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Abstract The global sensitivity analysis method, used tol Introduction
quantify the influence of uncertain input variables on the
response variability of a numerical model, is applicable taVlany phenomena are modeled by mathematical equations
deterministic computer code (for which the same set of inwhich are implemented and solved by complex computer
put variables gives always the same output value). This pazode. These computer models often take as inputs a high
per proposes a global sensitivity analysis methodology fonumber of numerical variables and physical variables, and
stochastic computer code (having a variability induced byyive several outputs (scalars or functions). For the devel-
some uncontrollable variables). The framework of the jointopment of such computer models, its analysis, or its use,
modeling of the mean and dispersion of heteroscedastic datiae global Sensitivity Analysis (SA) method is an invalu-
is used. To deal with the complexity of computer experi-able tool (Saltelli et all, 2000; Kleiinen, 1997; Helton &t a
ment outputs, non parametric joint models (based on Gel2006). It takes into account all the variation ranges of the i
eralized Additive Models and Gaussian processes) are diguts, and tries to apportion the output uncertainty to the un
cussed. The relevance of these new models is analyzed #ertainty in the input factors. These techniques, ofteedas
terms of the obtained variance-based sensitivity indigds w on the probabilistic framework and Monte-Carlo methods,
two case studies. Results show that the joint modeling agrequire a lot of simulations. The uncertain input variables
proach leads accurate sensitivity index estimations evemw are modeled by random variables and characterized by their
clear heteroscedasticity is present. probabilistic density functions. The SA methods are used
for model calibration (Kennedy and O’Hagan, 2001), model
validation (Bayarii et all, 2007), decision making proo@s Rocquigny et al
Keywords Computer experimentGeneralized additive 2008), i.e. all the processes where it is useful to know which
model- Gaussian processloint modeling Sobol indices  variables mostly contribute to output variability .
Uncertainty The current SA methods are applicable to the determin-
istic computer code, i.e. for which the same set of input-vari
ables always gives the same output values. The randomness
is limited to the model inputs, whereas the model itself is
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ities and must require a negligible calculation time. Salver To construct heteroscedastic metamodels for stochastic
metamodels are classically used: polynomials, splinas, ne computer code, Zabalza et al. (1998) have proposed another
ral networks, Gaussian processes (Chenlet al., 2006; Fahg approach by modeling the mean and the dispersion (i.e. the
2006). variance) of computer code outputs by two interlinked Gen-
. S eralized Linear Models (GLMs). This approach, called the
Inthis paper, we are not concerned by deterministic cOMint model, has been previously studied in the context ef ex

puter mod.els but by stochastic numerigal models - i.e. WheBerimentaI data modeling (Smiyth, 1989; McCullagh and Nelde
the same input variables set leads to different output saluej) gggy.

The model itself relies on probabilistic methods (e.g. Ment

Carl 4 is theref intrinsically stochastic becaus Modeling the mean and variance of a response variable
arlo) “an 'S Theretore In r|nS|f,:a y slochaslic DECaUSe O, 4, ction of some controllable variables is of primary eon
some “uncontrollable variables”. For the uncertainty anal

. - . . . o cern in product development and quality engineering meth-
ysis,Kleijnen (‘1.997) has ral_sed this question, giving an Xods (Phadke, 1989): experimentation is used to determine
ample concerning a queueing model. In the nuclear ®"Yhe factor levels so that the product is insensitive to po-

neering domain, examples are given by Monte-Carlo N€Urantial variations of environmental conditions. This canb

Ero_mc rln_odels u.sed tto Cr? lCltJ.Iate e(ljerl‘nefntary pe}rtlplesd;aje summarized, in the framework of the robust design, as the
orlez, a?ran%le}n s_oc.dastlc bmcl) ets o(;_smu atlng a hargoptimization of a mean response function while minimiz-
number of particles inside turbulent media (in atmosp er"ng a variance function. In this context, Vining and Myers

or hygilraullc envwon;ntent). I.n bcl)ur frt]u?y’ chontrotIIable. {199()) propose to build polynomial models for the mean and
variables correspond fo varables that are Xnown 10 exiSy, y4riance separately, while Lee and Nelder (2003) con-

but unobservable, inaccessible or non describable for SOMEier the joint GLM approach. A recent and complete re-
reafons. I?[ 'BICIUdeS :[[he lmporltantt C‘Esedm Wh:;:hd()bserv?r?kﬁew on this subject can be found.in Bursztyn and Steinberg
vector variables are too compiexto be described or syn ?'2006). Dealing with computer experiments instead of phys-

sized by a reasonable number of scalar parameters. This |5}§5| ones| Bates et al. (2006) propose different stratdgies

situation might concern the code for which some Slr‘nma'designing and analyzing robust design experiments. In this

tions of complex random processes are used. For examplgase, the noise factors are fully controllable. This allthes

one can quote some partial dn‘fgrepﬂal equation resohqtp aFthors to provide a powerful stochastic emulator strategy
in heterogeneous random media simulated by geostatistical . .
Following the work of Zabalza et al. (1998), looss and Ribate

techniques (e.g. fluid flows in oil reservoirs, Zabalza &t al. 1 . _
1998, and acoustical wave propagation in turbulent quids(,ZOOb’ 2009) have recently introduced the joint model to

looss et al., 2002), where the uncontrollable variable és th perform a global sensitivity analysis of a stochastic com-

simulated spatial field involving several thousand scagér v puter code. Results show that a total sensitivity index of al
the uncontrollable variables can be computed using the dis-

ues for each realization. Of course, in this case, behirsd thi . t of the foint del. H h
uncontrollable variable stands a fully controllable param persion component ot the joint model. HOWever, the para-

eter: the random seed. However, the effect of the randorwetric form of the GLM framework provides some limita-

seed on the computer code output is totally chaotic becau%éms erﬁ.n rr:]ozclellntgr]]_complex computtetrhcode ouftputs. To
a slight modification of the random seed leads to a very dif- ypass this hurdie, this paper suggests the use ol non para-

ferent random medium realization. For simplicity and for_me'[rIC m_o_dels. Due to its similarity \.N'th GLMs, _General'— ]
generality, we use the expression “uncontrollable vaeabl ized Additive Models (GAM) are considered (Hastie and Titestn,
in this pap'er 1990; Wood and Augustin, 2002), even though Gp or other

non parametric models should also be a relevant solution.

For stochastic computer models, classical metamodels This paper starts by describing the joint model construc-
(devoted to approximate deterministic computer modess) artion, firstly with the GLM, secondly with the GAM. We
not pertinent anymore. To overcome this problem, the comwill also show how other models, like Gp, can be used to
monly used Gaussian process (Gp) model (Sacks et al), 1989del the mean and dispersion components. The third sec-
Marrel et al., 2008) can include an additive error componention describes the global sensitivity analysis for det@igai
(called the “nugget effect”) by adding a constant term intotic models, and its extension to stochastic models usimg joi
its covariance function. However, it supposes that thererramodels. Particular attention is devoted to the calculatibn
term is independent of the input variables (homoscedastici variance-based sensitivity indices (the so-called Sobol i
hypothesis), which means that the uncontrollable variabldices). Considering a simple analytic function, the perfor
does not interact with controllable variables. This hypoth mance of the proposed approach is compared to other com-
esis limits the use of Gp to specific cases even if recentlynonly used models. Next, an application on an actual indus-
some authors (e.¢. Kleijnen and van Beers, 2005) demortrial case (groundwater radionuclide migration modeliisg)
strated the usefulness of Gp for stochastic computer modegiven. Finally, some conclusions synthesize the contribu-
in heteroscedastic cases. tions of this work.



