-
cess Lesy.

Remark 2 The conclusions of Proposition 3 still hold in the
general case when £ is not assumed to be a Gaussian pro-
cess, provided that the posterior median &, is substituted to
posterior the mean /f;‘\,,

3.3 Discretizations

In this section, we proceed with the necessary integral dis-
cretizations of the SUR criteria to make them suitable for
numerical evaluation and implementation on computers. As-
sume that n steps of the algorithm have already been per-
formed and consider, for instance, the criterion

IR =E, ( [ rn Pt | X1 = x). 24)

6The IMSE criterion is usually applied to the response surface & itself
(see, e.g., Box and Draper 1987; Sacks et al. 1989). The originality
here is to consider the IMSE of the process 1¢-, instead. Another way
of adapting the IMSE criterion for the estimation of a probability of
failure, proposed by Picheny et al. (2010), is recalled in Sect. 4.2.
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Table 1 Expressions of four

SUR-type criteria SUR-type sampling criterion

How it is obtained

TSR () = By ((f Trm1 dPx) | X1 =20)
TSR () = En ([ /D1 dP3)? | X1 =20)
J?)SER(X) = EH (f Tn+1 dPX | XV!+I :x)

TR () =En(f vag1 | Xpy1 =x)

Proposition 3 with @, = [ 1., dPx
Proposition 3 with @, = E, ()

= f ]l’gu>u dPx

Equation (23) with @, = E, («)

Equation (23) with @,

Remember that, for each y € X, the probability of misclas-
sification 7,41(y) is J,4+1-measurable and, therefore, is a
function of 7,1 = (Z,,, Xu+1, Zn+1)- Since Z,, is known at
this point, we introduce the notation v, 11 (y; Xn+1, Zn+1) =
T,+1(y) to emphasize the fact that, when a new evaluation
point must be chosen at step (n + 1), t,+1(y) depends on
the choice of X, and the random outcome Z, ;. Let us
further denote by Q, . the probability distribution of &(x)
under P,. Then, (24) can be rewritten as

TR (x) = / f Un1(5 X, 2)Qux (dz) P (dy),

and the corresponding strategy is:

Xpt1 = argmm// Vn41(y; X, 2)
xeX RxX

X Qu,x (dz) Px(dy). (25)

Given 7, and a triple (x,y, 2), vp+1(y; X, z) can be com-
puted efficiently using the equations provided in Sects. 2.3
and 2.4.

At this point, we need to address: (1) the computation of
the integral on X with respect to Px; (2) the computation of
the integral on R with respect to Q,_,; (3) the minimization
of the resulting criterion with respect to x € X.

To solve the first problem, we draw an i.i.d. sequence
Y1,..., Yy ~ Px and use the Monte Carlo approximation:

1 m
[ 05, 9PE@) 23 v i),

j=1

An increasing sample size n +— m,, should be used to build
a convergent algorithm for the estimation of o (possibly
with a different sequence Y, 1, ..., Y, ,, at each step). In
this paper we adopt a different approach instead, which
is to take a fixed sample size m > 0 and keep the same
sample Y, ..., Y, throughout the iterations. Equivalently,
it means that we choose to work from the start on a dis-
cretized version of the problem: we replace Px by the em-
pirical distribution ’P\X a=41 Z =1 dy;, and our goal is now
to estimate the Monte Carlo estimator o, = f ]1§>udPx n=
n% > =1 Levp>us using either the posterior mean E, (¢y,) =

%Zj pn(Y;) or the plug-in estimate %ZJ ]lg(yj;&)w.
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This kind of approach has be coined meta-estimation by Ar-
naud et al. (2010): the objective is to estimate the value of
a precise Monte Carlo estimator of «(f) (m being large),
using prior information on f to alleviate the computational
burden of running m times the computer code f. This point
of view also underlies the work in structural reliability of
Hurtado (2004, 2007), Deheeger and Lemaire (2007), De-
heeger (2008), and more recently Echard et al. (2010a,
2010b).

This new point of view suggests a natural solution for
the third problem, which is to replace the continuous search
for a minimizer x € X by a discrete search over the set
Xm = {Y1,...,Yy}. This is obviously sub-optimal, even
in the meta-estimation framework introduced above, since
picking x € X \ X,;, can sometimes bring more informa-
tion about £(Y7),...,&(Y;,;) than the best possible choice
in X,,. Global optimization algorithms may of course be
used to tackle directly the continuous search problem: for
instance, (Ranjan et al. 2008) use a combination of a genetic
algorithm and local search technique, (Bichon et al. 2008)
use the DIRECT algorithm and (Picheny et al. 2010) use a
covariance-matrix-adaptation evolution strategy. In this pa-
per we will stick to the discrete search approach, since it is
much simpler to implement (we shall present in Sect. 3.4 a
method to handle the case of large m) and provides satisfac-
tory results (see Sect. 5).

