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Abstract

Modern statistical applications involving large data sets have focused attention on

statistical methodologies which are both efficient computationally and able to deal with

the screening of large numbers of different candidate models. Here we consider com-

putationally efficient variational Bayes approaches to inference in high-dimensional het-

eroscedastic linear regression, where both the mean and variance are described in terms

of linear functions of the predictors and where the number of predictors can be larger

than the sample size. We derive a closed form variational lower bound on the log

marginal likelihood useful for model selection, and propose a novel fast greedy search

algorithm on the model space which makes use of one-step optimization updates to the

variational lower bound in the current model for screening large numbers of candidate

predictor variables for inclusion/exclusion in a computationally thrifty way. We show

that the model search strategy we suggest is related to widely used orthogonal matching

pursuit algorithms for model search but yields a framework for potentially extending

these algorithms to more complex models. The methodology is applied in simulations

and in two real examples involving prediction for food constituents using NIR technology

and prediction of disease progression in diabetes.
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1 Introduction

Consider the heteroscedastic linear regression model

yi = xT
i β + σiǫi, i = 1, . . . , n (1)

where yi is a response, xi=(xi1,...,xip)
T is a corresponding p-vector of predictors, β=(β1,...,βp)

T

is a vector of unknown mean parameters, ǫi∼N(0,1) are independent errors and

log σ2
i = zTi α,

where zi = (zi1,...,ziq)
T is a q-vector of predictors and α= (α1,...,αq)

T are unknown variance

parameters. In this model the standard deviation σi of yi is being modeled in terms of the

predictors zi; this heteroscedastic model may be contrasted with the usual homoscedastic

model which assumes σi is constant. We take a Bayesian approach to inference for this model

and consider a prior distribution p(θ) on θ=(βT ,αT )T of the form p(θ)=p(β)p(α) with p(β) and

p(α) both normal, N(µ0
β ,Σ

0
β) and N(µ0

α,Σ
0
α) respectively. It is possible to consider hierarchical

extensions for the priors on p(β) and p(α) but we do not consider this here.

We will consider a variational Bayes approach for inference (see Section 2 for the details).

The term variational approximation refers to a wide range of different methods where the idea

is to convert a problem of integration into an optimization problem. In Bayesian inference,

variational approximation provides a fast alternative to Monte Carlo methods for approxi-

mating posterior distributions in complex models, especially in high-dimensional problems.

In the heteroscedastic linear regression model, we will consider a variational approximation

to the joint posterior distribution of β and α as q(β,α)= q(β)q(α), where q(β) and q(α) are

both normal densities, N(µq
β,Σ

q
β) and N(µq

α,Σ
q
α) respectively. It is also possible to give a vari-

ational treatment in which independence is not assumed between β and α (John Ormerod,

personal communication) but this complicates the variational optimization somewhat. We at-

tempt to choose the parameters in the variational posterior µq
β, µ

q
α, Σ

q
β and Σq

α to minimize the

Kullback-Leibler divergence between the true posterior distribution p(β,α|y) and q(β,α). This

results in a lower bound on the log marginal likelihood logp(y) - a key quantity in Bayesian
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model selection. The first contribution of our paper is the derivation of a closed form for the

lower bound and the proposal of an iterative scheme for maximizing it. This lower bound

maximization plays a crucial role in the variable selection problem discussed in Section 3.

Variable selection is a fundamental problem in statistics and machine learning, and a large

number of methods have been proposed for variable selection in homoscedastic regression.

The traditional variable selection approach in the Bayesian framework consists of building

a hierarchical Bayes model and using MCMC algorithms to estimate posterior model prob-

abilities (George and McCulloch, 1993; Smith and Kohn, 1996; Raftery et al., 1997). This

methodology is computationally demanding in high-dimensional problems and there is a need

for fast alternatives in some applications. In high-dimensional settings, alternative approaches

include the family of greedy algorithms (Tropp, 2004; Zhang, 2009), also known as matching

pursuit (Mallat and Zhang, 1993) in signal processing. Greedy algorithms are closely related

to the Lasso (Tibshirani, 1996) and the LARS algorithm (Efron et al., 2004). See Zhao and Yu

(2007); Efron et al. (2004) and Zhang (2009) for excellent comparisons of these families of al-

gorithms. In the statistical context, greedy algorithms have been proven to be very efficient

for variable selection in linear regression under the assumption of homoscedasticity, i.e. where

the variance is assumed to be constant (Zhang, 2009).

In many applications the assumption of constant variance may be unrealistic. Ignoring het-

eroscedasticity may lead to serious problems in inference, such as misleading assessments of sig-

nificance, poor predictive performance and inefficient estimation of mean parameters. In some

cases, learning the structure in the variance may be the primary goal. See Chan et al. (2006),

Carroll and Ruppert (1988) and Ruppert et al. (2003), Chapter 14, for a more detailed discus-

sion on heteroscedastic modeling. Despite a large number of works on heteroscedastic linear

regression and overdispersed generalized linear models in which overdispersion is modeled

to depend on the covariates (Efron, 1986; Nelder and Pregibon, 1987; Davidian and Carroll,

1987; Smyth, 1989; Yee and Wild, 1996; Rigby and Stasinopoulos, 2005), methods for vari-

able selection seem to be somewhat overlooked. Yau and Kohn (2003) and Chan et al. (2006)

consider Bayesian variable selection using MCMC computational approaches in heteroscedas-
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tic Gaussian models. They discuss extensions involving flexible modeling of the mean and

variance functions. Cottet et al. (2008) consider extensions to overdispersed generalized lin-

ear and generalized additive models. These approaches are computationally demanding in

high-dimensional settings. A general and flexible framework for modeling overdispersed data

is also considered by Yee and Wild (1996) and Rigby and Stasinopoulos (2005). Methods for

model selection, however, are less well developed. A common approach is to use informa-

tion criteria such as generalized AIC and BIC together with forward stepwise methods (see,

for example, Rigby and Stasinopoulos (2005), Section 6). We compare our own approaches

to such methods later. A main contribution of the present paper is to propose a novel fast

greedy algorithm for variable selection in heteroscedastic linear regression. We show that the

proposed algorithm is in homoscedastic cases similar to currently used methods while having

many attractive properties and working efficiently in high-dimensional problems. An efficient

R program is available on the authors’ websites.

In Section 4 we apply our algorithm to the analysis of the diabetes data (Efron et al., 2004)

using heteroscedastic linear regression. This data set consists of 64 predictors (constructed

from 10 input variables for a “quadratic model”) and 442 observations. We show in Figure 1

the estimated coefficients corresponding to selected predictors as functions of iteration steps in

our algorithm, for both the mean and variance models. The algorithm stops after 11 forward

selection steps with 8 and 7 predictors selected for the mean and variance models respectively.

The rest of the paper is organized as follows. The closed form of the lower bound and the

iterative scheme for maximizing it are presented in Section 2. We present in Section 3 our

novel fast greedy algorithm, and compare it to existing greedy algorithms in the literature

for homoscedastic regression. In Section 4 we apply our methodology to the analysis of two

benchmark data sets. Experimental studies are presented in Section 5. Section 6 contains

conclusions and future research. Technical derivation is relegated to the Appendices.
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Figure 1: Solution paths as functions of iteration steps for analyzing the diabetes data using

heteroscedastic linear regression. The algorithm stops after 11 iterations with 8 and 7 predic-

tors selected for the mean and variance models respectively. The selected predictors enter the

mean (variance) model in the order 3, 12, ..., 28 (3, 9, ..., 4).