2 Joint modeling of mean and dispersion the GLM on the mean are obtained. This process can be re-
iterated as many times it is necessary, and allows to eptirel
2.1 Using the Generalized Linear Models fit our joint model (McCullagh and Nelder, 1989).

Statistical tools available in the GLM fitting are also
The class of GLM allows to extend the class of the tradi-available for each component of the joint model: deviance
tional linear models by the use of: (a) a distribution whichanalysis and Student test. It allows to make some variable se
belongs to the exponential family; (b) and a link functionlection in order to simplify model expressions. The residua
which connects the explanatory variables to the explainegraphical analysis (which have to be normally distributed)
variable (Nelder and Wedderburn, 1972). Let us describe thgnd the g-q plots can be used as indicators of the correctness
first component of the model concerning the mean: of the link function for the mean component (Lee and Nelder,
2003). In practice, some evidence can lead to an adequate
{E(Yi) = U, ni=9(u) =3 ;%jBj, ) choice of the link function/.(McCullagh and Nelder, 1989).
var(Y,) =a@v(), For example, a binomial-type explained variable leadséo th
use of the logit function. However, if a natural choice is not

where(Y,)i—1._n are independent random variables with meaRossible and if the identity link function does not provide
ti; xij are the observations of the variabdg B; are the re-  satisfactory residuals analysis, plotting the adjusteuede
gression parameters which have to be estimateds the  dentvariable versus the linear predictor might help in ghoo
mean linear predictorg(-) is a differentiable monotonous ingamore appropriate link function (McCullagh and Nelder,
function (called the link function)g is the dispersion pa- 1989).
rameter and/(-) is the variance function. To estimate the  In conclusion, all the results obtained on the joint GLM
mean component, the functiog) andv(-) have to be spec- are applicable to the problem of stochastic computer ex-
ified. Some examples of link functions are given by the idenperiments. The novelty proposed in our paper concerns the
tity (traditional linear model), root square, logarithnmda ~ global sensitivity analysis issue (sectlon|3.2). Morepirer
inverse functions. Some examples of variance functions arée following section we extend the joint GLM to the non
given by the constant (traditional linear model), idensihd ~ parametric framework. This kind of model is necessary for
square functions. the computer experiment outputs which tend to be rather
Within the joint model framework, the dispersion pa- complex and need non parametric modeling.
rameterg is not supposed to be constant as in a traditionaRemark: A simpler approach consists in building polyno-

GLM, but is supposed to vary according to the model: mial models for the mean and the variance separately (ViamiMyers,
1990; Bursztyn and Steinberg, 2006). This approach, called
Ed) =aq, G=h@)=3;ujy, dual modeling, consists in re_peating cglcu_lations with the
Var(d) = tvg(@), (2)  same sets of controllable variables (which is not necessary

in the joint modeling approach). The dual modeling approach
has been successfully applied in many situations, especial
for robust conception problems. However for our purpose
the dispersion link functiong; is the dispersion linear pre- _(accurate fitting of the mean and d|sper§|on componer_n_s),
it has been shown that this dual model is less competitive

dictor, T is a constant andy(-) is the dispersion variance than the ioint model (Zabalza etld] 1098 L 4 N&Id
function.u;; are the observations of the explanatory variable an the joint modetlsabalza €lial., LyJo, Lee and Nelder,

U;. The variablegU;) are generally taken among the ex- ZQOS): the dual modeling apprqach fits the dispersion model
planatory variables of the medix;), but might differ. To given the mean model and this approach does not always

ensure positivityh(¢) = log g is often taken for the disper- lead to optimal fits.

sion link function while the statistid representing the dis-

persion is generally taken to be the deviance contribution 2 2 Extension to the Generalized Additive Models

which is approximately? distributed. Therefore, as the

distribution is a particular case of the Gamma distribution Generalized Additive models (GAM) were introduced by

Va(@) = @? andT ~ 2. Hastie and Tibshirani (1990) and allow a linear term in the
The joint model is fitted using the Extended Quasi Log-linear predictom = ¥ ; B;X; of equation[(lL) to be replaced

likelihood (EQL, Nelder and Pregiban, 1987) maximization.by a sum of smooth functiong= 3 ; sj(Xj). Thes;j(.)'s are

The EQL behaves as a log-likelihood for both mean and disunspecified functions that are obtained by fitting a smoother

persion parameters. This justifies an iterative procedure tto the data, in an iterative procedure. GAMs provide a flexi-

fit the joint model. First, a GLM is fitted on the mean; then ble method for identifying nonlinear covariate effectsxi e

from the estimate ofl, another GLM is fitted on the disper- ponential family models and other likelihood-based regres

sion. From the estimate gf weights for the next estimate of sion models. The fitting of GAM introduces an extra level

whered; is a statistic representative of the dispersigrare
the regression parameters which have to be estimateds



of iteration in which each spline is fitted in turn assumingonly used cubic regression splines, while our framework al-
the others known. GAM terms can be mixed quite generallyows also the use of multivariate smoothers - e.g. thin plate
with GLM terms in deriving a model. regression splines. As our model is based on GAMs and
One common choice fas; is the smoothing spline, i.e. by analogy with the denomination “joint GLM”, we call it
splines with knots at each distinct value of the variables. | “joint GAM” in the following.
regression problems, smoothing splines have to be pedalize Lastly, it has to be noticed that, within the EQL maxi-
in order to avoid data overfitting. Wood and Augustin (2002)mization framework, a large number of models can be con-
have described in details how GAMs can be constructed usidered instead of GAMs. For instance, one can use a GAM
ing penalized regression splines. Because numerical modefbr the mean response and a GLM for the dispersion com-
often exhibit strong interactions between input varialiles  ponent. In addition, more complex models can also be con-
incorporation of multi-dimensional smooth (for example th sidered such as Gaussian processes - see Sgecfion 2.3.
bi-dimensional spline term; (X, Xj)) is particularly impor-
tant in our context.
GAMs are generally fitted using penalized likelihood 5 3 jgint modeling with other models
maximization. For this purpose, the likelihood is modified

by the addition of a penalty for each smooth function, penalgor some applications, joint GAM could be inadequate, and
izing its “wiggliness”. Namely, the penalized loglikelibd  other models can be proposed. For example, for Gaussian
is defined as: observations, Juutilainen and Roning (2005) have used-a ne
p [ 525\ 2 ral network model for mean and dispersion. It is shown to
pl =1L+ Z Aj / <0—2‘> dx; (3) be more efficient than joint GLM and joint additive models
=1 X in a context of numerous explanatory variables (25) and of
where/ is the loglikelihood functionp is the total number 2 large amount of data (100000). They perform an exten-
of smooth terms and; are “smoothing parameters” which sive comparison for Iarge_ data set_s between 10|nt neural net
compromise between goodness of fit and smoothness. WOk model, MADAM, joint local linear regression model
Estimation of these “smoothing parameters” is gener_amdjomtllnear regression model. While our context of com-