Finally, remark that the second problem boils down to the
computation of a one-dimensional integral with respect to
Lebesgue’s measure. Indeed, since & is a Gaussian process,
Q. x is a Gaussian probability distribution with mean E,, (x)
and variance a,f(x) as explained in Sect. 2.3. The integral
can be computed using a standard Gauss-Hermite quadra-
ture with Q points (see, e.g., Press et al. 1992, Chap. 4):

/ U1 (v %, 2) Qe (d2)

0
1 —~
N —= Y wa vt (31 X, En () + 03 (DugV2),
e a

where uy,...,ugp denote the quadrature points and wj,

., wo the corresponding weights. Note that this is equiv-
alent to replacing under P,, the random variable £(x) by
a quantized random variable with probability distribution
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ZqQ=1 W8z, 41 ,(x)> Where wy = wy /T and 2,414 (x) =
En(x) + 00 (Vg /2.

Taking all three discretizations into account, the proposed
strategy is:

0

m
X1 =argmin ) > wovnst (Vi Yo 2ngrg (V) . (26)
1<k<m j=1¢=1

3.4 Implementation

This section gives implementation guidelines for the SUR
strategies described in Sect. 3. As said in Sect. 3.3, the strat-
egy (26) can, in principle, be translated directly into a com-
puter program. In practice however, we feel that there is still
room for different implementations. In particular, it is im-
portant to keep the computational complexity of the strate-
gies at a reasonable level. We shall explain in this section
some simplifications we have made to achieve this goal.

A straight implementation of (26) for the choice of an
additional evaluation point is described in Table 2. This pro-

cedure is meant to be called iteratively in a sequential algo-
rithm, such as that described for instance in Table 3. Note
that the only parameter to be specified in the SUR strat-
egy (26) is Q, which tunes the precision of the approxima-
tion of the integral on R with respect to Q, .. In our nu-
merical experiments, it was observed that taking Q = 12
achieves a good compromise between precision and numer-
ical complexity.

To assess the complexity of a SUR sampling strategy,
recall that kriging takes O(mn?) operations to predict the
value of f at m locations from n evaluation results of f (we
suppose that m > n and no approximation is carried out). In
the procedure to select an evaluation, a first kriging predic-
tion is performed at Step 1 and then, m different predictions
have to performed at Step 2.1. This cost becomes rapidly
burdensome for large values of n and m, and we must fur-
ther simplify (26) to be able to work on applications where
m must be large. A natural idea to alleviate the computa-
tional cost of the strategy is to avoid dealing with candidate
points that have a very low probability of misclassification,
since they are probably far from the frontier of the domain

Table 2 Procedure to select a
new evaluation point X, 11 € X
using a SUR strategy

Require computer representations of

(a) AsetZ, ={(Xy1, f(X1)),..., (X, f(X,))} of evaluation results;

(b) A Gaussian process prior & with a (possibly unknown linear parametric) mean function
and a covariance function ky, with parameter 0;

(c) A (pseudo-)random sample X,,, = {Y71, ..

., Y)} of size m drawn from the distribution Px;

(d) Quadrature points uy, ..., u g and corresponding weights w/l, e, w/Q;

(e) A threshold u.

1. Compute the kriging approximation ﬁ and kriging variance anz on X, from Z,
2. For each candidate point Y;, j € {1,...,m},
2.1 For each point Y, k € {1, ..., m}, compute the kriging weights A; (Yy; {X,, Y;}),
ie{l,...,(n+ 1)}, and the kriging variances o2(Yy; {Xn, Y;D
2.2 Compute z,41,4(Y;) = fu(¥Y}) + 00 (Y ug"/2, forg=1,..., 0
2.3 Foreach z,41,4(Y;),q€{l,..., 0},
2.3.1 Compute the kriging approximation .ﬁ/l+1.j,q on X, from Z, U (Y;,
S(Xj) = 2zn41,4(¥})), using the weights 1; (Yi; (X, ¥;D, i =1,...,(n + 1),
k=1,...,m, obtained at Step 2.1.
2.3.2 Foreach k € {1,...,m}, compute vy41(Yi; ¥, Zut1,4(¥})), using u, fut1,jq
obtained in 2.3.1, and o' 2(Yy; { X, Y;}) obtained in 2.1
2.4 Compute J, (¥)) = Y4y oy wh vas1 (Vi ¥j Znt1, (¥)))-
3. Find j* = argmin; J,(Y;) and set X, 11 =¥

Table 3 Sequential estimation

of a probability of failure 1. Construct an initial design of size ng < N and evaluate f at the points of the initial design.
2. Choose a Gaussian process £ (in practice, this amounts to choosing a parametric form for
the mean of £ and a parametric covariance function kg)

W

. Generate a Monte Carlo sample X, = {7, ..