2 Variational Bayes

We now give a brief introduction to the variational approximation method. For a more de-

tailed exposition see, for example, Jordan et al. (1999), Bishop (2006) Chapter 10, or see

Ormerod and Wand (2009) for a statistically oriented introduction. The term variational ap-

proximation refers to a wide range of different methods where the idea is to convert a problem

of integration into an optimization problem. Here we will only be concerned with applications

of variational methods in Bayesian inference and only with a particular approach sometimes

referred to as parametric variational approximation. Write θ for all our unknown parameters,

p(θ) for the prior distribution and p(y|θ) for the likelihood. For Bayesian inference, decisions
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are based on the posterior distribution p(θ|y)∝p(θ)p(y|θ). A common difficulty in applications

is how to compute quantities of interest with respect to the posterior. These computations

often involve the evaluation of high-dimensional integrals. Variational approximation pro-

ceeds by approximating the posterior distribution directly. Formally, we consider a family

of distributions q(θ|λ) where λ denotes some unknown parameters, and attempt to choose λ

so that q(θ|λ) is closest to p(θ|y) in some sense. In particular, we attempt to minimize the

Kullback-Leibler divergence
∫

log
q(θ|λ)
p(θ|y)q(θ|λ)dθ

with respect to λ. Using the identity

logp(y) =

∫

log
p(θ)p(y|θ)
q(θ|λ) q(θ|λ)dθ+

∫

log
q(θ|λ)
p(θ|y)q(θ|λ)dθ, (2)

where p(y)=
∫

p(θ)p(y|θ)dθ, we see that minimizing the Kullback-Leibler divergence is equiv-

alent to the maximization of

∫

log
p(θ)p(y|θ)
q(θ|λ) q(θ|λ)dθ. (3)

Here (3) is a lower bound (often called the free energy in physics) on the log marginal likelihood

logp(y) due to the non-negativity of the Kullback-Leibler divergence term in (2). The lower

bound (3), when maximized with respect to λ, is often used as an approximation to the log

marginal likelihood logp(y). The error in the approximation is the Kullback-Leibler divergence

between the approximation q(θ|λ) and the true posterior. The approximation is useful, since

logp(y) is a key quantity in Bayesian model selection.

For our heteroscedastic linear model, the lower bound (3) can be expressed as

L = T1 + T2 + T3,

where

T1 =

∫

log[p(β, α)]q(β)q(α)dβdα,

T2 =

∫

log[p(y|β, α)]q(β)q(α)dβdα,

T3 = −
∫

log [q(β)q(α)] q(β)q(α)dβdα.

6



We show (see the Appendix A) that these three terms, which are all expectations with respect

to the (assumed normal) variational posterior, can be evaluated analytically. Putting the

terms together we obtain that the lower bound (3) on the log marginal likelihood is

L =
p+ q

2
− n

2
log 2π +

1

2
log |Σq

βΣ
0
β

−1|+ 1

2
log |Σq

αΣ
0
α

−1| − 1

2
tr(Σ0

β

−1
Σq

β)

−1
2
tr(Σ0

α

−1
Σq

α)−
1

2
(µq

β − µ0
β)

TΣ0
β

−1
(µq

β − µ0
β)−

1

2
(µq

α − µ0
α)

TΣ0
α

−1
(µq

α − µ0
α)

−1
2

n
∑

i=1

zTi µ
q
α −

1

2

n
∑

i=1

(yi − xT
i µ

q
β)

2 + xT
i Σ

q
βxi

exp
(

zTi µ
q
α − 1

2
zTi Σ

q
αzi
) . (4)

This needs to be maximized with respect to µq
β, µ

q
α, Σ

q
β , Σ

q
α. We consider an iterative scheme

in which we maximize with respect to each of the blocks of parameters µq
β, µ

q
α, Σ

q
β , Σ

q
α with

the other blocks held fixed.

Write X for the design matrix with ith row xT
i and D for the diagonal matrix with ith

diagonal element 1/exp(zTi µ
q
α− 1

2
zTi Σ

q
αzi). Maximization with respect to µq

β with other terms

held fixed leads to

µq
β =

(

XTDX + Σ0
β

−1
)−1 (

Σ0
β

−1
µ0
β +XTDy

)

.

Maximization with respect to Σq
β with other terms held fixed leads to

Σq
β =

(

Σ0
β

−1
+XTDX

)−1

.

Handling the parameters µq
α and Σq

α in the variational posterior for α is more complex.

We proceed in the following way. If no parametric form for the variational posterior q(α)

is assumed (that is, if we do not assume that q(α) is normal) but only assume the factor-

ization q(θ)= q(β)q(α) then the optimal choice for q(α) for a given q(β)=N(µq
β,Σ

q
β) is (see

Ormerod and Wand (2009), for example)

q(α) ∝ exp
(

E(log[p(θ)p(y|θ)])
)

, (5)

where the expectation is with respect to q(β). Similar to the derivation of the lower bound

(4), it is easy to see that

q(α) ∝ exp

(

−1
2

n
∑

i=1

zTi α−
1

2

n
∑

i=1

(yi − xT
i µ

q
β)

2 + xT
i Σ

q
βxi

exp(zTi α)
− 1

2
(α− µ0

α)
TΣ0

α

−1
(α− µ0

α)

)

,
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which takes the form of the posterior (apart from a normalization constant) for a Bayesian

generalized linear model with gamma response and log link, coefficient of variation
√
2, and

responses wi=(yi−xT
i µ

q
β)

2+xT
i Σ

q
βxi with the log of the mean response being zTi α. The prior

in this gamma generalized linear model is N(µ0
α,Σ

0
α). If we use a quadratic approximation

to logq(α) then this results in a normal approximation to q(α). We choose the mean and

variance of the normal approximation simply by the posterior mode and the negative inverse

Hessian of the log posterior at the mode for the gamma generalized linear model described

above. The computations required are standard ones in fitting a Bayesian generalized linear

model (see Appendix B). Write Z for the design matrix in the variance model with ith row

zTi and write W (α) (as a function of α) for the diagonal matrix diag(1
2
wiexp(−zTi α)). With

µq
α the posterior mode, we obtain for Σq

α the expression

Σq
α =

(

ZTW (µq
α)Z + Σ0

α

−1
)−1

.

Our optimization over µq
α and Σq

α is only approximate, so that we only retain the new values

in the optimization if they result in an improvement in the lower bound (4). The advantage of

our approximate approach is the closed form expression for the update of Σq
α once µq

α is found,

so that explicit numerical optimization for a possibly high-dimensional covariance matrix is

avoided.

The explicit algorithm for our method is the following.

Algorithm 1: Maximization of the variational lower bound.

1. Initialize parameters µq
α, Σ

q
α.

2. µq
β←

(

XTDX+Σ0
β

−1
)−1(

Σ0
β

−1
µ0
β+XTDy

)

where D is the diagonal matrix with ith

diagonal entry 1/exp
(

zTi µ
q
α−1/2zTi Σq

αzi
)

.

3. Σq
β←

(

XTDX+Σ0
β

−1
)−1

.

4. Obtain µq
α as the posterior mode for a gamma generalized linear model with normal

prior N(µ0
α,Σ

0
α), gamma responses wi=(yi−xT

i µ
q
β)

2+xT
i Σ

q
βxi, coefficient of variation

√
2

and where the log of the mean is zTi α.
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5. Σq
α←

(

ZTWZ+Σ0
α

−1
)−1

whereW is diagonal with ith diagonal element wiexp(−zTi µq
α)/2.