ally achieved using the GCV score minimization. The GCVPUter experiments is different (we have small data sets), it
score is defined as: interesting to recall their conclusion:

nd @) — the neural network joint model gives the best prediction

(n— DoF)? performance;
_ ) ) — MADAM requires a huge amount of memory;

yvheren IS the number of data is the_ deviance anBoF — joint local linear model is extremely time consuming;
is the effective dggrees of-freedom, i.e. the trage of the SO_ joint linear model is appropriate when simplicity is re-
called “hat” matrix. Extension to (E)QL models is straight- quired.
forward by substituting the likelihood function and the de-
vianced for their (extended) quasi counterparts. In practice, Itis also possible to build a heteroscedastic model based
all the smoothing parameters are jointly updated at each iteon the Gaussian process (Gp) metamodel (also known as the
ation of the fitting procedure of the joint model. To this aim, kriging principle, Sacks et al., 1989). The Gp approach es-
on every iteration a GLM/GAM is fitted for each trial set of sentially is a kind of linear interpolation built on the prop
smoothing parameters, and GCV scores are only evaluatexity of the multivariate normal distribution. Gp metamodel
at convergence. gives not only a predictor (which is the best linear unbi-

We have seen that GAMs extend in a natural way GLMsased predictor) of a computer experiment but also a local
Therefore, it would be interesting to extend the joint GLM indicator of prediction accuracy. For heteroscedastia,dat
model to a joint GAM one. Such ideas have been proposefirst approach, proposed by Ginsbourger etal. (2008), con-
inlRigby and Stasinopoulos (1996) where both the mean argists in modeling the mean of the computer code with a Gp
variance were modeled using semi-parametric additive modnetamodel for which the nugget effect is supposed to vary
els (Hastie and Tibshirani, 1990). This model is restritted with the inputs. From this fitted Gp, one can use the estima-
observations following a Gaussian distribution and isezhll tion of the MSE (given by the Gp model) as the dispersion
Mean and Dispersion Additive Model (MADAM). Our model statisticd introduced in Equatiori{2). This model does not
is more general and relaxes the Gaussian assumption as nogquire any fitting of the dispersion component and we pre-
quasi-distributions are considered: while the MADAM fit- fer to focus our attention on another method, the joint Gp
ting procedure relies on the maximization of the penalizeanodel, which is coherent with our previous joint models.
likelihood, the joint GAM maximizes the penalized extendedoukouvalas and Cornfard (2009) have recently introduced
quasi-likelihood. In addition, Righy and Stasinopoulo&d6) a such joint Gp model for the same purpose.

Seev =
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The first step of our methodology models the mean bywk=1,...,s, V{i1,...,is} C {1,...,p}. If the Xis are mu-
a Gp metamodel (having a nugget effect) estimated on theially independent, the decompositidn (7) is valid for any
learning sample. The second step consists in adjusting a sedistribution functions for thes.
ond Gp metamodel on the squared residuals. This process From [7), the following decomposition of the model out-
can be iterated as in the joint GLM and joint GAM fitting put variance is possible (Sobol, 1993):
procedure. Due to the presence of a nugget effect in the o o
mean component, the mean Gp is not anymore an exact iy, Y] = ZV' )+ ZV” (Y)+ Vijic(Y)
terpolator and the learning sample residuals can be used for i< i<]<k 9)
the dispersion model. However, residuals could also be de- +...4+ Vo (YY),
rived from a cross validation method.
whereVi(Y) = Var[E(Y[X;)], Vij (Y) = Var[E(Y[XXj)] Vi (Y) —
Vj(Y),... One can thus define the sensitivity indices by:

3 Global sensitivity analysis
Var[ (YIX)] _ Wi(Y)

3.1 Deterministic models S= varY)  Var(Y)’ (10)
g = i) o Vi)
The global SA methods are applicable to deterministic com- ) — Var(Y) Tk Var(Y)’

puter code, e.g. for which the same set of input variables
always leads to the same response value. This is consider
by the following model:

Hese coefficients are called the Sobol indices, and can be
used for any complex model functiotis The second order
index §; expresses sensitivity of the model to the interac-
f:RP =R (5) tion between the variableg andX; (without the first order

X =Y =1f(X) effects ofX; andX;), and so on for higher orders effects. The

wheref(-) is the model function (possibly analytically un- interpretation of these indices is natural as their sumigskq
known),X = (X4, ..., Xp) arep independentinputs andis ~ to one (thanks to equatiohl(9)): the larger and close to one
the output. In our problenX is uncertain and considered as an index value, the greater is the importance of the variable
a random vector with known distribution which reflects thisor the group of variables linked to this index.

uncertainty. Thereforey is also a random variable, whose ~ For a model withp inputs, the number of Sobol indices
distribution is unknown. In this section, let us recall someis 2° —1; leading to an intractable number of indicespas
basic ideas on the variance-based sensitivity indicelectal increases. Thus, to express the overall sensitivity of tie o

Sobol indices, applied on this model. put to an inputX;, Homma and Saltelli (1996) introduce the
Among quantitative methods, variance-based method®tal sensitivity index:

are the most often used (Saltelli et al., 2000). The main |de§T S+YS;+ Si+...= Z S, (11)

of these methods is to evaluate how the variance of an input [ = 1534

or a group of inputs contributes into the variance of output.

We start from the following variance decomposition: . .
containing index. Thus,y, <4 S is the sum of all the sensi-
Var[Y] = Var[E(Y[X)] +E[Var(Y[X)] , (6) tivity indices containing in their index. For example, for a
which is known as the total variance theorem. The first ternmodel with three input variableSy, = S, + Si2+ Si3+ Si23.
of this equality, named variance of the conditional expecta  The estimation of these indices can be done by Monte-
tion, is a natural indicator of the importanceXfinto the  Carlo simulations or by alternative methods (Saltelli &t al
variance ofY: the greater the importance Xf, the greateris 2000). Recent algorithms have also been introduced to re-
Var[E(Y|X)]. Most often, this term is divided by Vif] to  duce the number of required model evaluations significantly
obtain a sensitivity index ifD, 1]. As explained in the introduction, a powerful method con-
To express the sensitivity indices, we use the unique desists in replacing complex computer models by metamodels
composition of any integrable function @ 1|P into a sum  which have negligible calculation time (e.g. Volkova €t al.
of elementary functions (see for example Sobol, 1993):  |2008). Estimation of Sobol indices by Monte-Carlo tech-
nigues with their confidence intervals (requiring thousaid
simulations) can then be done using these response surfaces

where # represents all the “non-ordered” subsets of indices

f(Xg, -, X _f0+zf +Zf|1 (X, Xj) 7)
i<]

+...+ flz_,p(xla"' axp) )

wherefy is a constant and the other functions verify the fol-3.2 Stochastic models

lowing conditions:
1 In this work, models containing some intrinsic alea, whigh i
0 fiy,.is(Xigs - Xig) A%, =0 (8)  described as an uncontrollable random input variabkre



called “stochastic computer models”. Let us recall the exam(the mean of the dispersion component) deduced from equa-

ple proposed in the introduction wheges a random field tion (I8). Consequently,

whose each realization is governed by a random seed value. ) )