., Y, } of size m from Px

4. While the evaluation budget N is not exhausted,
4.1 Optional step: estimate the parameters of the covariance function (case of a plug-in

approach);

4.2 Select a new evaluation point, using past evaluation results, the prior £ and X,,;;
4.3 Perform the new evaluation.

5. Estimate the probability of failure obtained from the N evaluations of f (for instance, by
using Ex (om) = 5 2 Py (Y))-
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of failure. It is also likely that those points with a low proba-
bility of misclassification will have a very small contribution
in the variance of the error of estimation &, — o,

Therefore, the idea is to rewrite the sampling strategy de-
scribed by (26), in such a way that the first summation (over
m) and the search set for the minimizer is restricted to a sub-
set of points Y; corresponding to the m largest values of
7,(Y}). The corresponding algorithm is not described here
for the sake of brevity but can easily be adapted from that
of Table 2. Sections 5.2 and 5.3 will show that this pruning
scheme has almost no consequence on the performances of
the SUR strategies, even when one considers small values
for my.

4 Other strategies

4.1 Estimation of a probability of failure and closely
related objectives

Given a real function f defined over X C R9, and a thresh-
old u € R, consider the following possible goals:

1. estimate a region I' C X of the form I' = {x € X |
f(&x)>u};

2. estimate the level set 0T = {x € X | f(x) = u};

. estimate f precisely in a neighborhood of 9T";

4. estimate the probability of failure @ = Px(I") for a given
probability measure Px.

[98]

These different goals are, in fact, closely related: indeed,
they all require, more or less explicitly, to select sampling
points in order to get a fine knowledge of the function f in
a neighborhood of the level set " (the location of which is
unknown before the first evaluation). Any strategy proposed
for one of the first three objectives is therefore expected to
perform reasonably well on the fourth one, which is the topic
of this paper.

Several strategies recently introduced are presented in
Sects. 4.2 and 4.3, and will be compared numerically to
the SUR strategy in Sect. 5. Each of these strategies has
been initially proposed by its authors to address one or sev-
eral of the above objectives, but they will only be discussed
from the point of view of their performance on the fourth
one. Of course, a comparison focused on any other objective
would probably be based on different performance metrics,
and thus could yield a different performance ranking of the
strategies.

4.2 The targeted IMSE criterion

The targeted IMSE proposed in Picheny et al. (2010) is a
modification of the IMSE (Integrated Mean Square Error)
sampling criterion (Sacks et al. 1989). While the IMSE sam-
pling criterion computes the average of the kriging variance
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(over a compact domain X) in order to achieve a space-
filling design, the targeted IMSE computes a weighted av-
erage of the kriging variance for a better exploration of the
regions near the frontier of the domain of failure, as in Oak-
ley (2004). The idea is to put a large weight in regions
where the kriging prediction is close to the threshold u, and
a small one otherwise. Given Z,,, the targeted IMSE sam-
pling criterion, hereafter abbreviated as tIMSE, can be writ-
ten as

JIMSE () — E, </X(g _§n+1)2 W, dPx ‘ Xn+1 =x> (27)

=/Xaz<y; X1, .0y Xn, X) W () Px(dy), (28)

where W, is a weight function based on Z,. The weight
function suggested by Picheny et al. (2010) is

1 1 (&) —u\?
Wy(x) = ———exp [ —= 22— ), 29
) sn(x)\/ﬂexp< 2( 5y (x) )) 9

where s,f x) = %2 + crnz (x). Note that W, (x) is large when
E,, (x) ~ u and 0,12 (x) ~ 0, i.e., when the function is known
to be close to u.

The tIMSE criterion operates a trade-off between global
uncertainty reduction (high kriging variance 0,2) and ex-
ploration of target regions (high weight function W,). The
weight function depends on a parameter o, > 0, which al-
lows to tune the width of the “window of interest” around
the threshold. For large values of o,, J™SE behaves ap-
proximately like the IMSE sampling criterion. The choice
of an appropriate value for o, when the goal is to estimate
a probability of failure, will be discussed on the basis of nu-
merical experiments in Sect. 5.3.

The tIMSE strategy requires a computation of the expec-
tation with respect to £(x) in (27), which can be done ana-
Iytically, yielding (28). The computation of the integral with
respect to Px on X can be carried out with a Monte Carlo
approach, as explained in Sect. 3.3. Finally, the optimiza-
tion of the criterion is replaced by a discrete search in our
implementation.

4.3 Criteria based on the marginal distributions

Other sampling criteria proposed by Ranjan et al. (2008),
Bichon et al. (2008) and Echard et al. (2010a, 2010b) are
briefly reviewed in this section.” A common feature of these
three criteria is that, unlike the SUR and tIMSE criteria

"Note that the paper of Ranjan et al. (2008) is the only one in this
category that does not address the problem of estimating a probability
of failure (i.e., Objective 4 of Sect. 4.1).
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discussed so far, they only depend on the marginal poste-
rior distribution at the considered candidate point x € X,
which is a Gaussian N/ (’S\n (x), anz (x)) distribution. As a con-
sequence, they are of course much cheaper to compute than
integral criteria like SUR and tIMSE.