6. If the updates done in steps 3 and 4 do not improve the lower bound (4) then their old

values are retained.

7. Repeat steps 2-6 until the increase in the variational lower bound (4) is less than some

user specified tolerance.

For initialization, we first perform an ordinary least squares (OLS) fit for the mean model to

get an estimate β̂ of β. Then we take the residuals from this fit, say ri=(yi−xT
i β̂)

2, and do

an OLS fit of logri to the predictors zi to obtain our initial estimate of µq
α. The initial value

of Σq
α is then set to the covariance matrix of the least squares estimator. When the OLS fits

are not valid, some other method such as the Lasso can be used instead. The application of

this algorithm to the problem of variable selection in Section 3 always involves only situations

in which the above OLS fits are available.

We mention one further extension of our method. We have assumed above that the prior

covariance matrices Σ0
β and Σ0

α are known. Later we will assume Σ0
β=σ2

βI and Σ0
α=σ2

αI where

I denotes the identity matrix and σ2
β and σ2

α are scalar variance parameters. We further

assume that µ0
β =0 and µ0

α=0. It may be helpful to perform some data driven shrinkage so

that σ2
β and σ2

α are considered unknown and to be estimated from the data. Our lower bound

(4) can be considered as an approximation to logp(y|σ2
β,σ

2
α), and the log posterior for σ2

β ,σ
2
α

is apart from an additive constant

log p(σ2
β, σ

2
α) + log p(y|σ2

β, σ
2
α).

If we assume independent inverse gamma priors, IG(a,b), for σ2
β and σ2

α, and if we replace the

log marginal likelihood by the lower bound and maximize, we get

σ2
β =

b+ 1
2
µq
β

Tµq
β +

1
2
tr(Σq

β)

a + 1 + p/2

and

σ2
α =

b+ 1
2
µq
α
Tµq

α + 1
2
tr(Σq

α)

a+ 1 + q/2
.

These updating steps can be added to the Algorithm 1 given above.
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3 Model selection

In the discussion of the previous sections the choice of predictors in the mean and variance

models was fixed. We now consider the problem of variable selection in the heteroscedastic

linear model, and the question of computationally efficient model search when the number of

candidate predictors is very large, perhaps much larger than the sample size. In Sections 1

and 2 we denoted the marginal likelihood by p(y) without making explicit conditioning on the

model but now we write p(y|m) for the marginal likelihood in a model m. If we have a prior

distribution p(m) on the set of all models under consideration then Bayes’ rule leads to the

posterior distribution on the model given by p(m|y)∝p(m)p(y|m). We can use the variational

lower bound on logp(y|m) as a replacement for logp(y|m) in this formula as one strategy for

Bayesian variable selection when p(y|m) is difficult to compute. We follow that strategy here.

For a more thorough review of the Bayesian approach to model selection see, for example,

O’Hagan and Forster (2004).

Using the maximized lower bound is a popular approach for model selection (Beal and Ghahramani,

2003, 2006; Wu et al., 2010). The error in using the lower bound to approximate logp(y|m) is

the Kullback-Leibler divergence between the true posterior p(θ|y) and the variational distri-

bution q(θ|λ). The true posterior in our model has the structure of a product of two normal

distributions and the variational distribution we use is also a product of two normals. There-

fore, it can be expected that the minimized KL divergence is small, thus leading to a good

approximation. The experimental study in Section 5 suggests that the maximized lower bound

is very tight.

Before presenting our strategy for ranking variational lower bounds, we discuss here the

model prior. Suppose we have a current model with predictors xi, i∈C⊂D={1,...,p} in the

mean model and zi, i∈V ⊂E={1,...,q} in the variance model. The subsets C and V give indices

for the currently active predictors in the mean and variance models. Let πµ
i (πσ

j ) be the prior

probability for inclusion of xi (zj) in the mean (variance) model, and write πµ=(πµ
1 ,...,π

µ
p )

T ,

10



πσ=(πσ
1 ,...,π

σ
q )

T . We assume that the inclusions of predictors are independent a priori with

p(C|πµ) =
∏

i∈C

πµ
i

∏

i 6∈C

(1− πµ
i ), p(V |πσ) =

∏

j∈V

πσ
j

∏

j 6∈V

(1− πσ
j ),

and the prior probability of a model m with index sets C and V in its mean and variance

models is assumed to be

p(m) = p(C, V |πµ, πσ) = p(C|πµ)p(V |πσ). (6)

If no such detailed prior information is available for each individual predictor (which is the

situation we consider in this paper), one may assume that πµ
1 =...=πµ

p=πµ and πσ
1 =...=πσ

q =πσ

(we note a slight abuse of notation here). Then

p(C|πµ) = π|C|
µ (1− πµ)

p−|C|, p(V |πσ) = π|V |
σ (1− πσ)

q−|V |, (7)

where hyperparameters πµ, πσ ∈ [0,1] are user-specified. One can encourage parsimonious

models by setting small (< 1/2) πµ and πσ. The smaller the πµ and πσ, the smaller prior

probabilities are put on complex models. By setting πµ=πσ=1/2, one can set a uniform prior

on the models. Another option is to put uniform distributions on πµ and πσ. Then

p(C) =

∫ 1

0

p(C|πµ)dπµ ∝
(

p

|C|

)−1

, p(V ) =

∫ 1

0

p(V |πσ)dπσ ∝
(

q

|V |

)−1

. (8)

This prior agrees with the one used in the extended BIC proposed by Chen and Chen (2008).

It has the advantage of requiring no hyperparameter while still encouraging parsimony. We

recommend using this as the default prior.

We now consider adding a single variable in either the mean or the variance model, and

then a one-step update to the current variational lower bound in the proposed model as a

computationally thrifty way of ranking the predictors for possible inclusion. In our one-step

update, we consider a variational approximation in which the variational posterior distribution

factorizes into separate parts for the added parameter and the parameters in the current model,

as well as the factorization of mean and variance parameters in Section 2. We stress that this

factorization is only assumed for the purpose of ranking predictors for inclusion. Once a

variable has been selected for inclusion, the posterior distribution is approximated using the

11



method outlined in Section 2. Write βC for the parameters in the current mean model and

XC for the corresponding design matrix, and αV for the parameters in the current variance

model with ZV the corresponding design matrix. Write xCi for the ith row of XC and zV i for

the ith row of ZV .

3.1 Ranking predictors in the mean model

Let us consider first the effect of adding the predictor xj , j∈D\C, to the mean model. We

write βj for the coefficient of xj and we consider a variational approximation to the posterior

of the form

q(θ) = q(βC)q(βj)q(αV ), (9)

with q(βC)=N(µq
βC ,Σ

q
βC), q(αV )=N(µq

αV ,Σ
q
αV ) and q(βj)=N(µq

βj ,(σ
q
βj)

2). Suppose that we

have fitted a variational approximation for the current model (i.e. the model without xj) using

the procedure of Section 2. We now consider fitting the extended model with µq
βC ,Σ

q
βC ,µ

q
αV

and Σq
αV fixed at the optimized values obtained for the current model, and consider just one

step of a variational algorithm for maximizing the variational lower bound in the new model

with respect to the parameters µq
βj,(σ

q
βj)

2. In effect for our variational lower bound (4), we

are assuming that the variational posterior distribution for (βC
T ,βj)

T is normal with mean

(µq
βC

T
,µq

βj)
T and covariance matrix

[

Σq
βC 0

0 (σq
βj)

2

]

.