We consider the random fielgl as an uncontrollable vari-

able when this random field is too complex to be describedvar )= IZV'(Y) * iZJV” A i<Jz<kV”k(Y)

or synthesized by a reasonable number of scalar parameters. oA Viz p(Y) + Ex [Ya(X)]
In the following, the expectation and variance operators

involve averaging over the distribution 0X, ), unless an-  whereV;(Y) = Var [E(Y[Xi)], Vij (Y) = Varx x; [E(Y |XiXj)] —

other distribution is indicated. Similarly from equatid®,( Vi(Y) —V;(Y),... For the mean componeli{(X) that we

p
(17)

consider the following (stochastic) model: noteYy, for easing the notation, we have
g:RP R P P P
12 Var(Ym) = $ Vi(Y; Vii (Y; Vijk (Vs
X =Y ="f(X)+v(eX:¢) 5 () IZ '(m)+i; ”(”‘HMZK wlfm) 1)
+...+Viz p(Ym) .

whereX are thep controllable input variables (independent 12.p(Ym)
random variables) is the output/f(-) is the deterministic gy noticing that
part of the model function and(-) is the stochastic part of
the model function. LeE¢ (v) = 0 which means that(-) is Vi (Yim) = Vary, [Ex (Y] )] = Vary, {Ex [Es (Y [X)[X]}
centered relatively ta: we put insidef (-) a possible con- = Var [Ex ¢(Y[Xi)] = Vi(Y)
stant term involved by(-). The notatiorv(g, X : €) means ' ’ (19)

thatv depends only o and on the interactions between
€ andX. The additive form of equatiof_(112) is deduced di-
rectly from the decomposition of the functigninto a sum
of elementary functions depending @K, ¢) (like the de-
composition in Eq.{7)).

and from equatior (10), the sensitivity indices for the vari
ableY according to the controllable variabl&s= (Xi)i—1...p
can be computed using:

For a stochastic modé[{lL2), the joint models introduced Vi (Ym) Vi (Ym)

in sectior 2 enables us to recover two GLMs, two GAMs orS = W’ Sj = Var(y)' (20)
two Gps:

These Sobol indices can be computed by classical Monte-
Ym(X) = E(Y|X) = Ee(Y|X) (13)  carlo techniques, the same ones used in the deterministic

model case. These algorithms are applied on the metamodel
by the mean component (E§] (1)), and defined by the mean componeéft of the joint model.

Thus, all terms contained in MajYm(X)] of the equation

Ya(X) = Var(Y|X) = Vare (Y|X) (14) (@) have been considered. It remains to estirfigtery(X)]

_ _ _ by a simple numerical integration of(X) following the
by the dispersion component (EQ] (2)). If there is no uncongistribution ofX. Y4(X) is evaluated with a metamodel, for
trollable variableg, it leads to a deterministic model case example the dispersion component of the joint moBg[Yin(X)]
with Y4(X) = Var(Y|X) = 0. By using the total variance the- incjudes all the decomposition terms of V¥ (according to
orem (Eq.[(6)), the variance of the output varialflean be  x ande) not taken into account in VafYm(X)] i.€. all terms

decomposed by: involving £. Therefore, the total sensitivity index efis
Var(Y) = Var [E(Y|X)] 4+ Ex [Var(Y|X)] Ex [Yn(X)]
15 — AL M7~
= Vi [¥an(X)] + Ex [Ya (X)) 19 S =) &)

According to model[(T2)Ym(X) is the deterministic model As Y4(X) is a positive random variable, positivity &, is

part, andrg(X) is the variance of the stochastic model part: guaranteed. In practice, @) can be estimated from the
data or from simulations of the fitted joint model:

Ym(X) = f(X),

Ya(X) = Vareg [v(e,X : €)[X] . (16)

Var(Y) = Varx [Ym(X)] + Ex [Ym(X)] . (22)

The variances of andYpy(X) are now decomposed ac- If Var(Y) is computed from the data, it seems preferable to
cording to the contributions of their input variabdsForY,  estimateEx[Ym(X)] with Var(Y) — Varx [Ym(X)] to satisfy
the same decomposition than for deterministic models holdsquation[(Ib). In our applications, the total variance il
(Eq. (9)). However, itincludes the additional tefin [Yq(X)]  estimated using the fitted joint model (Elq.1(22)).



Finally, let us note that we cannot quantitatively distin-  For this analytical function case, it is easy to obtain the
guish the various contributions B, (S, Se, Sje, ...). In-  exact mean and dispersion models by deriving (via analyti-
deed, it is not possible to combine the functional anova deecal integration) the analytical expressions of the mean-com
composition ofYm(X) with the functional anova decomposi- ponentYy(Xy, X2) and dispersion componeYif(Xi, X»):
tion of Yy(X) in order to deduce the unknown sensitivity in-
dices. Finding a way to form some composite indices still re-Yy,(Xy,Xp) = E(Y|X1, X2)

mains an open problem which needs further research. How- _ (1 ™ . X Zlsin(Xo)12

ever, we argue that the analysis of the terms in the regmessio =\t 50 sin(X) + 7[sin(X)]",

modelYy and theirt-values give useful qualitative informa- Yq(X1,Xz) = Var(Y|Xg, Xz)

tion. For example, if an input variablg is not present iiyy, B 1 1 . 2

we can deduce the following correct informaticg = 0. = 900 2500 [Sin(Xa))” = Ya(Xa) .
Moreover, if thet-values analysis and the deviance analysis (24)

show that an input variabl¥ has a smaller influence than
another input variabl; , we can suppose that the interac-
tion betweenX; ande is less influential than the interaction

betweer; a”‘?'f- ) o For the model fitting, 1000 Monte Carlo sample$Xf, X2, X3)

In conclusion, this new approach, based on joint model§,ere simulated leading to 1000 observationstffoKo repli-
to compute Sobol sensitivity indices, is useful if the falto  4ion is made in théXs, X2) plane because it has been
ing conditions hold: shown that repeating calculations with the same sets of con-

— if the computer model contains some uncontrollable varitfollable variables is inefficient in_the joint modeling ap-

ables (the model is no more deterministic but stochasticjProach(Zabalza et al.. 1€98; Lee and Nelder, 2003). There-
_ if a metamodel is needed due to large CPU times of th&2re, we argue that it is better to keep all the possible exper
computer model; ments to optimally cover the input variable space (which can

— if some of the uncontrollable variables interact with some€ Nighly dimensional in real problems). In practice, quasi
controllable input ones; Monte Carlo sequences will be preferred to pure Monte Carlo
— if some information about the influence of the interac-S@mples.(Fang etal., 2006).

tions between the uncontrollable variables and the other N this section, the GLM, GAM and Gp model (with
input variables is of interest. their relative joint extensions) are compared (see Tahle 1)