A natural idea, in order to sequentially improve the esti-
mation of the probability of failure, is to visit the point x € X
where the event {£(x) > u} is the most uncertain. This idea,
which has been explored by Echard et al. (2010a, 2010b),
corresponds formally to the sampling criterion

(30)

I =t (x0) =1-@ (M) .

on(x)

As in the case of the tIMSE criterion and also, less explic-
itly, in SUR criteria, a trade-off is realized between global
uncertainty reduction (choosing points with a high anz (x))
and exploration of the neighborhood of the estimated con-
tour (where |u —/E\n(x)l is small).

The same leading principle motivates the criteria pro-
posed by Ranjan et al. (2008) and Bichon et al. (2008),
which can be seen as special cases of the following sam-
pling criterion:

IRB(x) :=E, (max (0, €(x)’ — |u — £(x)]°)), (31)

where €(x) = k 0,(x), k,8 > 0. The following proposition
provides some insights into this sampling criterion:

Proposition 4 Define G5 : 10, I[ — Ry by

Ges(p)i=E (max(O, K — o~ (p) + U|)) :

where U is a Gaussian N (0,1) random variable. Let ¢
and ® denote respectively the probability density function
and the cumulative distribution function of U.

@) Gies(p) = Grs(1 = p) forall p €10, 1[.

(b) Gy.s is strictly increasing on 10, 1/2] and vanishes at 0.
Therefore, G s is also strictly decreasing on [1/2, 1],
vanishes at 1, and has a unique maximum at p = 1/2.

(c) Criterion (31) can be rewritten as

IRB(x) = 0,(0)° G (pu (). (32)
(d) G,.1 has the following closed-form expression:
Ge,1(p) =k () —@(7))
—1(20(1) — Dt — D7)
— (20(1) — ™) — 7)), (33)

wheret =& (1 —p),tt =t +kandt™ =1t —«.
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(e) Gy,2 has the following closed-form expression:
Gea(p) = (kK =1 =) (®(H) — @)
—21(pt™) = 9(17))
+itT ot — 1707, (34)

with the same notations.

It follows from (a) and (b) that J,FB (x) can also be seen as a
function of the kriging variance a,% (x) and the probability of
misclassification t,(x) = min(p,(x), 1 — p,(x)). Note that,
in the computation of G s(p, (x)), the quantity denoted by ¢
in (33) and (34) is equal to (u —é‘\,,(x))/on (x), i.e., equal to
the normalized distance between the predicted value and the
threshold.

Bichon et al.’s expected feasibility function corresponds
to (32) with § = 1, and can be computed efficiently us-
ing (33). Similarly, Ranjan et al.’s expected improvement®
function corresponds to (32) with § = 2, and can be com-
puted efficiently using (34). The proof of Proposition 4 is
provided in Appendix B.

Remark 3 In the case § = 1, our result coincides with the
expression given by Bichon et al. (2008, (17)). In the case
6 =2, we have found and corrected a mistake in the compu-
tations of Ranjan et al. (2008, (8) and Appendix B).

5 Numerical experiments
5.1 A one-dimensional illustration of a SUR strategy

The objective of this section is to illustrate a SUR strategy
in a simple one-dimensional case. We wish to estimate o« =
Px{f > 1}, where f : X =R — R is such that Vx € R,

F(x) = (0.4x — 0.3)* + exp(—11.534|x|")
+exp(—5(x — 0.8)%),

and where X is endowed with the probability distribution
Px = N(0, afg), ox = 0.4, as depicted in Fig. 2. We know
in advance that o & 0.2. Thus, a Monte Carlo sample of size
m = 1500 will give a good estimate of «.

8Despite its name and some similarity between the formulas, this cri-
terion should not be confused with the well-known EI criterion in the
field of optimization (Mockus et al. 1978; Jones et al. 1998).
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Fig. 2 TIllustration of a SUR strategy. This figure shows the initial
design. Top: threshold u = 1 (horizontal dashed line); function f
(thin line); n = 4 initial evaluations (squares); kriging approximation
[fu (thick line); 95% confidence intervals computed from the kriging
variance (shaded area). Middle: probability of excursion (solid line);
probability density of Px (dotted line). Bottom: graph of JEEL(Y,-),
i=1,...,m = 1500, the minimum of which indicates where the next
evaluation of f should be done (i.e., near the origin)

In this illustration, £ is a Gaussian process with constant
but unknown mean and a Matérn covariance function, whose
parameters are kept fixed, for the sake of simplicity. Figure 2
shows an initial design of four points and the sampling crite-
rion JEEL. Notice that the sampling criterion is only com-
puted at the points of the Monte Carlo sample. Figures 3 and
4 show the progress of the SUR strategy after a few itera-
tions. Observe that the probability of excursion p, is very
close to either zero or one in the region where the density of
Px is high.

