
An Adaptive Sequential Monte Carlo Method for

Approximate Bayesian Computation

Pierre Del Moral
Centre INRIA Bordeaux Sud-Ouest

& Institut de Mathématiques,
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Abstract

Approximate Bayesian computation (ABC) is a popular approach to address inference prob-
lems where the likelihood function is intractable, or expensive to calculate. To improve over
Markov chain Monte Carlo (MCMC) implementations of ABC, the use of sequential Monte
Carlo (SMC) methods has recently been suggested. Effective SMC algorithms that are cur-
rently available for ABC have a computational complexity that is quadratic in the number
of Monte Carlo samples [4, 17, 19, 21] and require the careful choice of simulation parame-
ters. In this article an adaptive SMC algorithm is proposed which admits a computational
complexity that is linear in the number of samples and determines on-the-fly the simulation
parameters. We demonstrate our algorithm on a toy example and a population genetics
example.

Keywords: Approximate Bayesian computation, Markov chain Monte Carlo, sequential
Monte Carlo.



1 Introduction

1.1 Background

Assume we are given a Bayesian model where π (θ) denotes the prior density of the parameter
of interest θ ∈ Θ and f(y|θ) is the likelihood of data y ∈ D. It is of interest to compute
expectations with respect to the resulting posterior density π (θ| y). If the likelihood term
f(y|θ) is expensive or impossible to calculate, it is difficult to use standard computational
tools, such as Markov chain Monte Carlo (MCMC), to sample from π (θ| y). ABC is an
alternative to such techniques that only requires being able to sample from f(·|θ). ABC
seeks to draw inference from the following modified posterior density on Θ×D

πε (θ, x|y) =
π(θ)f(x|θ)IAε,y

(x)∫
Aε,y×Θ

π(θ)f(x|θ)dxdθ
(1)

with ε > 0 a tolerance level, IB (·) the indicator function of a given set B, Aε,y = {z ∈ D :
ρ(η (z) , η (y)) < ε} where η : D → S represents some summary statistics and ρ : S × S →R

+

a distance metric. The idea behind ABC is that the summary statistics coupled with a small
tolerance should provide a good approximation of the likelihood. Hence it is expected that
πε(θ|y) ≈ π(θ|y) ([3]).

Rejection sampling was originally proposed to sample from πε(θ, x|y). However, the accep-
tance probability can be very small: several improvements over this algorithm have been
developed. It was shown in [15] that it is possible to construct MCMC methods to sample
from πε (θ, x|y), which only require being able to sample from f(x|θ). These MCMC schemes
can still perform poorly if the tolerance level ε is small. Consequently various sequential
Monte Carlo (SMC) methods have been recently constructed as an alternative to MCMC
methods [4, 17, 18, 21]. The key idea is to decompose the difficult problem of sampling
from πε(θ, x|y) into a series of simpler subproblems. The algorithm begins at time 0 sam-
pling from πε0(θ, x|y), with ε0 large, then simulating from an increasingly difficult sequence
of target distributions πεn

(θ, x|y), that is εn < εn−1, at subsequent time steps n = 1, ..., T .
In other words the tolerance level is decreased until it reaches ε. These distributions are
approximated by a large number of random samples named particles which are propagated
over time using a combination of importance sampling (IS) and resampling.

In the ABC context, [18] used the SMC samplers methodology developed in [8] coupled with
a partial rejection proposal (PRC). Some concerns have been raised about this algorithm [4];
this debate is not contributed to. It is just mentioned that [4, 19, 21] developed methods to
improve the performance of the algorithm in [18] by using an approximation of the ‘optimal’
backward kernel in [8, Section 2.4]. This leads to algorithms of computational complexity
that are quadratic in the number of particles and still requires a careful determination of
the sequence of tolerance levels. Indeed, if the tolerance levels decrease too fast then the
algorithm can perform poorly whereas if they decrease too slowly then the algorithm will be
too computationally intensive.
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1.2 Contributions and Organization of the Article

In this article an original adaptive SMC method for ABC is developed. In comparison to
previous work, our algorithm has the following features:

• a computational complexity that is linear in the number of particles.