To compare the predictivity of different metamodels, we use
the predictivity coefficienQ,, which is the determination
coefficientR? computed from a test sample (composed here
by 10000 randomly chosen points). For each joint ma@el,
is computed on the mean component.
The simple GLM is a fourth order polynomial. Only the
The proposed method is first illustrated on an artificial an__explanatory terms are selected in our regression model us-
: : . . . .ing analysis of deviance and the Fisher statistics. The Stu-
alytical model with 3 input variables, called the Ishigami . - . :
function (Homma and Saltelli, 1996; Saltelli et al., 2000): dent test on the regression coefﬂments and residuals g_raph
cal analysis make it possible to judge the goodness of fit. We
see that it remains 39% of non explained deviance due to the
Y = f(X1, X2, X3) = Sin(X1) + 7SinXz)® + 0.1Xg sin(Xy ) model inadequacy and/or to the uncontrollable variable. Th
(23) mean component of the joint GLM gives the same model as
the simple GLM. For the dispersion component, using anal-
whereX; ~ % [—, ] fori = 1,2,3. For this function, all the  ysis of deviance techniques, no significant explanatoriy var
Sobol sensitivity indices, S, S, S12, S13, S3, S123, Sr;,  able was found. Thus, the dispersion component is supposed
Sr,, Sr;) are known. This function is used in most intercom-to be constant; and the joint GLM is equivalent to the simple
parison studies of global sensitivity analysis algorithins  GLM approach - but with a different fitting process.
our study, the classical problem is altered by considexing Studying now the non parametric modeling, we start by
andX; as the controllable input random variables, #gds the simple GAM fitting where we have kept some parametric
an uncontrollable input random variable. It means that théerms by applying a term selection procedure. The predictiv
X3 random values are not used in the modeling proceduréty coefficient of the mean component of the joint GAM is
this variable is considered to be inaccessible. Howeva¥, se slightly better than the predictivity coefficient of the il
sitivity indices have the same theoretical values as in th66AM. However, the explained deviance given by the joint
standard case. GAM mean component is clearly larger than the one given

4.1.1 Metamodeling

4 Applications

4.1 An analytic test case: the Ishigami function



Table 1 Results for the fitting of different metamodels for the Ising function.DeXp| (the explained deviance of the model) a@d (the
predictivity coefficient of the model) are expressed in patcFor the joint modeIsDeXp| andQ; are those of the mean compon&fit In the
formulas for GAM,s; (-), $(+) andsy1(-) are three spline terms.

Dexpl Q2 Formula
Simple GLM 61.3 60.8 Y =1.92+2.69%; +2.17X7 — 0.29X3 — 0.29X7
Joint GLM 61.3 60.8 Ym = 1.92+2.69%; +2.17XZ — 0.29X; — 0.29X}
log(Yq) =1.73
Simple GAM 76.8 75.1 Y =3.76—2.67X1 +51(X1) + S2(X2)
Joint GAM 92.8 75.5 Yin = 3.75— 3.06X; 4 51(X1) + 52(X2)
log(Ya) = 0.59+ su1(X1)
Simple Gp — 75.0 —
Joint Gp — 75.0 —

by the simple GAM approach. Even if this could be relatedsponse against the predicted values for the three models.
to an increasing number of parameters, as the number &first, the advantage of the GAM and Gp approaches are
parameters remains very small compared to the data sizgsible in the Figurd 1l as the dispersion around yhe x
(1000), it is certainly explained by the fact that GAMs areline is clearly reduced compared to the joint GLM disper-
more flexible than GLMs. This demonstrates the efficiencysion. Graphical comparisons between Joint GAM and Joint
of the joint modeling of the mean and dispersion when hetGp results do not provide any advantage for one particular
eroscedasticity is involved. Indeed, the joint procedeagls  model: similar biases are shown. Second, using the GAM
to appropriate prior weights for the mean component. Thenodel, Figurd 2 compares the obtained residuals of a non
joint GAM improves both the joint GLM and simple GAM parametric simple model (homoscedastic) with the obtained
approaches: residuals of a non parametric joint model (heteroscedastic
(a) due to the GAMSs flexibility, the explanatory varialde ~ The deviance residuals for the mean component of the joint
is identified to model the dispersion component (the interacGAM seem to be more homogeneously dispersed around the
tion betweerX; and the uncontrollable variab}g is there-  x-axis; leading to a better prediction on the whole range of
fore retrieved); the observations. Thus, the joint approach is more compet-
(b) the joint GAM explained deviance (93%) for the meanitive than the simple one. From this simple graphical anal-
componentis clearly larger than the simple GAM and jointyses, we conclude that a non parametric joint model (GAM
GLM ones (joint GLM: 61%, simple GAM: 77%). or Gp) has to be preferred to other models (simple and/or

For the Gp metamodel fitting, we use the methodologyparametric).

of IMarrel et al. (2008) which include in the model a lin- In order to make a finer comparison between GLM, GAM
ear regression part and a Gp defined by a generalized exng Gp models, we examine how well they predict the mean
ponential covariance. We obtain for the simple Gp the Prey, (X1, Xo) at inputs for which we have no data. We can also
dictivity coefficientQ, = 75.0%, which is extremely close compare the different dispersion mod¥gX; ). The exact
to the one of the simple GAMQ = 75.1%). The vari-  gnalytical expressions of, andYy are given in Eq.[(24).
ance of the nugget effect (additional error with constanitva | et ys remark that we visuali2g versusX; only because,
ance) introduced in the Gp model is estimated t®9%  for GLM and GAM dispersion models, there is no depen-
of the total variance, which is close to the expected valugience inX, and, for the Gp dispersion model, there is an
(1—Q2=25.0%). We can also fit, at present, a Gp model onextremely smalk,-dependence (we then take = 0). Fig-
the squared residuals to obtain a joint Gp model (cf. sectiogyre[3 plots the theoretica, andYy surfaces (left panels)
2.3). In order to understand which inputs act in the disperand their estimates derived from the fitted joint GLM, joint
sion component, we compute the Sobol sensitivity indices of§AM and Joint Gp models. As shown before, the joint GLM
the dispersion component using a Monte Carlo algorithmis jrrelevant for the mean component and for the dispersion
Sty (X1) = 0.996 andSy, (Xz) = 0.001. These results draw component. The joint GAM fully reproduces the mean com-
the same conclusion than those obtained from the diSpeb’onent, while joint Gp gives a rather good approximation,
sion component equation of the joint GAM; is not an  pyt with small noise. Indeed, spline terms of GAM are per-
explanatory factor for the dispersion. This also leads & thfect smoothers while Gp predictor is impacted by residual
right conclusion that only; interacts with the uncontrol- nojse on the observations: the nugget effect does not allow
lable variableXs in the Ishigami function((23). to suppress all the noise induced by the uncontrollable vari
Let us now perform some graphical analyses in order t@ble. For the dispersion component, joint GP and joint GAM
compare the results for the three joint models Joint GLMgive result of the same quality: these models correctly re-
joint GAM and Joint Gp. Figurel1l shows the observed reproduce the overall behaviour but with small inadequacies,
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Fig. 1 Observed response variable versus the predicted valuéseftiiree joint models: Joint GLM, Joint GAM and joint Gp (gumi applica-
tion).

