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Abstract

A new methodology for model determination in decomposable graphical Gaussian models
(Dawid and Lauritzen, 1993) is developed. The Bayesian paradigm is used and, for each given
graph, a hyper inverse Wishart prior distribution on the covariance matrix is considered. This
prior distribution depends on hyper-parameters.
It is well-known that the models’s posterior distribution is sensitive to the specification of
these hyper-parameters and no completely satisfactory method is registered. In order to avoid
this problem, we suggest adopting an empirical Bayes strategy, that is a strategy for which the
values of the hyper-parameters are determined using the data. Typically, the hyper-parameters
are fixed to their maximum likelihood estimations. In order to calculate these maximum
likelihood estimations, we suggest a Markov chain Monte Carlo version of the Stochastic
Approximation EM algorithm.
Moreover, we introduce a new sampling scheme in the space of graphs that improves the add
and delete proposal of Armstrong et al. (2009). We illustrate the efficiency of this new scheme
on simulated and real datasets.
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1 Gaussian graphical models in a Bayesian Context

Statistical applications in genetics, sociology, biology , etc often lead to complicated interaction
patterns between variables. Graphical models have proved to be powerful tools to represent the
conditional independence structure of a multivariate distribution : the nodes represent the variables
and the absence of an edge between two vertices indicates some conditional independence between
the associated variables.
Our paper presents a new approach for estimating the graph structure in Gaussian graphical model.
A very large literature deals with this issue in the Bayesian paradigm: Dawid and Lauritzen (1993);
Madigan and Raftery (1994); Giudici and Green (1999); Jones et al. (2005); Armstrong et al.
(2009); Carvalho and Scott (2009). For a frequentist point of view, one can see Drton and Perlman
(2004).
We suggest here an empirical Bayes approach: the parameter of the prior are estimated from the
data. Parametric empirical Bayes methods have a long history, with major developments evolv-
ing in the sequence of papers by Efron and Morris (1971, 1972b,a, 1973a,b, 1976b,a). Empirical
Bayes estimation falls outside the Bayesian paradigm. However, it has proven to be an effective
technique of constructing estimators that performs well under both Bayesian and frequentist cri-
teria. Moreover, in the case of decomposable Gaussian graphical models, it gives a default and
objective way for constructing prior distribution. The theory and applications of empirical Bayes
methods are given by Morris (1983).
In this Section, we first recall some results on Gaussian graphical models, then we justify the use
of the empirical Bayes strategy.

1.1 Background on Gaussian graphical models

Let G = (V,E) be an undirected graph with vertices V = {1, . . . , p} and set of edges
E = {e1, . . . , et}, (∀i = 1, . . . , t, ei ∈ V × V ). Using the notations of Giudici and Green (1999),
we first recall the definition of a decomposable graph. A graph or subgraph is said to be complete
if all pairs of its vertices are joined by edges. Moreover, a complete subgraph that is not contained
within another complete subgraph is called a clique. Let C = {C1, . . . , Ck} be the set of the
cliques of an undirected graph.
An order of the cliques (C1, . . . , Ck) is said to be perfect if ∀i = 2, . . . , k, ∃h = h(i) ∈ {1, . . . , i−
1} such that Si = Ci ∩ ∪i−1

j=1Ci ⊆ Ch. S = {S2, . . . , Sk} is the set of separators associated
to the perfect order {C1, . . . , Ck}. An undirected graph admitting a perfect order is said to be
decomposable. Let Dp denote the set of decomposable graphs with p vertices. For more details,
one can refer to Dawid and Lauritzen (1993), Lauritzen (1996) (Chapters 2, 3 and 5) or Giudici
and Green (1999).
The graph drawn in Figure 1 – and used as benchmark in numerical Section 4.2– is decomposable.
Indeed, the set of cliques C1 = {1, 2, 3}, C2 = {2, 3, 5, 6}, C3 = {2, 4, 5}, C4 = {5, 6, 7}
and C5 = {6, 7, 8, 9} with associated separators S2 = {2, 3}, S3 = {2, 5}, S4 = {5, 6} and
S5 = {6, 7} forms a perfect order.
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Figure 1: Example of decomposable graph