• it determines, in an automatic fashion, the sequence of tolerance levels to be used.

• it determines, in an automatic fashion, the parameters of some proposals.

Note that [4] adapts the parameters of proposal densities but not the tolerance levels.

The structure of this article is as follows. In Section 2 we outline the SMC sampler approach
of [8] and discuss its application in an ABC context. In Section 3 an original adaptive SMC
scheme for ABC is introduced. In Section 4 the performance of this algorithm is investigated
on a toy example and a population genetics example. We discuss various extensions in Section
5.

2 Sequential Monte Carlo Samplers for Approximate

Bayesian Computation

2.1 Sequential Monte Carlo Samplers

The SMC sampler methodology is a generic approach to approximately simulate from a
sequence of related probability distributions {πn}0≤n≤T defined upon a common measurable
space (E, E) [8]. At time 0, the distribution π0 is selected such that it is easy to approximate
it using IS. The particles are then moved, from time n−1 to time n, by using a Markov kernel
Kn. As the resulting marginal distribution at time n is typically not available, IS cannot
be used, directly, to correct for the discrepancy between this distribution and the target
πn. To bypass this problem, a sequence of extended probability distributions {π̃n}0≤n≤T are
introduced on state-spaces of increasing dimension (En+1, E⊗n+1) admitting {πn}0≤n≤T as
marginals; see [8] for details. More specifically, the following sequence of auxiliary densities
is used

π̃n(z0:n) = πn(zn)

n−1∏

j=0

Lj(zj+1, zj) (2)

where z0:n := (z0, . . . , zn), {Ln}0≤n≤T−1 are a sequence of Markov kernels that act backward
in time and are termed backward Markov kernels. It is clear from Eq. (2) that {π̃n} admit
{πn} as marginals.

The algorithm proceeds as follows. Note that δx(·) is the Dirac measure.
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• Step 0. Set n = 0; for i = 1, . . . , N sample Z
(i)
0 ∼ η0 and compute W

(i)
0 ∝ π0

(
Z

(i)
0

)
/η0

(
Z

(i)
0

)
,

∑N

j=1 W
(j)
0 = 1.

• Step 1. If ESS
({

W
(i)
n

})
< NT then resample N particles from

π̂n (dz) =

N∑

i=1

W (i)
n δ

Z
(i)
n

(dz) (3)

also denoted abusively
{
Z

(i)
n

}
and set W

(i)
n = 1

N
. Set n = n + 1, if n = T + 1 stop.

• Step 2. For i = 1, . . . , N, sample Z
(i)
n ∼ Kn

(
Z

(i)
n−1, ·

)
, compute

W (i)
n ∝ W

(i)
n−1

πn

(
Z

(i)
n

)
Ln−1

(
Z

(i)
n−1, Z

(i)
n

)

πn−1

(
Z

(i)
n−1

)
Kn

(
Z

(i)
n−1, Z

(i)
n

) (4)

and return to Step 1.

The resampling step is implemented using the systematic resampling scheme [13] and only
performed when the accuracy of the estimator is poor. Practically, this is usually assessed
by looking at the variability of the weights using the so-called Effective Sample Size (ESS)
criterion [14, pp. 35-36] given at time n by

ESS
({

W (i)
n

})
=

(
N∑

i=1

(
W (i)

n

)2
)−1

.

Its interpretation is that inference based on the N weighted samples is approximately equiv-

alent to inference based on ESS
({

W
(i)
n

})
perfect samples from πn. The ESS takes values

between 1 and N and resampling only occurs when it is below a threshold NT . Although
the ESS is not a perfect measure, it does provide an idea of the behaviour of the algorithm
- see [5] for some discussion on this.