5.2 An example in structural reliability

In this section, we evaluate all criteria discussed in Sects. 3
and 4 through a classical benchmark example in structural
reliability (see, e.g., Borri and Speranzini 1997; Waarts
2000; Schueremans 2001; Deheeger 2008). Echard et al.
(2010a, 2010b) used this benchmark to make a compari-
son among several methods proposed in Schueremans and
Gemert (2005), some of which are based on the construction
of a response surface. The objective of the benchmark is to
estimate the probability of failure of a so-called four-branch
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Fig. 3 Illustration of a SUR strategy (see also Figs. 2 and 4). This fig-
ure shows the progress of the SUR strategy after two iterations—a total
of n = 6 evaluations (squares) have been performed. The next evalua-
tion point will be approximately at x = —0.5

-2 -15 -1 -0.5 0 0.5 1 1.5 2

0.5
0 N e e
2 _15 1 15 2
5 X 10°
2,

0
-2 -15 -1 -0.5 0 0.5 1 1.5 2

Fig. 4 Illustration of a SUR strategy (see also Figs. 2 and 3). This fig-
ure shows the progress of the SUR strategy after eight iterations—a to-
tal of n = 12 evaluations (squares) have been performed. At this stage,
the probability of excursion p, almost equals O or 1 in the region where
the density of Px is high

series system. A failure happens when the system is working
under the threshold u = 0. The performance function f for
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Fig. 5 Left: mesh plot of the
performance function f
corresponding to the
four-branch series system; a
failure happens when f is below
the transparent plane; Right:
contour plot of f; limit state

f =0 (thick line); sample of -5
size m = 3 x 10° from Px (dots)

this system is defined as

f:(x1,x) eR?—

34+0.1(x1 —x2)% — (x1 +x2) /2
340.1(x1 — x2)% + (1 +x2)/v/2;
(x1 —x2) +6//2:

(x2 —x1) +6/+/2

f(x1,x2) = min

The uncertain input factors are supposed to be independent
and have standard normal distribution. Figure 5 shows the
performance function, the failure domain and the input dis-
tribution. Observe that f has a first-derivative discontinuity
along four straight lines originating from the point (0, 0).

For each sequential method, we will follow the proce-
dure described in Table 3. We generate an initial design
of ng = 10 points (five times the dimension of the factor
space) using a maximin LHS (Latin Hypercube Sampling)’
on [—6; 6] x [—6; 6]. We choose a Monte Carlo sample of
size m = 30000. Since the true probability of failure is ap-
proximately o = 0.4% in this example, the coefficient of
variation for a,, is 1//ma =~ 9%. The same initial design
and Monte Carlo sample are used for all methods.

A Gaussian process with constant unknown mean and a
Matérn covariance function is used as our prior information
about f. The parameters of the Matérn covariance functions
are estimated on the initial design by REML (see, e.g. Stein
1999). In this experiment, we follow the common practice of
re-estimating the parameters of the covariance function dur-
ing the sequential strategy, but only once every ten iterations
to save some computation time.

The probability of failure is estimated by (13). To eval-
uate the rate of convergence, we compute the number n,
of iterations that must be performed using a given strategy

9More precisely, we use Matlab’s 1hsdesign () function to select
the best design according to the maximin criterion among 10* ran-
domly generated LHS designs.

to observe a stabilization of the relative error of estimation
within an interval of length 2y :

. gtk —
nV:mm{nzo;szn,M<y

A

All the available sequential strategies are run 100 times, with
different initial designs and Monte Carlo samples. The re-
sults for y =0.10, y = 0.03 and y = 0.01 are summarized
in Table 4. We shall consider that (.1 provides a measure of
the performance of the strategy in the “initial phase”, where
a rough estimate of « is to be found, whereas ng o3 and ng g1
measure the performance in the “refinement phase”.

The four variants of the SUR strategy (see Table 1) have
been run with Q = 12 and either mg = 10 or mg = 500.
The performance are similar for all four variants and for
both values of mg. It appears, however, that the criteri-
ons JlSUR and JZSURZ (i.e., the criterions given directly by
Proposition 3) are slightly better than J3SUR and J45UR; this
will be confirmed by the simulations of Sect. 5.3. It also
seems that the SUR algorithm is slightly slower to obtain
a rough estimate of the probability of failure when mg is
very small, but performs very well in the refinement phase.
(Note that mo = 10 is a drastic pruning for a sample of
size m = 30000.)

The tIMSE strategy has been run for three different val-
ues of its tuning parameter o2, using the pruning scheme
with mo = 500. The best performance is obtained for
082 ~ 0, and is almost as good as the performance of SUR
strategies with the same value of m( (a small loss of perfor-
mance, of about one evaluation on average, can be noticed
in the refinement phase). Note that the required accuracy
was not reached after 200 iterations in 17% of the runs for
082 = 1. In fact, the tIMSE strategy tends to behave like a
space-filling strategy in this case. Figure 6 shows the points
that have been evaluated in three cases: the evaluations are
less concentrated on the boundary between the safe and the
failure region when o> = 1.