Simple GAM Joint GAM

Deviance Residuals
0
Deviance Residuals
0

Fitted Values Fitted Values

Fig. 2 Deviance residuals for the simple and joint GAMs versus tiedfivalues (Ishigami application). Dashed lines corradgo local polyno-
mial smoothers.

probably caused by overfitting problems. For the two dis-der interaction terms are difficult to include inside a GAM).
persion models, fitted observations have been taken from thenerefore, in the industrial application of section]4.2, we
residuals of the mean component learning sample. It wouldnly use the models based on GLM and GAM, while Gp
be convenient, in a future work, to test another solution bycould also be applied.
taking predicted residuals, for example by applying a cross
validation procedure. 4.1.2 Sobol indices

We conclude that the joint GAM and joint Gp both ade-
quately model the stochastic analytical model (the IshigamTable[2 depicts the Sobol sensitivity indices for the joint
function [23)). We let some fine comparisons between joinGLM, the joint GAM and joint Gp using equations_{20)
GAM and joint Gp for another study including a relevant an-and [21). The standard deviation estimates &re obtained
alytical application. For example, an analytical modelhwit from 100 repetitions of the Monte-Carlo estimation proce-
strong and high order interactions will probably show thedure (which uses omodel computations for one index es-
superiority of the Gp joint model (because spline high ortimation). When this Monte-Carlo procedure is used to es-
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Fig. 3 Mean component (up) and dispersion component (down) foexaet analytical model, Joint GLM, Joint GAM ‘and Joint Gghigami
application).

timate the Sobol index, we report “MC” in the “Method” the model formulas (see Talble 1) are corr&gt & S, Sio =
column; while “Eq” (resp. Sy,”) indicates that the sensi- $3 = $23 = 0). The only drawback of this joint model-
tivity indices have been deduced from the joint model re-based method is that some indices remain unknown due to
gressive equations (resp. from the sensitivity analyste®f the non separability of the dispersion component effects.
dispersionYy). Therefore, no estimation errorsdj are as- However, it can be deduced thgg; is non null due to the
sociated to these indices (except for total indiBgavhich  explicative effect ofX; in the dispersion component. The
can be deduced fro®). When no quantitative deduction on deduced interval variations provide also useful informati
the sensitivity index can be made with this process, we haveoncerning the potential influence of the interactions.

put a variation interval which borders the true value. These ] o
variation intervals are deduced from the elementary iati Table[3 gives the Sobol indices computed by the same

between sensitivity indices (e.8 < Sr,, Si3 < Sr,, etc). Mont_e-CarIo procedure usi_ng two classical rnetamodelfs as
o ] o ] the simple GAM and the simple Gp. To estimate the first
The joint GLM gives only a good estimation 8f, while 4o 5obol indices = Vi(Ym)/Var(Y) (for i = 1,2), the
S and Sy, are badly estimated (errors greater than 30%)matamodel is used to compWgYn) and the observed data
_81.2 is correctly estimated to zero by looking directly at the(the 1000 observations ¥ to compute VagY). To estimate
joint GLM mean component formula (see Table 1). HOW-yq tota) sensitivity indesr, of the uncontrollable variable,
ever, some concluspns_drawn from the GLM dispersion COMKe metamodel predictivity coefficieq@, is used. In fact,
ponent formula (which is a constant) are wrong. As N0 exy,y, ¢ nnosing that the metamodels fit correctly the computer
planatory variable is involved in this formula, the deduced,,qe one deduces that all the unexplained part of these meta
interaction indices are equal to zefi3 = $3 = S123= 0. dels is due to the uncontrollable varialfig; = 1 — Q.
Thus, S = Sy, = 0.366 while the correct values & and 1 js a strong hypothesis, which is verified here due to the
Sr, are respectively zero and23. simplicity of the analytical function. However, it will not
Contrary to the joint GLM, the joint GAM and joint Gp be satisfied for all application cases: in practical and com-
give good approximations of all the Sobol indices. Theirplex situations, th&, estimation (usually done by a cross-
largest errors concei®r, for the joint GAM (7%-error) and  validation method) can be difficult and subject to caution.
joint Gp (16%-error). Moreover, the deductions drawn fromFor the Ishigamifunctior, S, Sy, are correctly estimated.
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Table 2 Sobol sensitivity indices (with standard deviations) foe ishigami function: exact and estimated values from j@hM and joint
GAM. “Method” indicates the estimation method: MC for the Me-Carlo procedure, Eq for a deduction from the model egusiandS;, for a
deduction from the sensitivity analysisGf(X).

Indices Exact Joint GLM Joint GAM Joint Gp
Values Values sd Method Values sd Method Values sd Method
S 0.314 0.314 4e-3 MC 0.325 5e-3 MC 0.292 7e-3 MC
S 0.442 0.318 5e-3 MC 0.414 5e-3 mMC 0.417 7e-3 MC
Sry 0.244 0.366 2e-3 MC 0.261 2e-3 mMC 0.205 le-3 MC
Si2 0 0 — Eq 0 — Eq 0.004 7e-3 MC
Si3 0.244 0 — Eq 10,0.267 — Eq 10,0.205 — Sy
S3 0 0 — Eq 0 — Eq 0 — Sy
Siz3 0 0 — Eq 0 — Eq 0 — Sy
S, 0.557 0.314 4e-3 Eq 10.3250.586 — Eq 10.2920.497 — Sy
Sr, 0.443 0.318 5e-3 Eq 0.414 5e-3 Eq 0.417 7e-3 Sy,
S 0 0.366 2e-3 Eq [0,0.267 — Eq [0,0.205 — Sy

S1» can be deduced from the formula for the simple GAMity indices. Moreover, for the estimation of the total sensi
(see Tabléll) and estimated by Monte-Carlo method for thévity index of the uncontrollable variable, using the pied
Gp model. However, any other sensitivity indices can be protivity coefficient of the mean component is highly recom-
posed as no dispersion modeling is involved. mended (instead of using the dispersion component). With
Remark: Estimating the nugget effect variance of the Gpadditional experiments, looss and Ribatet (2009) have con-
model mean component gives another estimation of the totéitmed this result.
sensitivity index of the uncotrollable variable. In thisaex In practice, the way to ensure that the convergence has
ple, the variance of the nugget effect has been estimated tieen reached would be to visuali2e and its confidence in-
25.9%of the total variance, which is close to the exact valueterval (by a bootstrap technique for example) by resampling
(24.4%). However, this estimation can be difficult in more in the learning sample and progressively increasing its. siz
complex situations, because of a difficult optimizatiomp ste
while fitting the Gp model (Fang et al., 2006; Marrel et al.,
2008). 4.2 Application to an hydrogeologic transport code

In conclusion, this example shows that the joint non para-
metric models can adjust complex heteroscedastic situstio The joint approach is now applied to a complex industrial
for which classical metamodels are inadequate. Moreovemodel of radioactive pollutants transport in saturateapsr
the joint models offer a theoretical basis to compute effimedia using the MARTHE computer code (developed by

ciently global sensitivity indices of stochastic models. BRGM, France). In the context of an environmental impact
study, MARTHE has been applied to a model of strontium
4.1.3 Convergence study 90 (sr) transport in saturated media for a radwaste tempo-

rary storage in Russia (Molkova et al., 2008). Only a partial

In order to provide some practical guidance for the sameharacterization of the site has been made and, conseguentl
pling size issue, we perform a convergence study for the esalues of the model input variables are not known precisely:
timation of the joint GAM and the associated sensitivity in- 20 scalar input variables have been considered as random
dices. Figuré4 shows some convergence results for a learmariables, each of them associated to a specified probabil-
ing sample sizen varying between 30 to 200 by step of 5. ity density function. The model output variables of intéres
The learning points are sampled by the simple Monte Carleoncern thé°Sr concentration values in different spatial lo-
technique. The predictivity coefficie@, is obtained from cations. One of the main goals of this study is to identify the
a test sample (composed of 1000 randomly chosen pointgnost influential variables of the computer code in order to
The total sensitivity index of the uncontrollable variaBlg ~ improve the characterization of the site in a judicious way.
is obtained by averaging the dispersion compoivgiftvith  Because of large computing times of the MARTHE code,
1e6 randomly chosen points). We can notice the rapid conthe Sobol sensitivity indices are computed using metamod-
vergence of the predictivity coefficie@, and the slower els (boosting regression trees model for Volkova et al. 8200
convergence di(Yy). The convergence speed ®randS,  and Gaussian process modelifor Marrel et al., 2008).
computed from the mean component are not shown here but As a perspective of the Volkova et al. (2008) work, looss
are similar to the one d. (2008) studies more precisely the influence of the spatial