2.2 Algorithm Settings for ABC

In the context of ABC, it is of interest to sample from a fixed target distribution πε (θ|y) given
by the marginal in θ of πε (θ, x|y) in (1). As πε (θ|y) is unknown, even up to a normalizing
constant, SMC samplers techniques cannot be applied directly. Therefore, it is necessary to
sample from the sequence of target distributions πn (z) = πεn

(θ, x|y) such that ε0 > ε1 >
· · · > εT = ε. It should be noted that it is also possible to use SMC to sample from the
sequence of targets

πεn
(θ, x1:M |y) ∝

(
1

M

M∑

k=1

IAεn,y
(xk)

)(
M∏

k=1

f(xk|θ)

)
π(θ) (5)
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for any integer M ∈ N [2]. This sequence admits the same marginal in θ for any M . Although
it is more expensive to sample from πεn

(θ, x1:M |y) than πεn
(θ, x|y) when M > 1, this has

important advantages as discussed in Section 3.2 and illustrated in Section 4.

The performance of SMC samplers depends heavily upon the selection of an appropriate
sequence {εn}, the transition kernels {Kn} and the backward transition kernels {Ln}. As-
suming {εn} is fixed for the time being, it is recommended in [8] to use, for Kn, an MCMC
kernel of invariant density πn. This is the approach adopted later on, using a slightly im-
proved version of the MCMC algorithm in [15]. Once Kn has been selected, the backward
Markov kernel Ln−1 is taken as

Ln−1(z, z
′) =

πn(z′)Kn(z′, z)

πn(z)
.

Alternative kernels yielding lower variance weights
{

W
(i)
n

}
are given in [8] but they are not

always applicable in this context. Note that this choice of backward kernels was implicitly
made in [5, 11] and explicitly in related algorithms [6, 16] where no resampling step is used.

For such a selection of MCMC kernel Kn and reversal backward kernel Ln−1, it can be
checked for πn of the form given in Eq. (5), that Eq. (4) becomes

W (i)
n ∝ W

(i)
n−1

πn

(
Z

(i)
n−1

)

πn−1

(
Z

(i)
n−1

) ∝ W
(i)
n−1

∑M

k=1 IAεn,y

(
X

(i)
k,n−1

)

∑M

k=1 IAεn−1,y

(
X

(i)
k,n−1

) . (6)

In this very specific case, it is thus clear that if M = 1, η0 = π0 then either W
(i)
n ∝ 1 or

W
(i)
n = 0 and thus ESS

({
W

(i)
n

})
is directly proportional to the number of ‘alive’ particles

at time n−1, that is to the number of particles with strictly positive weights W
(i)
n . It is also

worth noticing that in this case W
(i)
n is independent of

{
Z

(i)
n

}
. This allows us to swap the

order of the sampling and resampling steps; see [8, Remark 1, p. 418]. We will also exploit
this property in the next Section to obtain an adaptive method.

As εn < εn−1, it is typically the case that there is a non-null proportion of particles that
have zero weights. This emphasizes the importance of selecting an appropriate sequence of
tolerance levels. Indeed, if this sequence decreases too slowly then, with high probability,
W

(i)
n = W

(i)
n−1 and the algorithm will move too slowly towards the target πε (θ, x1:M |y).

Conversely, if the {εn} decrease too quickly, then, with high probability, all the weights

W
(i)
n can equal zero; hence the SMC sampler approximation would have collapsed. To

prevent such a collapse, the algorithms in [17] and [18] targeting πεn
(θ, x|y) generate particles

Z
(i)
n =

(
θ(i)

n , X
(i)
n

)
in regions such that ρ(η

(
X

(i)
n

)
, η (y)) < εn. The transition kernel Kn they

use is not an MCMC kernel of invariant distribution πεn
(θ, x|y) and this makes the selection

of an associated backward kernel, to ensure that the variance of W
(i)
n remains reasonable,

more difficult. As mentioned in the introduction, effective SMC algorithms proposed to
bypass this problem have a computational complexity that is quadratic in N [4, 17, 19, 21].

4



3 An Adaptive Sequential Monte Carlo Sampler for

Approximate Bayesian Computation

In this section, a simple adaptive SMC algorithm is proposed which:

• relies on MCMC kernels to move the particles around the space,

• admits a computational complexity that is linear in N ,

• automatically determines the sequence of tolerance levels so as to prevent the collapse
of the SMC approximation.