Finally, the results obtained for J RB and JEGL indicate
that the corresponding strategies are clearly less efficient in
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Table 4 Comparison of the convergence to «,, in the benchmark example Sect. 5.2 for different sampling strategies. The first number (bold text)
is the average value of n,, over 100 runs. The numbers between brackets indicate the 10th and 90th percentile

Criterion Parameters y =0.10 y =0.03 y =0.01
JSUR mo = 500 16.1 [10-22] 25.7 [17-35] 36.0 [26-48]
mo = 10 19.4 [11-28] 28.1 [19-38] 35.4[26-44]
JSUR mo = 500 16.4 [10-24] 25.7 [19-33] 35.5 [25-45]
mo =10 20.0 [11-30] 28.3 [20-39] 35.3 [26-44]
JPUR mo =500 18.2 [10-27] 26.9 [18-37] 35.9 [27-46]
mo = 10 20.1 [11-30] 28.0 [20-36] 35.2 [25-44]
JOR mo = 500 17.2 [10-28] 26.5 [20-36] 35.2 [25-45]
mo =10 21.4 [13-30] 28.9 [20-38] 35.5[27-44]
JUMSE c2=10"% 16.6 [10-23] 26.5 [19-36] 37.3 [28-49]
02=0.1 15.9 [10-22] 29.1 [19-43] 50.5 [30-79]
o2=1 21.7 [11-31] 52.4[31-85] 79.5 [42-133]*
JEGL - 21.0 [11-31] 29.2 [21-39] 36.4 [28-44]
JRB 8=1,k=05 18.7 [10-27] 27.5 [20-35] 36.6 [27-44]
8§=1,k=2.0 18.9 [11-28] 28.3 [21-35] 37.7 [30-45]
8=2,k=05 17.6 [10-24] 27.6 [20-34] 37.1[29-45]
8§=2,k=2.0 17.0 [10-21] 27.1[20-34] 36.8 [29-44]
2The required accuracy was not reached after 200 iterations in 17% of the runs
6 . 6 6
4t 41 4}
2t 2t 2t
of of of
-2 { -2} | -2}
-4t { -4} 1 -4t
-6 L L L o L -6 L L o L -6 L L L o L
-6 -4 -2 0 2 4 6 -6 -4 -2 2 4 6 -6 -4 -2 0 2 4 6

Fig. 6 The first 16 points (squares) evaluated using sampling criterion JISUR (left), J™SE with 62 = 0.1 (middle), J™SE with 6 = 1 (right).
Numbers near squares indicate the order of evaluation. The location of the ng = 10 points of the initial design are indicated by circles

the “initial phase” than strategies based on JISUR or JZSUR.
For y = 0.1, the average loss with respect to JISUR is be-
tween approximately 0.9 evaluations for the best case (cri-
terion JRB with 8§ = 2, kx = 2) and 3.9 evaluations for the
worst case. For y = 0.03, the loss is between 1.4 evaluations
(also for (criterion JRB with 6 =2, k = 2) and 3.5 eval-
uations. This loss of efficiency can also be observed very
clearly on the 90th percentile in the initial phase. Crite-
rion JRB seems to perform best with § =2 and « =2 in
this experiment, but this will not be confirmed by the simu-
lations of Sect. 5.3. Tuning the parameters of this criterion

@ Springer

for the estimation of a probability of failure does not seem
to be an easy task.

5.3 Average performance on sample paths of a Gaussian
process

This section provides a comparison of all the criteria intro-
duced or recalled in this paper, on the basis of their average
performance on the sample paths of a zero-mean Gaussian
process defined on X = [0, 114, for d € {1,2,3}. In all ex-
periments, the same covariance function is used for the gen-
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Table 5 Size of the initial design and covariance parameters for the
experiments of Sect. 5.3. The parametrization of the Matérn covariance
function used here is defined in Appendix A

d no o2 v 0

3 1.0 2.0 0.100
2 10 1.0 2.0 0.252
3 15 1.0 2.0 0.363

eration of the sample paths and for the computation of the
sampling criteria. We have considered isotropic Matérn co-
variance functions, whose parameters are given in Table 5.
An initial maximin LHS design of size ng (also given in the
table) is used: note that the value of n reported on the x-axis
of Figs. 7-11 is the total number of evaluations, including
the initial design.

The d input variables are assumed to be independent and
uniformly distributed on [0, 1], i.e., Px is the uniform distri-
bution on X. An m-sample Y1, ..., Y, from Px is drawn one
and for all, and used both for the approximation of integrals
(in SUR and tIMSE criteria) and for the discrete search of
the next sampling point (for all criteria). We take m = 500
and use the same MC sample for all criteria in a given di-
mension d.

We adopt the meta-estimation framework as described in
Sect. 3.3; in other words, our goal is to estimate the MC es-
timator «,,. We choose to adjust the threshold u in order to
have o, = 0.02 for all sample paths (note that, as a con-
sequence, there are exactly mao,, = 10 points in the failure
region) and we measure the performance of a strategy after
n evaluations by its relative mean-square error (MSE) ex-
pressed in decibels (dB):

L~
(()

1 _ 2
rMSE := 10 log,, (Z 3 M) ,
o

=1 m
where a,(,{?n = % ';’:1 p,(f)(Y ;) is the posterior mean of the
MC estimator o, after n evaluations on the /th simulated
sample path (L = 4000).