Note that, with p vertices, the total number of possible graphs is 2p(p−1)/2, p(p − 1)/2 being
the number of possible edges. The total number of decomposable graphs with p vertices can be
calculated for moderate values of p. For instance, if p = 6, among the 32 768 possible graphs,
18 154 are decomposable (around 55%); if p = 8, then 30 888 596 of the 268 435 456 possible
graphs are decomposable (around 12%).
A pair (A,B) of subsets of the vertex set V of an undirected graph G is said to form a decompo-
sition of G if (1) V = A ∪ B , (2) A ∩ B is complete and (3) A ∩ B separates A from B ie any
path from a vertex in A to a vertex in B goes through A ∩B.
To each vertex v ∈ V , we associate a random variable yv. For A ⊆ V , yA denotes the collection
of random variables {yv : v ∈ A}. To simplify the notation, we set y = yV . The probability
distribution of y is said to be Markov with respect to G, if for any decomposition (A,B) of G, yA
is independent of yB given yA∩B . A graphical model is a family of distributions on y verifying
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the Markov property with respect to a graph.
A Gaussian graphical model, also called covariance selection model (see Dempster (1972)), is
such that

y|G,ΣG ∼ Np (µ,ΣG) , (1)

whereNp (µ,ΣG) denotes the p-variate Gaussian distribution with expectation µ ∈ Rp and p× p
symmetric definite positive covariance matrix ΣG . ΣG has to ensure the Markov property with
respect to G. In the Gaussian case, y is Markov with respect to G = (V,E) if and only if

(i, j) /∈ E ⇐⇒
(
Σ−1
G
)

(i,j)
= 0 ,

where A−1 denotes the inverse of the matrix A. Σ−1
G is called the concentration matrix.

In the following, we suppose that we observe a sample Y = (y1, . . . ,yn) from model (1) with
mean parameter µ set to zero. The data are expressed as a deviation from the sample mean. This
centering strategy is standard in the literature, however the technique developed here can be easily
extended to the case µ 6= 0p.
The density of Y is a function of multivariate Gaussian densities on the cliques and separators
of G. More precisely, let C and S denote respectively the sets of the cliques and separators of G
corresponding to a perfect order for G. We have :

f(Y|ΣG ,G) =
n∏
i=1

{∏
C∈C φ|C|

(
yiC |(ΣG)C

)∏
S∈S φ|S|

(
yiS |(ΣG)S

) } , (2)

where for every subset of vertices A, |A| denotes its cardinal and (ΣG)A is the restriction of (ΣG)
to A i.e. {(ΣG)i,j}i∈A,j∈A and yA = (yj)j∈A. φq (·|∆) is the q-variate Gaussian density with
mean 0q and q × q symmetric definite positive covariance matrix ∆.
From a Bayesian perspective, we are interested in the posterior probabilities

π(G|Y) ∝ π(G)

∫
f(Y|ΣG ,G)π(ΣG |G)dΣG , (3)

for specific priors π(ΣG |G) and π(G). In the following, we discuss the choice of these prior
distributions.

1.2 Prior distributions specification

Prior and posterior distributions for the covariance matrix

Conditionally on G, we set an Hyper-Inverse Wishart (HIW) distribution as prior distribution on
ΣG :

ΣG |G, δ,Φ ∼ HIWG (δ,Φ) ,
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where δ > 0 is the degree of freedom and Φ is a p × p symmetric positive definite location
matrix. This distribution is the unique hyper-Markov distribution such that, for every clique C ∈
C, (ΣG)C ∼ IW (δ,ΦC) with density