3.1 An Adaptive Schedule for Tolerance Levels

Our method for selecting the tolerance level εn adaptively is based on the key remark that the

expression (6) for the weights
{
W

(i)
n

}
does not depend on

{
Z

(i)
n

}
=
{(

θ(i)
n , X

(i)
1:M,n

)}
; see

[8, Section 3.5] for a detailed discussion. We aim to control the proportion of alive particles
which is given by

PA
({

W (i)
n

}
, εn

)
:=

∑N

i=1 I
{W

(i)
n >0}

N

where W
(i)
n given in Eq. (6) depends on εn. This criterion is equivalent to the ESS when

M = 1. However for M > 1, the ESS is not an increasing function of εn contrary to this

criterion and it is thus more difficult to interpret than PA
({

W
(i)
n

}
, εn

)
. The proportion of

alive particles is also intuitively a sensible measure of ‘quality’ of our SMC approximation.
The tolerance level εn is selected to make sure that the proportion of alive particles is equal
to a given percentage of the current value

PA
({

W (i)
n

}
, εn

)
= αPA

({
W

(i)
n−1

}
, εn−1

)
(7)

for α ∈ (0, 1). In practice, bisection is used to compute the root of (7). Hence, by con-
struction, the SMC approximation can be prevented from collapsing. The parameter α is a
‘quality’ index for the resulting SMC approximation of the target. If α ≈ 1 then we will move
slowly towards the target but the SMC approximation will be very good. However, if α ≈ 0
then we can move very quickly towards the target but the resulting SMC approximation will

be unreliable. Finally, we resample the particle system if ESS
({

W
(i)
n

})
< NT .

In some cases, it may be the case that the choice of summary statistics leads to a distance
metric ρ taking only discrete values; say integer values as in the population genetics example
discussed in Section 4. In this case, Eq. (7) does not typically admit a solution and it is
sensible to select tolerance levels taking the same values as the distance metric. Controlling
the PA in these settings is more difficult as a discrete reduction in εn could lead to large
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drops in the PA. Therefore, the possibility that εn does not fall at all, is introduced; let mn

be a counter of how long εn has not decreased. Our objective is relaxed, to ensure that

PA
({

W (i)
n

}
, εn

)
∈
(
νmn

, PA
({

W
(i)
n−1

}
, εn−1

))

for some decreasing, in mn, νmn
< PA

({
W

(i)
n−1

}
, εn−1

)
.

We suggest the following strategy. Let ε∗n be a dummy variable, that is decreased from εn−1,
until

PA
({

W (i)
n

}
, ε∗n
)

< αPA
({

W
(i)
n−1

}
, εn−1

)
. (8)

Let νmn
∈
(
0, αPA

({
W

(i)
n−1

}
, εn−1

))
. If PA

({
W

(i)
n

}
, ε∗n

)
> νmn

then let εn = ε∗n and

mn+1 = 0. Otherwise let εn = εn−1, mn+1 = mn + 1. Finally,

νmn+1 = η ∨ [τ − τ ′(mn+1 + 1)] PA
({

W
(i)
n−1

}
, εn−1

)

where τ > τ ′ ∈ (0, 1) is such that [τ − τ ′(mn+1 + 1)] < α for any mn+1 ≥ 0. The νmn
falls

with mn, but is never allowed to drop below η ∈ (0, 1). If we have mn+1 = S, the algorithm
is terminated. The role of the parameters τ and τ ′ are quite clear; if they are set to allow(
νmn

, PA
({

W
(i)
n−1

}
, εn−1

))
to be large then the algorithm will move forward quickly and

vice-versa. In some cases, the PA can fall in a non-regular manner, especially when we
cannot afford M to be large. Thus it could be useful to control the PA not only through
{εn}, but also the resampling mechanism: it might be preferable to resample whenever

PA
({

W
(i)
n

}
, εn

)
< β where β ∈ (0, 1) .