Substituting these forms into (4) and further assuming µ0
β=0, µ0

α=0, Σ0
β=σ2

βI and Σ0
α=σ2

αI

(see the remarks at the end of Section 2), we obtain the lower bound

L=Lold+
1

2
+
1

2
log

(σq
βj)

2

σ2
β

−
(σq

βj)
2

2σ2
β

−
(µq

βj)
2

2σ2
β

− 1

2

n
∑

i=1

x2
ij(σ

q
βj)

2 + x2
ij(µ

q
βj)

2 − 2xijµ
q
βj(yi − xT

Ciµ
q
βC)

exp
(

zTiV µ
q
αV − 1

2
zTiVΣ

q
αV ziV

) ,

(10)

where Lold is the previous lower bound for the current model without predictor j. Here we are

writing xij for the value of predictor j for observation i. Optimizing the above bound with
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respect to µq
βj and (σq

βj)
2 and writing µ̂q

βj and (σ̂q
βj)

2 for the optimizers gives

µ̂q
βj =

(

n
∑

i=1

xij(yi − xT
Ciµ

q
βC)

exp
(

zTV iµ
q
αV − 1

2
zTV iΣ

q
αV zV i

)

)

/

(

1

σ2
β

+
n
∑

i=1

x2
ij

exp
(

zTV iµ
q
αV − 1

2
zTV iΣ

q
αV zV i

)

)

(11)

and

(σ̂q
βj)

2 =

(

1

σ2
β

+
n
∑

i=1

x2
ij

exp
(

zTV iµ
q
αV − 1

2
zTV iΣ

q
αV zV i

)

)−1

. (12)

Substituting these back into the lower bound (10) gives

Lold +
1

2
log

(σ̂q
βj)

2

σ2
β

+
1

2

(µ̂q
βj)

2

(σ̂q
βj)

2
. (13)

If the variance model contains only an intercept, this result agrees with greedy selection

algorithms where predictors are ranked according to the correlation between a predictor and

the residuals from the current model (see, e.g. Zhang (2009)). We will discuss this point in

detail in Section 3.5. Later we write the optimized value of (10) as LM
j (C,V ), the superscript

M means the lower bound associated with the model for mean.

3.2 Ranking predictors in the variance model

So far we have considered only the addition of a predictor in the mean model. We now attempt

a similar analysis of the effect of inclusion of a predictor in the variance model. With the

mean model fixed, suppose that we are considering adding a predictor zj, j ∈E\V , to the

variance model. We consider a normal approximation to the posterior q(θ)=q(βC)q(αV )q(αj)

with q(βC) =N(µq
βC ,Σ

q
βC), q(αV ) =N(µq

αV ,Σ
q
αV ) and q(αj) =N(µq

αj ,(σ
q
αj)

2). The variational

lower bound is

Lold+
1

2
+
1

2
log

(σq
αj)

2

σ2
α

−
(σq

αj)
2

2σ2
α

−
(µq

αj)
2

2σ2
α

−1

2

∑

i

zijµ
q
αj

−1

2

n
∑

i=1

{

1

exp(zTV iµ
q
αV − 1

2
zTV iΣ

q
αV zV i+zijµ

q
αj− 1

2
z2ij(σ

q
αj)

2)
− 1

exp(zTV iµ
q
αV − 1

2
zTV iΣ

q
αV zV i)

}

×

(

(yi−xT
Ciµ

q
βC)

2+xT
CiΣ

q
βCxCi

)

, (14)

where Lold is the lower bound for the current model without predictor zj . To obtain good

values for µq
αj and (σq

αj)
2, we use an approximation similar to the one used for the variance
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parameters in Section 2. If we do not assume a normal form for q(αj) but just the factorization

q(θ)=q(βC)q(αV )q(αj) and with the current q(βC) and q(αV ) fixed, then the optimal q(αj) is

q(αj) ∝ exp(E(log p(αj) + log p(y|θ))),

where the expectation is with respect to q(βC)q(αV ). We have that

E(log p(αj) + log p(y|θ)) = E

(

−1
2
log 2π − 1

2
log σ2

α −
α2
j

2σ2
α

− n

2
log 2π − 1

2

n
∑

i=1

zTV iαV

−1
2

n
∑

i=1

zijαj −
1

2

n
∑

i=1

(yi − xT
CiβC)

2

exp (zTV iαV + zijαj)

)

= −1
2
log 2π − 1

2
log σ2

α −
α2
j

2σ2
α

− n

2
log 2π − 1

2

n
∑

i=1

zTV iµ
q
αV

−1
2

n
∑

i=1

zijαj −
1

2

n
∑

i=1

(yi − xT
Ciµ

q
βC)

2 + xT
CiΣ

q
βCxCi

exp
(

zTV iµ
q
αV + zijαj − 1

2
zTV iΣ

q
αV zV i

) .(15)

We make a normal approximation N(µ̂q
αj ,(σ̂

q
αj)

2) to the optimal q(αj) via the mode and

negative inverse second derivative of (15). Differentiating with respect to αj, we obtain

−αj

σ2
α

− 1

2

n
∑

i=1

zij +
1

2

n
∑

i=1

zijvi
exp(zijαj)

where vi =
(yi − xT

Ciµ
q
βC)

2 + xT
CiΣ

q
βCxCi

exp
(

zTV iµ
q
αV − 1

2
zTV iΣ

q
αV zV i

) .

Approximating exp(−zijαj)≈1−zijαj (i.e. using a Taylor series expansion about zero), setting

the derivative to zero and solving gives

µ̂q
αj =

(

1

2

n
∑

i=1

zij(vi − 1)

)

/

(

1

σ2
α

+
1

2

n
∑

i=1

z2ijvi

)

. (16)

To get more accurate estimation of the mode, some optimization procedure may be used here

with (16) used as an initial point. In our R implementation, the Newton method was used

because (15) has its second derivative available in a closed form (see (17) below). We found

that (16) is a very good approximation as the Newton iteration very often stops after a small

number of iterations (with a stopping tolerance as small as 10−10).

Differentiating (15) once more, and finding the negative inverse of the second derivative

at µ̂q
αj gives

(σ̂q
αj)

2 =

(

1

σ2
α

+
1

2

n
∑

i=1

z2ijvi

exp(zijµ̂
q
αj)

)−1

. (17)
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We can plug these values back into the lower bound in order to rank different predictors for

inclusion in the variance model. Once again we note the computationally thrifty nature of

the calculations. We write the optimized value of (14) as LD
j (C,V ), the superscript D means

the lower bound associated with the model for standard deviance.

3.3 Summary of the algorithm

We summarize our variable selection algorithm below. We write L(C,V ) for the optimized

value of the lower bound (4) with the predictor set C in the mean model and the predictor

set V in the variance model. Write C+j for the set C∪{j} and V+j for the set V ∪{j}.

Algorithm 2: Variational approximation ranking (VAR) algorithm.

1. Initialize C and V and set Lopt :=L(C,V ).

2. Repeat the following steps until stop

(a) Store Cold :=C, Vold :=V .

(b) Let j∗ =argmaxj{LM
j (C,V )+logp(C+j ,V )}. If L(C+j∗,V )+logp(C+j∗,V )>Lopt+

logp(C,V )} then set C :=C+j∗, Lopt=L(C+j∗ ,V ).

(c) Let j∗ = argmaxj{LD
j (C,V )+logp(C,V+j)}. If L(C,V+j∗)+logp(C,V+j∗) > Lopt+

logp(C,V ) then set V :=V+j∗, Lopt=L(C,V+j∗).