π ((ΣG)C |δ,ΦC) = hIWGC (δ,ΦC) [det(ΣG)C ]
− δ+2|C|

2

exp
{
− 1

2 tr
[
(ΣG)−1C ΦC

]}
,

(4)

where hIWGC (δ,ΦC) is the normalizing constant:

hIWGC (δ,ΦC) =
det
(

ΦC
2

)(|C|+δ−1)/2

Γ|C|

(
|C|+δ−1

2

) , (5)

where det(·) and tr(·) are respectively the determinant and trace and Γv is the multivariate Γ-
function with parameter v:

Γv(a) = πv(v−1)/4
v∏
j=1

Γ[a+ (1− j)/2] .

The full joint density is:

π(ΣG |G, δ, φ) =

∏
C∈C π ((ΣG)C |δ,ΦC)∏
S∈S π ((ΣG)S |δ,ΦS)

. (6)

Conditionally on G, the HIW distribution is conjugate. The posterior distribution of ΣG is given
by (Giudici, 1996):

ΣG |Y,G, δ,Φ ∼ HIW (δ + n,Φ + SY) . (7)

where SY =
∑n

i=1 y
i tyi, tv denoting the transpose of v.

Moreover for such a prior distribution, the marginal likelihood for any graph G is a simple function
of the HIW prior and posterior normalizing constants hG(δ,Φ) and hG(δ + n,Φ + SY) (Giudici,
1996):

f(Y|G, δ,Φ) =
hG(δ,Φ)

(2π)−np/2hG(δ + n,Φ + SY)
. (8)

where hG(δ,Φ) is the normalizing constant of the HIW distribution which can be computed ex-
plicitly in decomposable graphs from the normalizing constants of the inverse Wishart cliques and
separators densities (4-5-6) :

hG(δ,Φ) =

∏
C∈C h

IW
GC

(δ,ΦC)∏
S∈S h

IW
GS

(δ,ΦS)
.

Note that Roverato (2002) extends the Hyper-Inverse Wishart distribution to non- decomposable
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cases. Moreover, a general treatment of priors for decomposable models is given by Letac and
Massam (2007).

Prior and posterior distributions for the graphs

The prior distribution in the space of decomposable graphs has been widely discussed in the liter-
ature. The naive choice is to use the standard uniform prior distribution:

π(G) ∝ 1 .

One great advantage of this choice is simplifying the calculus but it can be criticized. Indeed, with
p vertices, the number of possible edges is equal to m = p(p−1)

2 and, in the case of a uniform prior
over all graphs, the prior number of edges has its mode around m/2 which is typically too large.
An alternative to this prior is to set a Bernouilli distribution of parameter r on the inclusion or not
of each edge (Jones et al., 2005; Carvalho and Scott, 2009)

π(G|r) ∝ rkG (1− r)m−kG , (9)

where kG is the number of edges of G. The parameter r has to be calibrate. If r = 1/2, this prior
resumes to the uniform one.
In the following we consider this prior distribution and give an empirical estimation of r.
Using (8) and (9), we deduce easily that the density of the posterior distribution in the space of
decomposable graphs satisfies:

π (G|Y, δ, r,Φ) ∝ hG(δ,Φ)

hG(δ + n,Φ + SY)
π(G|r) . (10)

This posterior distribution is known to be sensitive to the specification of the hyper-parameters r, δ
and Φ (see Jones et al. (2005); Armstrong et al. (2009)). To tackle this problem various strategies
have been developed. In the following, we supply a short review of these methods and offer an
alternative one.