3.2 Adaptive MCMC Kernels

At each time our algorithm applies an MCMC kernel Kn ((θ, x1:M) , (θ′, x′
1:M)) of invariant

density πεn
(θ, x1:M |y). A slightly modified version of the ABC-MCMC scheme of [15] can

be used to achieve this. Given Z = (θ, X1:M), with
∑M

k=1 IAεn,y
(Xk) ≥ 1 then (θ∗, X∗

1:M) are
generated according to a proposal

qn (θ, θ∗)

M∏

k=1

f (x∗
k| θ

∗) .

This candidate is accepted with acceptance probability given by the Metropolis-Hastings
(MH) ratio

1 ∧
πεn

(θ∗, X∗
1:M |y)

πεn
(θ, X1:M |y)

qn (θ∗, θ)

qn (θ, θ∗)

M∏

k=1

f (Xk| θ)

f (X∗
k | θ

∗)
= 1 ∧

∑M

k=1 IAεn,y
(X∗

k)
∑M

k=1 IAεn,y
(Xk)

qn (θ∗, θ)

qn (θ, θ∗)
.

This expression outlines the benefit of sampling M variables. We reduce the variance of
the MH acceptance ratio as M increases. In the limiting case, i.e. M → ∞, we have
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1
M

∑M

k=1 IAεn,y
(Xk) →

∫
f (x| θ) IAεn,y

(x)dx and our algorithm is similar to a ‘marginal’
MCMC algorithm where X has been integrated out analytically; see [2] for further dis-
cussion.

In this framework, we can adaptively determine the parameters of the proposal qn (θ, θ∗)
based on the previous approximation of the target πn−1. Contrary to adaptive MCMC
methods [1], no stringent condition is required to ensure the validity of the algorithm as
the MCMC kernel is only used to build a sensible importance distribution. In practice, the
variance of θ under πεn−1(θ|y) is approximated at time n− 1 using the SMC approximation.
The resulting variance is used in the proposal density of the MCMC algorithm at time n,
i.e. through a normal random walk proposal. Many other possible adaptation schemes are
also possible.

3.3 An Adaptive Sequential Monte Carlo Method

Our adaptive SMC method for ABC proceeds as follows. We use ε0 = ∞ so that W
(i)
0 = 1

N

and PA
({

W
(i)
0

}
, ε0

)
= 1.

• Step 0. Set n = 0; for i = 1, . . . , N, sample θ
(i)
0 ∼ π (·) and X

(i)
k,0 ∼ f

(
·| θ

(i)
0

)
where

k = 1, . . . , M.

• Step 1. Set n = n+1, if εn−1 = ε stop, otherwise determine εn by solving PA
({

W
(i)
n

}
, εn

)
=

αPA
({

W
(i)
n−1

}
, εn−1

)
where

W (i)
n ∝ W

(i)
n−1

∑M

k=1 IAεn,y

(
X

(i)
k,n−1

)

∑M

k=1 IAεn−1,y

(
X

(i)
k,n−1

) . (9)

If εn < ε then set εn = ε.

• Step 2. If ESS
({

W
(i)
n

})
< NT then resample N particles from

π̂εn
(d (θ, x1:M) |y) =

N∑

i=1

W (i)
n δ(

θ
(i)
n−1,X

(i)
1:M,n−1

) (d (θ, x1:M)) (10)

also denoted abusively
{
θ

(i)
n−1, X

(i)
1:M,n−1

}
and set W

(i)
n = 1

N
.

• Step 3. For i = 1, . . . , N, sample
(
θ(i)

n , X
(i)
1:M,n

)
∼ Kn

((
θ

(i)
n−1, X

(i)
1:M,n−1

)
, ·
)

if W
(i)
n > 0

and return to Step 1.
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Note that in this context, πεn
(θ, x1:M |y) can be approximated by both the weighted measures

associated to
{
W

(i)
n ,
(
θ

(i)
n−1, X

(i)
1:M,n−1

)}
as in Eq. (10) or using

{
W

(i)
n ,
(
θ(i)

n , X
(i)
1:M,n

)}
. For

a convergence analysis, see the discussion in [9]. This algorithm can be straightforwardly
extended to the case where the distance metric only takes discrete values using the strategy
presented in Section 3.1.

4 Application

The Matlab code for the toy example and the C++ code and data for the population genetics
example are available at http://www.cs.ubc.ca/~arnaud/smcabc.html.