(d) If C=Cold and V =Vold then stop, else return to (a).

3.4 Forward-backward ranking algorithm

The ranking algorithm described above can be regarded as a forward greedy algorithm because

it considers adding at each step another predictor to the current model. Hereafter we refer

to this algorithm as forward variational ranking algorithm or fVAR in short. Like the other

forward greedy algorithms that have been widely used in many scientific fields, the fVAR

works well in most of the examples that we have encountered. However, a major drawback
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with the forward selection algorithms is that if a predictor has been wrongly selected then it

can not be removed anymore. A natural remedy for this is to add a backward elimination

process in order to correct mistakes made in the earlier forward selection. We present here a

recipe for ranking predictors for exclusion in the mean and variance models.

Let C, V be the current sets of predictors in the mean and variance models respectively.

With j ∈ C, we write C−j for the set C \{j} and consider now the effect of removing the

predictor xj to the lower bound. In order to reduce computational burden, we need some way

to avoid the need to do lower bound maximization for each model C−j when ranking xj for

exclusion. Similar as before, we consider a variational approximation using the factorization

(9) for the variational posterior distribution. Following steps (10)-(13), we can approximately

write the lower bound for the current model (i.e. the model contains xj) as the sum of the

lower bound for the model without xj and a xj-based term

L(C, V ) ≈ L(C−j, V ) + ΓM
C−j ,V

(j), (18)

with

ΓM
C−j ,V

(j) :=
1

2
log

(σ̂q
βj)

2

σ2
β

+
1

2

(µ̂q
βj)

2

(σ̂q
βj)

2
, (19)

where µ̂q
βj, σ̂

q
βj are as in (11) and (12) with C replaced by C−j . All the relevant quantities

needed in the calculation of ΓM
C−j ,V

(j) are fixed at optimized values maximizing the lower

bound for the current model. The subscripts C−j,V emphasize that the quantities needed are

adjusted correspondingly when the predictor j is removed from the mean model. The most

plausible candidate for exclusion from the current mean model then is

j∗ = argmaxj∈C{L(C−j , V ) + log p(C−j, V )} = argminj∈C{ΓM
C−j ,V

(j)− log p(C−j, V )}. (20)

We now rank the predictors for exclusion in the variance model. Following the arguments in

Section 3.2 and the above, we can write

L(C, V ) ≈ L(C, V−j) + ΓD
C,V−j

(j), (21)
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with

ΓD
C,V (j)=

1

2
+
1

2
log

(σ̂q
αj)

2

σ2
α

−
(σ̂q

αj)
2

2σ2
α

−
(µ̂q

αj)
2

2σ2
α

−1

2

∑

i

zijµ̂
q
αj

−1

2

n
∑

i=1

{

1

exp(zTV iµ
q
αV − 1

2
zTV iΣ

q
αV zV i+zijµ̂

q
αj− 1

2
z2ij(σ̂

q
αj)

2
− 1

exp(zTV iµ
q
αV − 1

2
zTV iΣ

q
αV zV i)

}

×

(

(yi−xT
Ciµ

q
βC)

2+xT
CiΣ

q
βCxCi

)

, (22)

where µ̂q
αj, σ̂

q
αj are as in (16)-(17) with V replaced by V−j . The most plausible candidate for

exclusion from the current variance model then is

j∗ = argmaxj∈V {L(C, V−j) + log p(C, V−j)} = argminj∈V {ΓD
C,V−j

(j)− log p(C, V−j)}. (23)

Algorithm 3: Forward-backward variational approximation ranking algorithm.

1. Initialize C and V , and set Lopt=L(C,V ).

2. Forward selection: as in Step 2 in Algorithm 2.

3. Backward elimination: Repeat the following steps until stop

(a) Store Cold :=C, Vold :=V .

(b) Find j∗ as in (20). If L(C−j∗,V )+logp(C−j∗,V )>Lopt+logp(C,V ) then set C=C−j∗,

Lopt=L(C−j∗,V ).

(c) Find j∗ as in (23). If L(C,V−j∗)+logp(C,V−j∗)>Lopt+logp(C,V ) then set V =V−j∗ ,

Lopt=L(C,V−j∗).

(d) If C=Cold and V =Vold then stop, else return to (a).

Hereafter we refer to this algorithm as fbVAR.

In some applications whereX≡Z, it might be meaningful to restrict the search for inclusion

in the variance model to those predictors that have been included in the mean model. To

this end, in the forward selection we just need to restrict the search for the most plausible

candidate j∗ in Step 2(c) of Algorithm 2 to set C, i.e. j∗=argmaxj∈C{LD
j (C,V )+logp(C,Vj)}.
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Also, when considering the removal of a candidate j from the mean model in the backward

elimination, we need to remove j from the variance model as well if j ∈V , i.e. Step 3(b) of

Algorithm 3 must be modified to

3(b’) Let j∗ = argminj∈C{ΓM
C−j ,V−j

(j)− logp(C−j,V−j)}. If L(C−j∗,V−j∗)+logp(C−j∗,V−j∗) >

Lopt+logp(C,V ) then set C=C−j∗, V =V−j∗ , Lopt=L(C−j∗,V−j∗).

Later we compare with the variable selection approaches for heteroscedastic regression im-

plemented in the GAMLSS (generalized additive model for location, scale and shape) package

(Rigby and Stasinopoulos, 2005). The GAMLSS framework allows modeling of the mean and

other parameters (like the standard deviation, skewness and kurtosis) of the response distribu-

tion as flexible functions of predictors. Variable selection is done with stepwise selection using

a generalized AIC or BIC as the stopping rule. The GAMLSS uses a Fisher scoring algorithm

to maximize the likelihood for ranking every predictor for inclusion/exclusion rather than only

the most plausible one as in the VAR algorithm, which leads to a heavy computational burden

for large-p problems.

3.5 The ranking algorithm for homoscedastic regression

In order to get more insight into our VAR algorithm, we discuss in this section the algorithm

for the homoscedastic linear regression model. In the case of constant variance, the variance

parameter α now becomes scalar, we rename the quantities Σ0
α, Σ

q
α as (σ0

α)
2, (σq

α)
2 respectively.

The optimal choice (5) for p(α) becomes

q(α) ∝ exp

(

−n
2
α− 1

2
ve−α − 1

2

α2

(σ0
α)

2

)

where v :=

n
∑

i=1

(

(yi − xT
i µ

q
β)

2 + xT
i Σ

q
βxi

)

.

Using the approximation exp(−α)≈1−α, it is easy to see that the mean and variance of the

normal approximation are

µq
α =

v − n

v + 2/(σ0
α)

2
and (σq

α)
2 =

(

v

2
e−µ

q
α +

1

(σ0
α)

2

)−1

respectively. We now can replace Steps 4 and 5 in Algorithm 1 by these two closed forms so

that the computations can be reduced greatly. Similar to the discussion in Section 3.2, the
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Newton method may be used here in order to get a more accurate estimate of the mode. In

our experience, however, this is not necessary here.

For the variable selection problem, we now just need to rank the predictors for inclu-

sion/exclusion in the mean model. Assume that we are using the uniform model prior, i.e.

p(C,V )≡constant, or a model prior as in (7), the ranking of predictors then follows the rank-

ing of lower bounds. We further assume that the design matrix X has been standardized such

that
∑

ix
2
ij=n, the optimizer (σ̂q

βj)
2 in (12) does not depend on j, and the ranking of the lower

bound (13) follows the ranking of
∣

∣

∑n

i=1xij(yi−xT
Ciµ

q
βC)
∣

∣ (i.e. it follows the ranking of the ab-

solute correlation of the predictors with the standardized residuals from the current model).