Choice of the hyper-parameters δ, r and Φ

In a fully Bayesian context, as proposed by Giudici and Green (1999), a hierarchical prior mod-
elling can be used. In this approach, δand Φ are considered as random quantities and a prior
distribution is assigned to those parameters (r is fixed to 1/2). This strategy does not completely
solve the problem since the prior distributions on δ and Φ also depend on hyper-parameters which
are difficult to calibrate.
An other strategy consists in fixing the values of δ, r and Φ as in Jones et al. (2005). In that paper,
r is set to 1

p−1 encouraging sparse graphs. They choose δ = 3 which is the minimal integer such
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that the first moment of the prior distribution on ΣG exists. Finally, they set Φ = τIp and using
the fact that the mode of the marginal prior for each variance terms σii is equal to τ/(δ + 2), τ is
fixed to δ + 2 if the data set is standardized.
An intermediate strategy is suggested by Armstrong et al. (2009). First, they fix the value of δ to
4 1 assessing that such a value gives a suitably non-informative prior for ΣG . Then, they consider
different possibilities for Φ, all of the form Φ = τA where the matrix A is fixed. In all cases, for
the hyper-parameter τ , they use a uniform prior distribution on the interval [0,Γ] where Γ is very
large. Finally, they also use a hierarchical prior on r : r ∼ β(1, 1), which leads to

π(G) ∝
(
m
kG

)−1

by integration.
(
m
kG

)
is the binomial coefficient.

This hierarchical prior of r is also used in Carvalho and Scott (2009). In that paper, they suggest
a HIW g-prior approach with g = 1/n. This approach consists of fixing δ = 1 and Φ = SY/n.
In our point of view, δ measures the amount of information in the prior relative to the sample
(see (7)): we suggest setting δ to 1 such that the prior weight is the same as the weight of one
observation. As pointed out by Jones et al. (2005), for this particular choice, the first moment of
the prior distribution on ΣG does not exist. However, for δ = 1, the prior distribution is proper
and we fail to see any argument in favour of the existence of a first moment.
The structure of Φ can be discussed and various forms exist in the literature (see Armstrong et al.
(2009) for instance). In this paper, we standardise the data and use Φ = τIp. This choice leads
to sparse graph: on average each variable has major interactions with a relatively small number
of other variables. In that context, τ plays the role of a shrinkage factor and has to be carefully
chosen on the appropriate scale.
In this paper, we recommend to use an empirical Bayes strategy and to fix (τ, r) to its maximum
likelihood estimation for which computation is a challenging issue. To tackle this point, a Markov
Chain Monte Carlo (MCMC) version of the Stochastic Approximation EM (SAEM) algorithm is
used.
The SAEM algorithm is presented in Section 2. In Section 3, a new Metropolis-Hasting algorithm
is introduced. Then, the proposed methodology is tested on real and simulated datasets.

1In fact, they set δ = 5 but they consider that µ is unknown with uniform prior distribution: this situation corre-
sponds to the case δ = 4 when µ = 0p.
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2 An empirical Bayes procedure via the SAEM-MCMC algorithm

In the following, we set θ = (τ, r) ∈ R∗+×]0, 1[. In order to compute the maximum likelihood
estimation of θ, we need to optimize in θ the following function

f(Y|θ) ∝
∑
G∈Dp

{
hG(δ, τIp)

hG(n+ δ, τIp + SY)

}
π(G|r) (11)

If the number of vertices is greater than 10, the number of decomposable graphs is so huge that it
is not possible to calculate the sum over Dp. In that case, we consider the use of the Expectation-
Maximization (EM) algorithm developed by
Dempster et al. (1977), noting the fact that the data Y =
(y1, . . . ,yn) are issued from the partial observations of the complete data (Y,G,ΣG). However,
for such a data augmentation scheme, the E-step of the EM algorithm is not explicit and we have
to resort to a stochastic version of the EM algorithm, like:

1. the S-EM scheme introduced by Celeux and Diebolt (1992) and Diebolt and Celeux (1993)
where the E-step is replaced by a single simulation from the distribution of (G,ΣG) given
Y and θ;

2. the MC-EM or the MCMC-EM algorithms
where the E-step is replaced by some Monte Carlo approximations
(McLachlan and Krishnan, 2008);

3. the SAEM algorithm introduced by Delyon et al. (1999) where the E-step is divided into a
simulation step and a stochastic approximation step;

4. the SAEM-MCMC algorithm
(Kuhn and Lavielle, 2004) which extends the SAEM scheme, the “exact” simulation step
being replaced by a simulation from an ergodic Markov chain.