4.1 A Toy Example

We begin with the toy example in [4, 18]. The model is of the form

θ ∼ U(−10,10), f (x| θ) = 0.5φ (x; θ, 1) + 0.5φ (x; θ, 1/100) .

U(a,b) denotes the uniform distribution on the interval (a, b) and φ (u; m, σ2) is the one-
dimensional normal density of mean m and variance σ2. It is assumed y = 0 is observed, so
that the posterior density of interest is

π (θ|x) ∝ (φ (x; 0, 1) + φ (x; 0, 1/100)) I(−10,10)(θ).

An ABC strategy is used to estimate π (θ|x), with η (x) = x and ρ (x, y) = |x − y| = |x| . In
this case, we have

πε (θ|y) ∝ (Φ (ε − θ) − Φ (− (ε + θ)) + Φ (10 (ε − θ)) − Φ (−10 (ε + θ))) I(−10,10)(θ)

where Φ (u) is the cumulative distribution function of the standard normal [4]. For ε = 0.025,
it is shown in [4] that π (θ|x) is indistinguishable from πε (θ|y).

The adaptive SMC algorithm is run using a random walk MH kernel. This is based on a
normal proposal of variance given, at time n ≥ 1, by twice the empirical variance of the
{θ

(i)
n−1} ([4]). Our experiments use N ∈ {1000, 10000, 100000} particles, M = 1 and the

adaptive SMC algorithm is run for α ∈ {0.9, 0.95, 0.99} and NT = N/2.

In Table 1, the CPU times are given for this adaptive SMC algorithm averaged over 50
realisations using a PC Intel 3.33GHz

N / α 0.90 0.95 0.99
1000 0.3 0.5 2.3
10000 1.0 1.9 9.7
100000 10.7 22.1 112.3

Table1: Averaged CPU times in seconds for various values of N and α
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Figure 1: Histograms of the samples obtained through SMC. Each row corresponds to a
different α (from top to bottom α = 0.9, 0.95 and 0.99), each column corresponds to a
different N (from left to right N = 1000, 10000 and 100000). The true target density
πε (θ| y) is displayed in black.

In Figure 1 we display the histograms of the samples obtained by the adaptive SMC method
for these various configurations. As expected, the results improve as both α and N increases.
For N = 10000 and α = 0.95 we now investigate the influence of M ∈ {1, 10, 50, 100} on the
performance of the algorithm. In Figure 2 the average, over the alive particles, acceptance
rate of the MH step and the sequence of tolerance levels {εn} as a function of the time index
n are displayed. Note that M has a significant influence on the number of intermediate
distributions required to reach the target. The higher M the smaller this number is and,
as expected, the higher M the higher the average acceptance rate for a fixed ε. We can
increase M further but the results appear very similar to M = 50. In general, the number
M necessary to observe this stabilization depends on f (x| θ) . The more diffuse f (x| θ) is
(in x), the higher M should be. In Figure 3, we display again the acceptance rate and the
sequence of tolerance levels as a function of the number of latent variables X simulated.
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Figure 2: Average acceptance rate of the MH step (left) and sequence of tolerance levels
{εn} (right) as a function of n for M = 1 (solid), 5 (dots), 10 (crosses), 25 (stars) and 50
(dashed dots).
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Figure 3: Average acceptance rate of the MH step (left) and sequence of tolerance levels
{εn} (right) as a function of the number of simulated latent variables (×20000) for M = 1
(solid), 5 (dots), 10 (crosses), 25 (stars) and 50 (dashed dots).
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4.2 A Population Genetics Example

Our example is focussed upon the coalescent model, in the context of Bayesian inference.
The example in [15] is essentially repeated. The model is composed of a stochastic tree in
continuous time, which details the ancestry of a collection of individuals of a given genetic
type; see [20] for details. The tree is comprised of the genetic events:

• coalescence, where individuals combine,

• mutation, where the type of an individual changes,

along with ancestry and topology of the tree. The observations are sequence data, i.e. for
some m ∈ N Y = {1, . . . , d}m, y ∈ Yn. For example, for DNA sequences, we have d = 4. In
this case, a prior is placed on θ, the mutation rate and the posterior density of interest is