This result agrees with frequentist matching pursuit and greedy algorithms where predictors

are ranked according to the correlation between a predictor and the residuals from the cur-

rent model (Mallat and Zhang, 1993; Zhang, 2009; Efron et al., 2004). This is also similar to

computationally thrifty path following algorithms (Efron et al., 2004; Zhao and Yu, 2007).

For the existing frequentist algorithms for variable selection, extra tuning parameters, such

as the shrinkage parameter in penalization procedures, the number of iterations in matching

pursuit and the stopping parameter ǫ in greedy algorithms, need to be chosen. And their

performance depends critically on the method used to choose these tuning parameters. Our

method does not require any extra tuning parameters. The final model is chosen when the

lower bound (plus the log model prior) is maximized - a widely used stopping rule in Bayesian

model selection with variational Bayes (Beal and Ghahramani, 2003, 2006; Wu et al., 2010).

Unlike many commonly used greedy algorithms, our Bayesian framework is able to incor-

porate prior information (if available) on models and/or to encourage parsimonious models

if desired. Besides involving extra tuning parameters, penalized estimates are often biased

(Friedman, 2008; Efron et al., 2004). While our method can penalize non-zero coefficients

through the prior if desired, it does not rely on shrinkage of coefficients to do variable selec-

tion, so that in principle it might produce better estimation of non-zero coefficients. Simulation

studies in Section 5 confirm this point. Note that we do not consider models of all sizes, the

algorithm stops when important predictors have been included in the model, so that compu-
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tations in Algorithm 1 just involve matrices with low-dimension. This is another advantage

which makes our method potentially valuable for variable selection in high-dimensional prob-

lems. Our experience shows that the VAR algorithm is as fast as the LARS algorithm in

problems with thousands of predictors.

4 Applications

Example 1: biscuit dough data. The biscuit dough data is a benchmark “large p, small

n” data set that was originally designed and analyzed in Osborne et al. (1984). The purpose

of this study was to investigate the practical benefit of using near-infrared (NIR) spectroscopy

in the food processing industries. In their experiment, the aim was to predict biscuit dough

constituents based on near-infrared spectrum of dough samples. The four constituents of

interest were fat, sucrose, flour and water. Two data sets (training set DT and prediction

or validation set DP ) were made up in the same manner in which the percentages of four

constituents were exactly calculated. These percentages serve as response variables. There

were 39 samples in the training set and 31 in the prediction set. The NIR spectrum of dough

pieces was measured at equally spaced wavelengths from 1100 to 2498 nanometers (nm) in

steps of 2 nm. Following Brown et al. (2001), we removed the first 140 and last 49 wavelengths

because they were thought to contain little useful information. From remaining wavelengths

ranging from 1380 to 2400 nm, every second wavelength was considered, which increases the

space step to 4 nm. The final data sets consist of 256 predictors and four responses which

were treated separately in four univariate linear regression models rather than in a single

multivariate model.

The most popular and easiest way to check heteroscedasticity is to use plotting techniques.

When the OLS fit is valid, plotting studentized residuals against fitted values is a powerful

technique to use (Carroll and Ruppert, 1988). In our current case of “large p, small n”,

we first used the adaptive Lasso (aLasso) of Zou (2006) to select likely predictors and then

applied the above technique to the selected predictors. We name this method aLasso-OLS.
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Figure 2 shows the plots of aLasso-OLS studentized residuals versus fitted values (where

homoscedasticity was assumed), and also the corresponding plots resulting from our fbVAR

algorithm1 (where heteroscedasticity was assumed) for the response variables sucrose (Y2) and

water (Y4); all were calculated based on the training set. The plots for the other responses

were not shown because the need for a heteroscedastic model was not visually obvious. We

can see that in general fitting the homoscedastic regression model to these responses was

not appropriate here. Looking at the aLasso-OLS plot for Y4, for example, there was clear

evidence that (absolute values of) residuals decrease when fitted values increase, and the

heteroscedastic model estimated by the VAR method gave a more satisfying residual plot.

For the response Y2, the VAR did not select any predictor (except the intercept) for inclusion

in the mean model, although several predictors were selected for the variance model. This

“non-null” variance model reflects the heteroscedasticity which is visualizable in the aLasso-

OLS plot for Y2. The null model for the mean model was quite a surprise, since all the works

analyzing Y2 assuming the homoscedastic linear model that we are aware of in the literature

reported non-null models. The aLasso in our analysis selected only one predictor, the 130th.

Among the plots of all 4 responses against all selected predictors, the plot of Y2 against the

selected predictor (by the aLasso of course) looked very random compared to the others. This

in some sense supported visually the null mean model for Y2.

We then employed the resulting models to make predictions and used the validation set

DP to examine the appropriateness of assuming heteroscedasticity for this biscuit dough data.

The usefulness of a model was measured by two criteria: one was the mean squared error of

prediction defined as

MSE =
1

|DP |
∑

(x,y)∈DP

‖y − ŷ(x)‖2

and the other was the partial prediction score

PPS =
1

|DP |
∑

(x,y)∈DP

− log p̂(y|x),

1We did not apply the restriction here, because there was no good reasons to restrict the search for inclusion

in the variance model to the predictors in the mean model. The search combined both forward and backward

moves and the uniform model prior (i.e. πµ=πσ=1/2) was used.
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Figure 2: The biscuit dough data.
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MSE PPS
aLasso VAR aLasso VAR

fat 2.61 0.09 1.91 0.25
sucrose 13.56 14.87 2.73 2.77
flour 4.43 0.79 2.16 1.37
water 0.64 0.18 1.20 0.64

Table 1: The biscuit dough data: MSE and PPS evaluated on the validation set for the aLasso

and VAR methods.

where p̂(.) is the density estimated under the model. It is understood that the smaller the

MSE and PPS, the better the model. The MSE and PPS evaluated on the 31 samples of

the validation set for the aLasso and VAR methods are summarized in Table 1. Except for

the case of Y2 (sucrose), the heteroscedastic models estimated by the VAR method had a big

improvement over the homoscedastic models estimated by the aLasso. The poor predictive

performance of the VAR (and the aLasso as well) on Y2 was probably due to the reasons

discussed above: there was no linear relationship between the NIR spectrum and the sucrose

constituent.

This biscuit dough data was also carefully analyzed in Brown et al. (2001) using a Bayesian

wavelet regression framework. They first used a wavelet transformation to transform the orig-

inal predictors to wavelet coefficients and then applied a Bayesian (homoscedastic) regression

approach to regress the responses on the derived wavelet coefficients. Prediction was done

using Bayesian model averaging (BMA) over a set of 500 likely models, and MSE values were

reported to be 0.06, 0.45, 0.35 and 0.05 respectively. This methodology seems not comparable

to ours because (i) it was conducted based on wavelet coefficients rather than the original

predictors and (ii) prediction was done using BMA rather than a single selected model.

Because the four response variables are percentages and sum to 100, an anonymous re-

viewer raised a concern about spurious correlations between them. While this may be a

concern for a multivariate analysis, we treated the four responses separately in four univariate

linear regression models rather than in a single multivariate model, so that compositional ef-

fects would not be a problem here. To justify this, we considered the following transformation
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(Aitchison, 1986) of the responses

Ui = log
Yi

Y3

, i = 1, 2, 4.