We use a sequential maximin strategy as a reference in
all of our experiments. This simple space-filling strategy is
defined by X, 11 = argmax mini<;<, |Y; — X;|, where the
argmax runs over all indices j such that ¥; ¢ {X1, ..., X;,}.
Note that this strategy does not depend on the choice of a
Gaussian process model.

Our first experiment (Fig. 7) provides a comparison of
the four SUR strategies proposed in Sect. 3.2. It appears that
all of them perform roughly the same when compared to the
reference strategy. A closer look, however, reveals that the
strategies JISUR and J2SUR provided by Proposition 3 per-
form slightly better than the other two (noticeably so in the
case d =3).

The performance of the tIMSE strategy is shown on
Fig. 8 for several values of its tuning parameter 052 (other
values, not shown here, have been tried as well). It is clear
that the performance of this strategy improves when 082 goes
to zero, whatever the dimension.

The performance of the strategy based on J E? is shown
on Fig. 9 for several values of its parameters. It éppears that
the criterion proposed by Bichon et al. (2008), which cor-
responds to § = 1, performs better than the one proposed
by Ranjan et al. (2008), which corresponds to § = 2, for the
same value of «. Moreover, the value k¥ = 0.5 has been found
in our experiments to produce the best results.

Figure 10 illustrates that the loss of performance asso-
ciated to the “pruning trick” introduced in Sect. 3.4 can be
negligible if the size m of the pruned MC sample is large
enough (here, m( has been taken equal to 50). In practice,
the value of mg should be chosen small enough to keep
the overhead of the sequential strategy reasonable—in other
words, large values of m( should only be used for very com-
plex computer codes.

Finally, a comparison involving the best strategy obtained
in each category is presented on Fig. 11. The best result is
consistently obtained with the SUR strategy based on J ESR.
The tIMSE strategy with ‘752 ~ ( provides results which are
almost as good. Note that both strategies are one-step looka-
head strategies based on the approximation of the risk by
an integral criterion, which makes them rather expensive
to compute. Simpler strategies based on the marginal dis-
tribution (criteria JRB and JECL) provide interesting alter-
natives for moderately expensive computer codes: their per-
formances, although not as good as those of one-step looka-
head criterions, are still much better than that of the refer-
ence space-filling strategy.

6 Concluding remarks

One of the main objectives of this paper was to present a syn-
thetic viewpoint on sequential strategies based on a Gaus-
sian process model and kriging for the estimation of a prob-
ability of failure. The starting point of this presentation is a
Bayesian decision-theoretic framework from which the the-
oretical form of an optimal strategy for the estimation of a
probability of failure can be derived. Unfortunately, the dy-
namic programming problem corresponding to this strategy
is not numerically tractable. It is nonetheless possible to de-
rive from there the ingredients of a sub-optimal strategy: the
idea is to focus on one-step lookahead suboptimal strate-
gies, where the exact risk is replaced by a substitute risk that
accounts for the information gain about « expected from a
new evaluation. We call such a strategy a stepwise uncer-
tainty reduction (SUR) strategy. Our numerical experiments
show that SUR strategies perform better, on average, than
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Fig. 7 Relative MSE
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the other strategies proposed in the literature. However, this  to that of the SUR criterions when 0’82 ~ 0, also has a high
comes at a higher computational cost than strategies based  computational complexity.

only on marginal distributions. The tIMSE sampling crite- In which situations can we say that the sequential strate-
rion, which seems to have a convergence rate comparable  gies presented in this paper are interesting alternatives
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Fig. 9 Relative MSE
performance of the JRB
criterion, for several values of
its parameters

Fig. 10 Relative MSE
performance of two SUR
criteria, with and without the
“pruning trick” described in
Sect. 3.4. The black and gray
lines are almost surimposed for
each of the criterions J 1SUR

and J3SUR

to classical importance sampling methods for estimating
a probability of failure, for instance the subset sampling
method of Au and Beck (2001)? In our opinion, beyond
the obvious role of the simulation budget N, the answer
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to this question depends on our capacity to elicit an ap-
propriate prior. In the example of Sect. 5.2, as well as in
many other examples using Gaussian processes in the do-
main of computer experiments, the prior is easy to choose
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Fig. 11 Relative MSE
performance the best strategy in
each category
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because X is a low-dimensional space and f tends to be
smooth. Then, the plug-in approach which consists of us-
ing ML or REML to estimate the parameters of the covari-
ance function of the Gaussian process after each new eval-
uation is likely to succeed. If X is high-dimensional and
f is expensive to evaluate, difficulties arise. In particular,
our sampling strategies do not take into account our un-
certain knowledge of the covariance parameters, and there
is no guarantee that ML estimation will do well when the
points are chosen by a sampling strategy that favors some
localized target region (the neighborhood the frontier of the
domain of failure in this paper, but the question is equally
relevant in the field of optimization, for instance). The dif-
ficult problem of deciding the size ng of the initial design
is crucial in this connection. Fully Bayes procedures consti-
tute a possible direction for future research, as long as they
don’t introduce an unacceptable computational overhead.
Whatever the route, we feel that the robustness of Gaussian
process-based sampling strategies with respect to the proce-
dure of estimation of the covariance parameters should be
addressed carefully in order to make these methods usable
in the industrial world.