From this particular case (low-dimensional but ratherform of an hydrogeologic layer. The method consists in per-
complex numerical model due to non linearities and strondorming a geostatistical simulation of this layer (whichais
interaction), we conclude that a 100-size sample is sufficie two-dimensional spatial random field), before each calcula
for fitting the joint GAM and for obtaining precise sensitiv- tion of the computer model. This geostatistical simulation
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Table 3 Sobol sensitivity indices (with standard deviations) foe tshigami function: exact and estimated values from @AM and simple
Gp model. “Method” indicates the estimation method: MC fug Monte-Carlo procedure, Eq for a deduction from the modehtons and,
for the deduction of the predictivity coefficieQb.

Indices Exact Simple GAM Simple Gp
Values Values sd Method Values  sd Method
S 0.314 0.333 6e-3 MC 0.292 7e-3 MC
S 0.442 0.441 6e-3 mMC 0.417 7e-3 MC
Sry 0.244 0.249 — Q2 0.250 — Q2
S, 0 0 — Eq 0.004 7e-3 mMC
e ©
— o

0.2

T T

50 100 150 200 50 100 150 200
Sample size Sample size

Fig. 4 For the Ishigami function, mean and 90%-confidence intghaged on 100 replicates) of joint GA®L andSy, in function of the learning
sample size.

is rather complex and the resulting spatial field cannot beincertainty propagation study, in which replicates have to
summarized by a few scalar values. Therefore, as explaindzk avoided. In any case, more interesting designs should be
in our introduction, this hydrogeologic layer form has to chosen, making replicates for example by changing the con-
be considered as an uncontrollable variable of the computérollable input factors while keeping fixed the geostatsti
model. Additionally to the uncontrollable variable, 16lsca realization. However, such ideas are well beyond the scope
input variables remain uncertain and are treated as randoaf the current paper (see Anderson-Cook et al., 2009, for a
variables. It concerns the permeability of different ggdlo recent review about the design issue).

cal layers, the longitudinal and transversal dispersistgf-

ficients, the sorption coefficients, the porosity and meateor
water infiltration intensities. After 8 calculation days, we obtain 300 observations of

the output variable of the MARTHE modeXSr concentra-

In order to keep coherence with Volkova et al. (2008)tion at the domain center). As two computer runs have given
previous study, the learning sample size has been chosércoherent values, we keep 298 observations. For the GLMs
to be the samelN = 300. This size is in adequation with and GAMs construction phase, the large data dispersion sug-
the heuristic recommandation of 10 observations per inpugests the use of logarithmic link functions fgrandh (see
dimension|(Loeppky et al., 2008; Marrel et al., 2008), usedEqgs [1) and(R)). Due to the large number of inputs, a manual
in most of the practical studies on deterministic computeterm selection process has been applied. No interaction ter
codes. The Latin Hypercube Sampling method is used tbas been found to be explicative in the GLMs. However, a
obtained a sample dfl random vectors (each one of di- bi-dimensional spline term has been added in the GAMs be-
mension 16). In additior\ independent realizations of the cause of convincing deviance contribution and negligible p
spatial random field (noticed bg) are obtained by a spe- value. To find this significant interaction term, we have not
cific geostatistical simulation algorithm (looss, 2008r+P introduced in the model all the 120 interaction terms. We
forming independent realizations for each of the simulatohave sequentially tested all the interaction terms invavi
run has been imposed by the small number of available run@ne significant first order ternkdl, kd2, per2 and per3)
(300) relatively to the high-dimensional model (20). More-and each other factor. Then, we keep the interaction terms
over, one of our primary concern was also to perform arwhich show some explanatory contribution to the model.
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The results are summarized below by giving the explainegkplained more than 52% of the output variance, while the
deviance and the explanatory terms involved in the formupermeability of the second lay@er2 explained more than

las: 5%. Some large differences arise in the total influence of
— Simple GLM: Dgypl = 60% with the termskd1, kd2, the uncontrollable variable: 38.2% for the joint GLM and
perl, per2. 27.7% for the joint GAM. Moreover, the joint GLM shows

— Joint GLM: Dgypi(Mean = 66.4%, with the same terms  an influence of the interaction betweper3 ande, while the
than the simple GLMDeyp(dispersion = 8.7% with joint GAM shows an influence of the interaction between

the termsd1 andper3. kd2 ande. In this application, we consider the joint GAM
— Simple GAM:Dyp = 81.8% withs(kd1), s(kd2), s(per3), results more reliable than the joint GLM ones because the
s(per2,kd2). joint GAM captures more efficiently the mean and disper-
— Joint GAM: Deyp(mearn) = 98.1% with the same terms sion components of the data than the joint GLM.
than the simple GAMD gy (dispersiof = 29.7% with By comparing the joint GAM results with the simple
kd1, kd2. GAM results, some significant differences can be printed

kdl, kd2 andperl, per2, per3 are respectively the sorption out:

coefficients and the permeabilities of the differenthy@img  — Thekd1 first order sensitivity index is overestimated us-
logic layers. One observes that the GAM models outperform  ing the simple GAM (140% instead of 3% for the joint
the GLM ones. The predictivity coefficient (computed by = GAM). Indeed, the deviance analysis of the joint GAM

the leave-one-out method) of the simple GAM giv@s= dispersion component shows a high contributiokaf,

76.4%, while for the simple GLMQ, = 58.8%. which means that the interaction betwdeaii and the
Figure[® shows the deviance residuals against the fitted uncontrollable variable is probably large. For a standard

values for the joint GLM, simple GAM and joint GAM mod- metamodel, like the simple GAM, this interaction is not

els. For the joint GLM approach, some outliers are not visi-  found out and leads to a wrong estimation of the first
ble to keep the figure readable. As a consequence, the GAMs order sensitivity index okd1.

clearly lead to smaller residuals. Moreover, the joint GAM — For the simple metamodels, using the relatnie) =
outperforms the simple GAM due to the right explanation of 1 — Qo, the total sensitivity index of the uncontrollable
the dispersion component. It can be seen that the joint GAM variable is underestimated: B36 (simple GAM) instead
allows to suppress the bias involved by the heteroscedastic of 27.7% (joint GAM). The classical metamodels tend to

ity, while simple GAM residuals are affected by this bias. explain some parts of the data which can be adequately
Figure[® shows the proportiaf of observations that included in the dispersion component of the joint GAM

lie within the a% theoretical confidence interval againstthe  during the iterative fitting algorithm.