The choice of Y3 for denominator was natural because the flour is a major constituent

(Brown et al., 2001). After fitting the regression models with these three new responses,

the fitted and predicted values were transformed back to the original scale via

Yi =
100 exp(Ui)
∑

exp(Ui) + 1
, i = 1, 2, 4 and Y3 =

100
∑

exp(Ui) + 1
.

The MSE evaluated on the validation set for the aLasso were 4.71, 13.43, 7.07, 1.45 and for

the VAR method were 2.16, 5.22, 3.36, 0.57. We did not report PPS because it is not clear

how to properly calculate PPS in the case of heteroscedastic regression for such tranformed

data. Comparing to the result in Table 1, it seems that the above transformation which is to

account for potential compositional effects does not give a positive impact overall. This result

also agrees with the analysis of Brown et al. (2001).

Example 2: diabetes data. In the second application we applied the VAR method to

analyzing a benchmark data set in the literature on progression of diabetes (Efron et al.,

2004). Ten baseline variables, age, sex, body mass index, average blood pressure and six

blood serum measurements, were obtained for each of n=442 diabetes patients, as well as the

response of interest y, a quantitative measure of disease progression one year after baseline.

We constructed a (heteroscedastic, if necessary) linear regression model to predict y from

these ten input variables. In the hope of improving prediction accuracy, we considered a

“quadratic model” with 64 predictors. We distinguish between input variables and predictors,

for example, in a quadratic regression model on two input variables age and income, there are

five predictors (age, income, age×age, income×income and age×income).

The analysis of the full data set showed clear evidence of heteroscedasticity. See again

Figure 1 for the solution paths resulting from our VAR algorithm with the uniform model

prior (where only forward selection was implemented and the search for inclusion in the

variance model was restricted). The VAR and GAMLSS both selected some predictors to
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include in the variance model. Furthermore, there was quite a clear pattern in the plot of

the OLS studentized residuals indicating heteroscedasticity (results not shown). Interestingly,

when fitting y with only ten input variables as the predictors, diagnostics and the selected

model by VAR both showed no evidence of heteroscedasticity. This result agreed with the

homoscedasticity assumption often used in the literature for this diabetes data set.

To assess predictive performance, we randomly selected 300 instances to form the training

set, with the remainder serving as the validation set. Of 64 predictors, the VAR selected 13

to include in the mean model and 12 to include in the variance model, while the GAMLSS

selected 23 and 7 respectively. Under the assumption of constant variance, the aLasso selected

43 predictors. On the validation set, the models estimated by aLasso, GAMLSS and VAR

had PPS of 5.50, 15.93, 5.41 and MSE of 3264.95, 3506.32, 2993.16 respectively. In order to

reduce the uncertainty in training-validation separation, we recorded the MSE and PPS over

50 such random partitions, and obtained the averaged MSE for aLasso, GAMLSS and VAR

of 3715.08 (641.56), 4069.81 (1681.70), 3082.78 (774.85) and the averaged PPS of 5.84 (0.15),

56.72 (11.52), 5.76 (0.16) respectively. The numbers in brackets are standard deviations. The

GAMLSS method performed poorly in this example but it should be stressed that we have

only used the default implementation (i.e. stepwise selection with both forward and backward

moves and the generalized AIC used as the stopping rule) in the GAMLSS R package. Further

experimentation with tuning parameters in the information criterion might produce better

results.

5 Experimental studies

In this section, we present experimental studies for our method. We first compare the accuracy

of our variational approximation algorithm to that of MCMC in approximating a posterior

distribution. We then compare the VAR method for variable selection to the aLasso and

GAMLSS in both heteroscedastic and homoscedastic regression. In the examples described

below, the EBIC prior (8) was used as a default prior. This prior has very little impact in low-
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dimensional cases but considerable impact in high-dimensional cases in terms of encouraging

parsimony (Chen and Chen, 2008).

The accuracy of the variational approximation. In this example we demonstrate the

accuracy of the variational approximation for describing the posterior distribution in a het-

eroscedastic model, without considering the model selection aspects. We considered a data

set described in Weisberg (2005), see also Smyth (1989). The data were concerned with the

hydrocarbon vapours which escape when petrol is pumped into a tank. Petrol pumps are

fitted with vapour recovery systems, which may not be completely effective and “sniffer” de-

vices are able to detect if some vapour is escaping. An experiment was conducted to estimate

the efficiency of vapour recovery systems in which the amount of hydrocarbon vapour given

off, in grams, was measured, along with four predictor variables. The four predictor variables

were initial tank temperature (x1), in degrees Fahrenheit, the temperature of the dispensed

gasoline (x2), in degrees Fahrenheit, the initial vapour pressure in the tank (x3), in pounds

per square inch, and the initial vapour pressure of the dispensed gasoline (x4), in pounds per

square inch. Smyth (1989) considers fitting a heteroscedastic linear model with the mean

model

µ = β1g1 + β2g2 + β3g3 + β4x2 + β5g12x4 + β6g3x4

and the variance model

log σ2 = α0 + α1x2 + α2x4,

where g1, g2 and g3 are three binary indicator variables for different ranges of x1 and g12=

g1+g2. In fitting the mean model the last three terms are orthogonalized with respect to

the first three, so that the coefficients of the indicators are simply group means for the cor-

responding subsets of x1, and in the variance model x2 and x4 were mean centered. We

considered our variational approximation to the posterior distribution in a Bayesian analysis

where the priors were multivariate normal with mean zero and covariance 10000I for both β

and α. Figure 3 shows estimated marginal posterior densities for all parameters in the mean

and variance models. The top two rows show the mean parameters and the bottom row the

variance parameters. The solid lines are kernel density estimates of the marginal posteri-
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ors constructed from MCMC samples and the dotted lines are the variational approximate

posterior marginals. The mean and variance from the variational approximation were used

to define a multivariate Cauchy independence proposal for a Metropolis-Hastings scheme to

generate the MCMC samples. 100,000 iterations were drawn, with 1,000 discarded as “burn

in”. One can see that for the mean parameters, the variational approximation is nearly exact.

For the variance parameters, point estimation is very good, but there is a slight tendency for

the variational approximation to underestimate posterior variances. The final lower bound is

-326.68, with agreement to two decimal places within the first two iterations and convergence

after 5 iterations. Compared to -326.5, the marginal likelihood computed using the MCMC

method of Chib and Jeliazkov (2001), this lower bound is very tight.

Heteroscedastic case. We present here a simulation study for our VAR method for simulta-

neous variable selection and parameter estimation in heteroscedastic linear regression models,

and compare its performance to that of the GAMLSS and aLasso methods. Data sets were

generated from the model

y = 2 + xT β̃ + σe
1

2
xT α̃ǫ, (24)

with β̃=(3, 1.5, 0, 0, 2, 0, 0, 0)T , ǫ∼N(0, 1). Predictors x were first generated from normal

distributions N(0,Σ) with Σij = 0.5|i−j| and then transformed into the unit interval by the

cumulative distribution function Φ(.) of the standard normal. The reason for making the

transformation was to control the magnitude of noise level, i.e. the quantity σe
1

2
xT α̃. Let

β = (2, β̃T )T and α= (logσ2,α̃T )T be the mean and variance parameters respectively, where

α̃=(0, 3, 0, 0, −3, 0, 0, 0)T . Note that the true predictors in the variance model were among

those in the mean model. This prior information was employed in the GAMLSS and VAR.