Software  'We would like to draw the reader’s attention on
the recently published package Kriglnv (Picheny and Gins-
bourger 2011) for the statistical computing environment R
(see Hornik 2010). This package provides an open source
(GPLv3) implementation of all the strategies proposed in
this paper. Please note that the simulation results presented
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in this paper were not obtained using this package, that was
not available at the time of its writing.
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Appendix A: The Matérn covariance

The exponential covariance and the Matérn covariance are
among the most conventionally used stationary covariances
of design and analysis of computer experiments. The Matérn
covariance class (Yaglom 1986) offers the possibility to ad-
just the regularity of £ with a single parameter. Stein (1999)
advocates the use of the following parametrization of the
Matérn function:

iy (h) = <2v1/2h)vle(2vl/2h), heR (35)

2v=11(v)

where I' is the Gamma function and /C, is the modified
Bessel function of the second kind. The parameter v > 0
controls regularity at the origin of the function. To model
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a real-valued function f defined over X C RY, with d > 1, s " _ rr 5
we use the following anisotropic form of the Matérn covari- = (@07 — @) — /t, |r = ul” o) du.
ance: _—

(37

ko (x,y) =0’k

where x[;], y[;] denote the ith coordinate of x and y, the pos-
itive scalar o2 is the variance parameter (we have kg (x, x) =
o2), and the positive scalars p; are scale or range parame-
ters of the covariance, i.e., characteristic correlation lengths.
Since 02 > 0,v > 0,0, >0,i=1,...,d, we can take the
logarithm of these scalars, and consider the vector of pa-
rameters 0 = {logo 2, logv, —log pi, ..., —log pg} € R4+2
which is a practical parameterization when o, v, Pi, 1
1,...,d, need to be estimated from data.

Appendix B: Proof of Proposition 4

(a) Using the identity ®~'(1 — p) = —d~(p), we
get

s

U+ 1= p|=[v-0"'(p)| L |U+o )

where < denotes an equality in distribution. Therefore
GK,S(I —-p)= GK,(S(p)-

(b) Let S, = max(0,k® — |®~1(p) + UJ). Straightfor-
ward computations show that t — P(|t + U| < v) is strictly
decreasing to 0 on [0, +oo[, for all v > 0. As a consequence,
p > P(S, < s) is strictly increasing to 1 on [1/2, 1[, for all
s €]0, «°[. Therefore, G5 1s strictly decreasing on [1/2, 1]
and tends to zeros when p — 1. The other assertions then
follow from a).

(c) Recall that & (x) ~ N (€, (x), o2(x)) under P,,. There-
fore U := (£(x) —g,(x))/an(x) ~ N(0, 1) under P,, and
the result follows by substitution in (31).

The closed-form expression of Ranjan et al.’s and Bichon
and al.’s criteria (assertions (d) and (e)) are established in the
following sections.

B.1 A preliminary decomposition common to both criteria

Recall that t = @~ '(1 — p), tt =t 4+« and t~ =1 — «.
Then,

Ges(p) =Gy s(1— p)=E (max(O,K‘S - |t - U|5))

=/ (K8—|t—u|8) o(u)du
K3 —t—ul®>0

t+

:/ (/c3 — |t - ul‘s) @(u)du
-

The computation of the integral A will be carried separately
in the next two sections for § = 1 and § = 2. For this pur-
pose, we shall need the following elementary results:

b
/ upu)du = g(a) — (), (38)
b
/ uztp(u) du = ap(a) — bep((b) + ®(b) — P(a). (39)
B.2 Cased=1

Let us compute the value A; of the integral A for § = 1:

tt

m:f

-
t

:/ (t—u)<p(u)du+f

= t

t t+
=t (/ (p(u)du—f w(u)du)
t= t
t t+
—/ up(u)du —+—/
= t

up(u)du
=1 (20(1) — d(17) — D))

|t —ule(u)du

tt

(u =)@ (u)du

+2¢0(t) —p(t™) — ™), (40)

where (38) has been used to get the final result. Plugging
(40) into (37) yields (33).

B.3 Case 6 =2
Let us compute the value A, of the integral A for § = 2:

t+
m=/’a—w%WMu
f
T T 1t
=t2f <p(u)du—2t/ u(p(u)du+/
t— t— t~
=2 (@) = 2(17)) =21 (9(t7) — 9t ™))

+17pT) =1 + BT - @(7), (41)

u2(p(u) du

where (38) and (39) have been used to get the final result.
Plugging (41) into (37) yields (34).
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