π(θ,G|y) ∝ f(y|θ,G)π(G|θ)π(θ)

where G is the genealogy (topology of the tree and coalescent times). The likelihood term
f(y|θ) can be calculated, assuming independence across sites, by the peeling algorithm [10].
In our model, mutations occur by picking a site, i.e. one of the 1, . . . , d, uniformly at random,
and mutating using a d× d transition matrix P . If the length of the DNA sequence, m, and
the number of data, n, is very large, the computational cost of calculating the likelihood is
very high; ABC methods are useful in this context.

4.2.1 The Data

The data used is as in [15]. These are Nuu Chah Nulth mtDNA data, comprised of n = 63
data points of sequence lengths of 360bp. Of the 63 DNA sequences, 28 of them differ,
and of the 360 sites, 26 of them differ (termed segregating sites). The base frequencies are
(πA, πC , πT , πG) are (0.330, 0.112, 0.337, 0.221), which are used as initial probabilities in the
tree. More thorough description can be found in [22].

4.2.2 Model on an Extended State-Space

In the ABC-MCMC algorithm of [15], it is noted that the genealogy is not enough to yield
reasonable acceptance rates. As a consequence, the authors include additional information
on the tree, including mutation times and the sites which mutate. We do the same here.

It is assumed that the site of a mutation is uniformly distributed, given that a mutation has
occurred. Given k split (coalescent) or mutation events, write the event times, as t1:k, b1:k

as the branch of which the event occurs, i1:k as the indicator of a split, s1:k ∈ {0, . . . , 360}

11



as a site (here 0 is associated to the fact that no mutation occurred), the coalescent prior is,
up to proportionality

{ k∏

i=1

p(tj |i1:j−1; θ)p(ij |i1:j−1; θ)p(bj |i1:j−1)p(sj|ij)

}
I{n−1}

( k∑

j=1

ij

)

with

Tj|i1:j−1, θ ∼ Ex

(
0.5
( j−1∑

l=1

il + 2
)( j−1∑

l=1

il + 1 + θ
))

with Ex the exponential density and the other densities uniform on the space unless there
is no mutation, on which the Sj , ij is 0 with probability 1.

Our target density is

πε(θ, x1:M , u1:M |y) ∝

{
1

M

M∑

i=1

IAεn,y
(xi)

}[ M∏

i=1

f(xi|θ)p(ui|θ)

]
π(θ)

where the genealogy and auxiliary variables are denoted u and the prior on θ is an exponential
distribution with rate 1.5. The summary statistic is the number of segregating sites and the
distance metric the absolute value between the number of segregating sites. We take ε = 1.

4.2.3 MCMC Kernels

In order to move the particles around the space two simple MH moves are used. The first
one is to perturb θ with a log-normal random walk, and to re-simulate all of the states from
the prior. The second is the birth/death of a mutation. In the birth, we propose to add
a mutation, uniformly at random from the tree, with the death doing the opposite. The
acceptance probability of this move is easily calculated, in the spirit of [12], and is omitted
for brevity.

4.2.4 Simulation Details

Our adaptive SMC algorithm is run with M = 3, P = (1/d)1d×d and 1d×d the d×d matrix of
1’s, β = 0.6 (the resampling threshold for the PA, see Section 3.1) and α ∈ {0.7, 0.8, 0.95},
S = 10 and τ ∈ {0.75, 0.75, 0.9}, τ ′ ∈ {0.1, 0.1, 0.1}. The value of ε∗n is decreased by
1 when attempting to find the new value of εn. The stability of the results w.r.t N ∈
{2000, 5000, 10000} is investigated.

In our simulations, it was found for small M (M < 3) that the results were worse; the PA
falls much more quickly. The results do improve with M , but we would suggest that for
very large M , the algorithm is too slow for this example to compensate the improvement in
performance.
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(c) α = 0.7

Figure 4: Results from the ABC Simulations. These are the proportion of samples alive for
the 3 settings of α at each time-step of the algorithm. The horizontal line is the resampling
threshold.