The performance was measured by correctly-fitted rates (CFR), numbers of zero-estimated

coefficients (NZC) (for both mean and variance models), mean squared error (MSE) of pre-

dictions and partial prediction score (PPS) averaged over 100 replications. MSE and PPS

were evaluated based on independent prediction sets generated in the same manner as the

training set. We compared the performance of the VAR and GAMLSS methods (when het-

eroscedasticity was assumed) to that of the aLasso (when homoscedasticity was assumed).
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Figure 3: Estimated marginal posterior densities for coefficients in the mean and variance

models for the sniffer data. Solid lines are kernel estimates from MCMC samples from the

posterior and dashed lines are variational approximate marginal posterior densities.
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The simulation results are summarized in Table 2 for various factors sample size n, nP (size

of prediction sets DP ) and σ. As shown, the VAR method did a good job and outperformed

the others.

We also considered a “large p, small n” case in which β̃ and α̃ in model (24) were vectors of

dimension 500 with most of the components zero except β̃50= β̃100= ...= β̃250=5, β̃300= β̃350=

...= β̃500=−5 and α̃100= α̃200=5, α̃300= α̃400=−5. The simulation results are summarized in

Table 3. Note that the GAMLSS is not applicable when n<p, and moreover that in the case

with n≥p and with large p the current implementation version of the GAMLSS is much more

time consuming compared to the VAR and even not working with p as large as 500, since the

package was not designed for such applications. We are not aware of any existing methods

in the literature for variable selection in heteroscedastic linear models for “large p, small n”

case.

Homoscedastic case. We also considered a simulation study when the data come from

homoscedastic models. Data sets were generated from the linear model (24) with α̃≡0, i.e.

y = 2 + xT β̃ + σǫ

with predictors x generated from normal distributions N(0,Σ) with Σij = 0.5|i−j|. We were

concerned with simulating a sparse, high-dimensional case. To this end, β̃ was set to be a

vector of 1000 dimensions with the first 5 entries were 5, −4, 3, −2, 2 and the rest were

zeros. We used the modified ranking algorithm discussed in Section 3.5 with both forward

and backward moves and the default prior (8). The performance was measured as before by

CFR, NZC and MSE but MSE was defined as the squared error between the true vector β and

its estimate. The simulation results are summarized in Table 4. The big improvement of the

VAR over the aLasso in this example is surprising and probably due to the reasons discussed

in Section 3.5.

Remarks on calculations. The VAR algorithm was implemented using R and the code is

freely available on the authors’ websites. The weights used in the aLasso were assigned as

usual as 1/|β̂j| with β̂j being the MLE (when p<n) or the Lasso estimate (when p≥n) of βj .
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n=nP σ measures aLasso GAMLSS VAR

50 0.5 CFR in mean 64 (4.56) 36 (4.06) 80 (4.88)
CFR in var. nil 70 (5.74) 80 (5.96)
MSE 0.56 0.49 0.48
PPS 1.17 0.89 0.87

1 CFR in mean 22 (4.72) 38 (4.60) 56 (5.00)
CFR in var. nil 50 (5.88) 60 (6.22)
MSE 2.45 2.29 2.24
PPS 2.01 1.78 1.69

100 0.5 CFR in mean 74 (4.50) 30 (3.98) 88 (4.84)
CFR in var. nil 64 (5.62) 90 (5.90)
MSE 0.52 0.48 0.48
PPS 1.12 0.87 0.77

1 CFR in mean 36 (4.68) 42 (4.30) 66 (4.76)
CFR in var. nil 58 (5.72) 76 (5.84)
MSE 2.20 2.08 2.03
PPS 1.83 1.62 1.51

200 0.5 CFR in mean 94 (4.90) 48 (4.14) 100 (5.00)
CFR in var. nil 70 (5.70) 94 (5.94)
MSE 0.48 0.46 0.46
PPS 1.06 0.87 0.74

1 CFR in mean 56 (4.36) 36 (4.06) 88 (4.88)
CFR in var. nil 82 (5.80) 100 (6.00)
MSE 2.01 1.93 1.92
PPS 1.77 1.52 1.42

Table 2: Small-p case: CFR, NZC, MSE and PPS averaged over 100 replications. The numbers

in parentheses are NZC. The true number of non-zero coefficients in the mean model was 5

and in the variance model was 6.

VAR aLasso
n=nP σ CFR in mean CFR in var. MSE PPS CFR in mean MSE PPS
100 0.5 80 (489.75) 90 (495.90) 5.40 1.91 20 (491.80) 11.65 2.66

1 70 (489.05) 65 (495.80) 20.29 2.31 0 (495.75) 35.11 3.28
150 0.5 100 (490.00) 95 (495.90) 13.77 0.85 40 (491.95) 20.02 3.41

1 95 (489.95) 85 (495.85) 28.97 1.52 5 (495.05) 43.19 3.69

Table 3: Large-p case: CFR, NZC, MSE and PPS averaged over 100 replications. The numbers

in parentheses are NZC. The true number of non-zero coefficients in the mean model was 490

and in the variance model was 496.
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CFR (NZC) MSE
n=nP σ aLasso VAR aLasso VAR
50 1 0 (994.42) 38 (994.34) 31.21 17.72

2 0 (994.54) 2 (992.36) 38.21 33.16
100 1 46 (995.62) 96 (994.96) 8.40 0.09

2 16 (996.14) 32 (993.56) 11.87 2.09
200 1 90 (995.10) 98 (994.98) 6.34 0.04

2 44 (995.56) 32 (993.40) 7.78 0.62

Table 4: Homoscedastic case: CFR, MSE and NZC averaged over 100 replications for aLasso

and VAR. The true number of non-zero coefficients was 995.

The tuning parameter λ was selected by 5-fold cross-validation. The implementation of the

aLasso and GAMLSS was carried out with the help of the R packages glmnet and gamlss.

6 Concluding remarks

We have presented in this paper a strategy for variational lower bound maximization in

heteroscedastic linear regression, and a novel fast greedy algorithm for Bayesian variable

selection. In the homoscedastic case with the uniform model prior, the algorithm reduces to

widely used matching pursuit algorithms. The suggested methodology has proven efficient,

especially for high-dimensional problems.

Benefiting from the variational approximation approach - a fast deterministic alternative

and complement to MCMC methods for computation in high-dimensional problems - our

methodology has potential for Bayesian variable selection in more complex frameworks. A

potential research direction is to extend the method to simultaneous variable selection and

number of experts selection in flexible regression density estimation with mixtures of ex-

perts (Geweke and Keane, 2007; Villani et al., 2009). This research direction is currently in

progress. Another potential research direction is to extend the method to grouped variable

selection.
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Appendix A

Below we write Eq(·) for an expectation with respect to the variational posterior. In the

notation of Section 1 we have

T1 = −p+ q
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In evaluating T2 above we made use of the independence of β and α in the variational poste-

rior and of the moment generating function for the multivariate normal variational posterior

distribution for α. Putting the terms together, the variational lower bound simplifies to (4).

Appendix B

Denote by W (α) the diagonal matrix diag(1
2
wiexp(−zTi α)), then

u(α) :=
∂ log q(α)

∂α
= −1

2

∑

i

zi + ZTW (α)− Σ0
α

−1
(α− µ0

α)

and

A(α) :=
∂2 log q(α)

∂α∂αT
= −ZTW (α)Z − Σ0

α

−1
.
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The Newton method for estimating the mode is as follows.

• Initialization: Set starting value α(0).

• Iteration: For k=1,2,..., update α(k)=α(k−1)+A−1(α(k−1))u(α(k−1)) until some stopping

rule is satisfied, such as ‖α(k)−α(k−1)‖<ǫ with some pre-specified tolerance ǫ.
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