confidence intervadr. By definition, if a model is suited for ~— Contrary to the other metamodels, the joint GAM allows

both mean and dispersion modelings, the points should be to prove that onljkdl andkd2 interact with the uncon-
located around the = x line. As a consequence, this plotis trollable variable.

useful to compare the goodness of fit for the different mod- As a conclusion, these sensitivity analysis results will be

els. It can be seen that the .Jomt ,GAM is clearly the mOSR/ery useful to the physicist or the modeling engineer during
acc_:urate quel. '”‘?'eed’ a_” .|ts points are clgse to the theqn e’ model construction and calibration steps. In this $geci
reticaly =X line, while the joint G_LM (_resp. simple GAM)_ application, the sensitivity analysis shows that the gdgme
§ystemat|cally leads to underes_t|mat|ons (resp. ovenesti of the second hydrogeological layer has a strong influence
t|on§): Consequently, from the Flgu@{B—f_S,_ one deduces thf’up to 28%) on the predictedSr concentration. Therefore,
the joint GAM model is the most competitive one. On ON€an accurate modeling of this geometry, coupled with a bet-
hand, the mean component is modeled accurately W'tho%r knowledge of the most influential variatke?2, are the

any bla§: On the other haqd, the d|-sperS|on pompoqent kc'ey steps to an important reduction of the model prediction
competitively modeled leading to reliable confidence nter | ertainties

vals.

Table[4 gives the main Sobol sensitivity indices for the
joint GLM, joint GAM and simple GAM (using 1®model 5 Conclusion
computations for one index estimation). The Sobol indices
of the interactions between controllable variables are nothis paper has proposed a solution to compute variance-
given (except betweekd2 and per2) because these inter- based sensitivity indices of stochastic computer model out
actions are not included in the formulas of the two jointputs. It consists in modeling the mean and the dispersion
models. Therefore, their Sobol indices are zero. The twaf the code outputs by two explanatory models. The clas-
joint models give similar results for all first order sensiti  sical way is to separately build these models. In this pa-
ity indices. The sorption coefficient of the second lak@2  per, the use of the joint modeling is preferred. This the-
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Fig. 5 Deviance residuals (mean component) for the Simple GAMitJ8AM and Joint GLM versus the fitted values (MARTHE applios}.

Dashed lines correspond to local polynomial smoothers.
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Fig. 6 ProportionA (in percent) of observation that lie within the% theoretical confidence interval in function of the confickertevel a.
MARTHE application.

ory, proposed by Pregibonh (1984) and Smyth (1989), theing with computer codes involving many factors and strong
extensively developed hy Nelder (1998), is a powerful toolinteractions between model factors, it would be convenient
to fit the mean and dispersion components simultaneousljo look more precisely at other joint models, as the joint Gp
Zabalza et &l. (1998) already applied this approach to modehodel we have shortly described and used. An analytic case
stochastic computer code. However, the behavior of somen the Ishigami function shows that these two non paramet-
numerical models can be highly complex and non linear. Irric joint models (GAM and Gp) are adapted to complex het-
the present paper, some examples show the limit of this pararoscedastic situations where classical metamodels are in
metric joint model. Being inspired by Rigby and Stasinopsubdequate. Moreover, it offers a theoretical basis to comput
(1996) who use non parametric joint additive models (reSobol sensitivity indices in an efficient way. The analytica
stricted to Gaussian cases), we have developed a more gdormulas available with the joint GAM are very useful to
eral joint model using GAMs and quasi distributions. Like complete the sensitivity analysis results and to improve ou
GLMs, GAMs are a suited framework because it allows variinodel understanding and knowledge.

able and model selectiom& quasi-likelihood function, clas-

sical statistical tests on coefficients and graphical digpl  ga5564 on an industrial application. Compared to other-meth
Additional works using joint GLMs and joint GAMS for s the modeling of the dispersion component allows to ob-
computer experiments can be foundin looss and RIbatet§2QQ9 5 rohust estimation of the total sensitivity index dé th

The joint GAM has proven its flexibility to fit complex uncontrollable variable, which leads to correct estimatio
data: we have obtained the same performance for its meanf the first order indices of the controllable variables. ¢k a
and dispersion components as the powerful Gp model. Deatlition, it reveals the influential interactions between tine

The performance of the joint model approach was as-
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Table 4 Estimated Sobol sensitivity indices (with standard deoret obtained by 100 repetitions) for the MARTHE code. “Mmthindicates the
estimation method: MC for the Monte-Carlo procedure, Ecgfdeduction from the model equations @gifor the deduction of the predictivity
coefficientQ,. “—" indicates that the value is not available.

Indices Joint GLM Joint GAM Simple GAM

Values sd Method Values sd Method Values sd Method
Skd1) 0.002 0.6e-2 MC 0.037 1.0e-2 MC 0.140 1.0e-2 MC
Skd2) 0.522 0.6e-2 MC 0.524 1.0e-2 MC 0.550 1l.le-2 MC
S(perl) 0.018 0.7e-2 MC 0 — Eq 0 — Eq
Sper2) 0.052 0.6e-2 MC 0.078 1.0e-2 MC 0.044 1.0e-2 MC
SYper3) 0 — Eq 0.005 1.0e-2 MC 0.008  1.0e-2 MC
Skd2,per2) 0 — Eq 0.063 1.0e-2 MC 0.026 1.0e-2 MC
Sr(¢g) 0.382 0.2e-2 mMC 0.277 0.3e-2 MC 0.235 — Q2
Skdlg) 10,0.382 — Eq 10,0.277 — Eq — — —
Skd2¢) 0 — Eq 10,0.277 — Eq — — —
Sperlg) 0 — Eq 0 — Eq — — —
Sper2g) 0 — Eq 0 — Eq — — —
Sper3g) 10,0.382 — Eq 0 — Eq — — —

controllable variable and the other input variables. Gbtai Chen, V., Tsui, K.-L., Barton, R., and Meckesheimer, M.
ing quantitative values for these interaction effects i st  (2006). A review on design, modeling and applications of
an open issue, but a challenging problem. Finally, the joint computer experiment$lE Transactions38:273—-291.
model would also serve in the uncertainty propagation stud®e Rocquigny, E., Devictor, N., and Tarantola, S., editors
ies of complex models, to obtain the full distribution of the (2008).Uncertainty in industrial practiceWiley.

model output. Fang, K.-T., Li, R., and Sudjianto, A. (2006).Design

In the whole, all statistical analysis were performed us- and modeling for computer experimenthapman &
ing the R software environment (R Development Core Team, Hall/CRC.

2006). In particular, the following functions and packagesGinsbourger, D., Roustant, O., and Richet, Y. (2008). Krig-

were useful: the “glm” function to fit a simple GLM, the ing with heterogeneous nugget effect for the approxima-

“mgcv” (Multiple Smoothing Parameter Estimation by GCV) tion of noisy simulators with tunable fidelity. FPrroceed-

package to fit a simple GAM, and the “sensitivity” pack- ings of Joint Meeting of the Statistical Society of Canada

age to compute Sobol indices. We also developed the “Joint- and the Socit Franaise de Statistiqu@ttawa, Canada.

Modeling” package to fit joint models (including joint GLM Hastie, T. and Tibshirani, R. (1990%Generalized additive

and joint GAM). models Chapman and Hall, London.
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