One criticism is in terms of setting the parameters α, τ , τ ′, S. It should be noted, however,
that the implications of the choice of these parameters are well-understood (Section 3.1) and
it is far easier than selecting the {εn} in the first place.

4.2.5 Simulation Results

The results can be seen in Figures 4-6. Unless otherwise stated, the results are for N = 2000.
In Figure 4 the proportion of surviving particles is plotted against the time parameter, for
each setting of α. This is recorded before a resampling step may occur - i.e. the particles
will be sampled afterwards. It is immediately observed that α ∈ {0.7, 0.8} is run for fewer
time-steps; the CPU times for α ∈ {0.7, 0.8, 0.95} are 232, 315 and 673 seconds, respectively.
On the basis of this plot, it is quite clear, for this example that α should be large: 673
seconds is not a long run time and the weights degenerate much less than for the other two
settings. For α = 0.95, the performance is quite acceptable, with a slow decline, but also a
move upwards, when the algorithm does not decrease εn (see Figure 6 (a)). In this case, the
algorithm uses the kernels to bring ‘dead particles’ back to life, in the hope that the drop
in PA is not substantial. This is not completely successful, as we can also see a slight drop
in surviving particles. Whilst this is not ideal, the algorithm allows a sizeable number of
particles to explore those densities.

In Figure 5, the histogram of the θ from the posterior are given, with N ∈ {2000, 5000, 10000}.
It should be noted that these samples were resampled, and thus, 5 extra MCMC steps for each
particle were allowed. The conclusions of the preceding paragraph appear to be confirmed,
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Figure 6: Results from the ABC Simulations. The plots are the acceptance rates and
evolution of εn when α = 1.

with the samples for α = 0.95 exhibiting far more stability w.r.t. N .

Given the results above, let us investigate the case α = 0.95, in terms of the tolerance levels
and the acceptance rates, of the MCMC steps, across the algorithm. The tolerance level
in Figure 6 (a) starts at a rather high adaptively set value, 26, which is the number of
segregating sites and, decreases linearly. This linear rate falls once ε = 2, which indicates
that many particles have the values of ρ around this value. The average acceptance rate
of the MCMC moves for the prior and reversible jump proposals are displayed in Figures 6
(b)-(c).

The faster the MCMC kernel mixes, the better the results of the SMC algorithm will be.
However, even in the event (of say) a 1% acceptance rate of the MCMC algorithm for ε,
our SMC algorithm substantially improves over the MCMC results. This can be seen in
Figure 7. In this case, an MCMC algorithm with the same MCMC settings and CPU time
(3141 seconds) at the SMC algorithm using α = 0.95 and N = 10000 was run for 590000
steps of the two moves, and every 59th sample was recorded to obtain 10000 samples. The
representation of the posterior on θ is much worse for the MCMC algorithm, and we were
unable to improve it, by changing proposal variances. The MCMC gets trapped around
values of θ = 2 for which very few simulated summary statistics are compatible with the
data.

For comparison, with the inferential results of [15], the expectation of the most recent com-
mon ancestor, computed using α = 0.95 and N = 10000, is 2.44. This is quite similar to the
values obtained in that paper (1.82), for this data, but for a different prior parameter on θ.
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Figure 7: SMC (top left) versus MCMC (top right) approximation of the target for the
same CPU time. Trace plot of the MCMC run (bottom left) and associated autocorrelation
function (bottom right).
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5 Discussion

In this paper we have presented an adaptive SMC algorithm for ABC. Our approach has a
computational cost that is linear in the number of samples and is able to adaptively calculate
the tolerance levels in a sensible manner. It appears possible to produce accurate answers
with little user input. However, for a fixed computational complexity, it can be difficult to
a priori decide what the best combination of parameters N, M and α is; it is highly model
dependent.

We have not provided any convergence results in this paper. Precise convergence results
for adaptive SMC methods have been recently obtained in [9]. The results there and in [7,
Theorem 7.4.3.] can be combined to give rates of convergence for our algorithm.
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