Skip to main content
Log in

Maximin design on non hypercube domains and kernel interpolation

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

In the paradigm of computer experiments, the choice of an experimental design is an important issue. When no information is available about the black-box function to be approximated, an exploratory design has to be used. In this context, two dispersion criteria are usually considered: the minimax and the maximin ones. In the case of a hypercube domain, a standard strategy consists of taking the maximin design within the class of Latin hypercube designs. However, in a non hypercube context, it does not make sense to use the Latin hypercube strategy. Moreover, whatever the design is, the black-box function is typically approximated thanks to kernel interpolation. Here, we first provide a theoretical justification to the maximin criterion with respect to kernel interpolations. Then, we propose simulated annealing algorithms to determine maximin designs in any bounded connected domain. We prove the convergence of the different schemes. Finally, the methodology is applied on a challenging real example where the black-blox function describes the behaviour of an aircraft engine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Auffray, Y., Barbillon, P., Marin, J.-M.: Modèles réduits à partir d’expériences numériques. J. Soc. Fr. Stat. 152(1), 89–102 (2011)

    MathSciNet  Google Scholar 

  • Bartoli, N., Del Moral, P.: Simulation & algorithmes stochastiques. Cépaduès (2001)

  • Bratley, P., Fox, B.L.: Algorithm 659: Implementing Sobol’s quasirandom sequence generator. ACM Trans. Math. Softw. 14(1), 88–100 (1988)

    Article  MATH  Google Scholar 

  • Bursztyn, D., Steinberg, D.M.: Comparison of designs for computer experiments. J. Stat. Plan. Inference 136(3), 1103–1119 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Chib, S., Greenberg, E.: Understanding the Metropolis-Hastings algorithm. Am. Stat. 49(4), 327–335 (1995)

    Article  Google Scholar 

  • Cressie, N.A.C.: Statistics for Spatial Data. Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics. Wiley, New York (1993)

    Google Scholar 

  • den Hertog, D., Kleijnen, J., Siem, A.: The correct Kriging variance estimated by bootstrapping. J. Oper. Res. Soc. 57(4), 400–409 (2006)

    Article  MATH  Google Scholar 

  • Fang, K.-T., Li, R., Sudjianto, A.: Design and Modeling for Computer Experiments (Computer Science & Data Analysis). Chapman & Hall/CRC, London/Boca Raton (2005)

    Google Scholar 

  • Hastings, W.: Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57(1), 97–109 (1970)

    Article  MATH  Google Scholar 

  • Johnson, M.E., Moore, L.M., Ylvisaker, D.: Minimax and maximin distance designs. J. Stat. Plan. Inference 26(2), 131–148 (1990)

    Article  MathSciNet  Google Scholar 

  • Joseph, V.R.: Limit kriging. Technometrics 48(4), 458–466 (2006)

    Article  MathSciNet  Google Scholar 

  • Koehler, J.R., Owen, A.B.: Computer experiments. In: Design and Analysis of Experiments, Handbook of Statistics, vol. 13, pp. 261–308. North-Holland, Amsterdam (1996)

    Chapter  Google Scholar 

  • Laslett, G.M.: Kriging and splines: an empirical comparison of their predictive performance in some applications. J. Am. Stat. Assoc. 89(426), 391–409 (1994)

    Article  MathSciNet  Google Scholar 

  • Li, R., Sudjianto, A.: Analysis of computer experiments using penalized likelihood in Gaussian Kriging models. Technometrics 47(2), 111–120 (2005)

    Article  MathSciNet  Google Scholar 

  • Locatelli, M.: Convergence properties of simulated annealing for continuous global optimization. J. Appl. Probab. 33(4), 1127–1140 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Lophaven, N.S., Nielsen, H.B., Sondergaard, J.: DACE, a Matlab Kriging toolbox. Technical Report IMM-TR-2002-12, DTU (2002)

  • Madych, W.R., Nelson, S.A.: Bounds on multivariate polynomials and exponential error estimates for multiquadric interpolation. J. Approx. Theory 70(1), 94–114 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  • Matheron, G.: Principles of Geostatistics. Econ. Geol. 58(8), 1246–1266 (1963)

    Article  Google Scholar 

  • McKay, M., Beckman, R., Conover, W.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2), 239–245 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  • Mease, D., Bingham, D.: Latin hyperrectangle sampling for computer experiments. Technometrics 48(4), 467–477 (2006)

    Article  MathSciNet  Google Scholar 

  • Morris, M.D., Mitchell, T.J.: Exploratory designs for computational experiments. J. Stat. Plan. Inference 43, 381–402 (1995)

    Article  MATH  Google Scholar 

  • Roberts, G.O., Rosenthal, J.S.: Harris recurrence of Metropolis-within-Gibbs and trans-dimensional Markov chains. Ann. Appl. Probab. 16(4), 2123–2139 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Sacks, J., Schiller, S., Mitchell, T., Wynn, H.: Design and analysis of computer experiments (with discussion). Stat. Sci. 4(4), 409–435 (1989a)

    Article  MATH  Google Scholar 

  • Sacks, J., Schiller, S.B., Welch, W.J.: Designs for computer experiments. Technometrics 31(1), 41–47 (1989b)

    Article  MathSciNet  Google Scholar 

  • Santner, T.J., Williams, B.J., Notz, W.I.: The Design and Analysis of Computer Experiments. Springer Series in Statistics. Springer, New York (2003)

    MATH  Google Scholar 

  • Schaback, R.: Error estimates and condition numbers for radial basis function interpolation. Adv. Comput. Math. 3(3), 251–264 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Schaback, R.: Kernel-based meshless methods. Technical report, Institute for Numerical and Applied Mathematics, Georg-August-University Goettingen (2007)

  • Stein, M.L.: Interpolation of Spatial Data. Some Theory for Kriging. Springer Series in Statistics. Springer, New York (1999)

    Book  MATH  Google Scholar 

  • Stein, M.L.: The screening effect in Kriging. Ann. Stat. 30(1), 298–323 (2002)

    Article  MATH  Google Scholar 

  • Stinstra, E., den Hertog, D., Stehouwer, P., Vestjens, A.: Constrained maximin designs for computer experiments. Technometrics 45(4), 340–346 (2003)

    Article  MathSciNet  Google Scholar 

  • Tierney, L.: A note on Metropolis-Hastings kernels for general state spaces. Ann. Appl. Probab. 8(1), 1–9 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • van Dam, E.R., Husslage, B., den Hertog, D., Melissen, H.: Maximin Latin hypercube designs in two dimensions. Oper. Res. 55(1), 158–169 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Michel Marin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Auffray, Y., Barbillon, P. & Marin, JM. Maximin design on non hypercube domains and kernel interpolation. Stat Comput 22, 703–712 (2012). https://doi.org/10.1007/s11222-011-9273-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-011-9273-9

Keywords

Navigation