The S-EM, MC-EM and SAEM methods require to simulate a realization from the distribution
of (G,ΣG) given Y and θ. We are not able to produce a realization exactly distributed from the
distribution of (G,ΣG) given Y and θ. We use the SAEM-MCMC algorithm which just requires
some realizations from an ergodic Markov chain with stationary distribution (G,ΣG)|Y, θ. In a
first part, we recall the EM algorithm principles and present the SAEM-MCMC scheme. In a
second part, we detail its application to Gaussian graphical models and prove its convergence.

2.1 The Stochastic Approximation version of the EM algorithm

The EM algorithm is competitive when the maximization of the function

θ → Q(θ|θ′) = EΣG ,G|Y,θ′ {log f(Y,ΣG ,G|θ)}
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is easier than the direct maximization of the marginal likelihood (11). The EM algorithm is a two
steps iterative procedure. More precisely, at the k-th iteration, the E-step consists of evaluating
Qk(θ) = Q(θ | θ̂k−1) while the M-step updates θ̂k−1 by maximizing Qk(θ).
For complicated models where the E-step is untractable, Delyon et al. (1999) introduce the Sto-
chastic Approximation EM algorithm (SAEM) replacing the E-step by a stochastic approximation
of Qk(θ). At iteration k, the E-step is divided into a simulation step (S-step) of

(
Σ

(k)
G ,G(k)

)
with

the posterior distribution (ΣG ,G)|Y, θ̂k−1 and a stochastic approximation step (SA-step):

Qk(θ) = (1− γk)Qk−1(θ)+

γk log f(Y,Σ
(k)
G ,G(k)|θ̂k−1)

where (γk)k∈N is a sequence of positive numbers decreasing to zero. When the joint distribution
of (Y,ΣG ,G) belongs to the exponential family, the SA-step reduces to the stochastic approxi-
mation on the minimal exhaustive statistics. The M-step remains the same. One of the benefits
of the SAEM algorithm is the low-level dependence on the initialization θ0, due to the stochastic
approximation of the SA-step.
In Gaussian graphical models, we cannot generate directly a realization from the conditional dis-
tribution of (ΣG ,G) given Y and θ̂k−1. For such cases, Kuhn and Lavielle (2004) suggest to
replace the simulation step by a MCMC scheme which consists of generatingM realizations from
an ergodic Markov chain with stationary distribution ΣG ,G|Y, θ̂k−1 and use the last simulation
in the SAEM algorithm. Kuhn and Lavielle (2004) prove the convergence of the estimates se-
quence provided by this SAEM-MCMC algorithm towards a maximum of the function f(Y|θ)
under general conditions for the exponential family.

2.2 The SAEM-MCMC algorithm on Gaussian graphical models

In this section, we detail the application of the SAEM-MCMC algorithm to the Gaussian graphical
model introduced in Section 1.2. More precisely, we give the expression of the complete log-
likelihood and of the minimal sufficient statistics. Lavielle and Lebarbier (2001) applied the same
methodology on a change-point problem.
The complete log-likelihood f(Y,G,ΣG |θ) can be decomposed into three terms:

log f(Y,G,ΣG |θ) = log f(Y|G,ΣG)

+ log π(ΣG |G, τ) + log π(G|r) . (12)

On the right-hand side of equation (12), the first quantity is independent of θ thus, it will not take
part in its estimation. Using the fact that we only consider decomposable graphs and the definition
of the Hyper Inverse Wishart distribution, the second term of the right-hand side of Equation (12)
can be developed :
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log π(ΣG |G, τ) =
∑
C∈C

|C|(|C|+ δ − 1)

2
log(τ)

− log Γ|C|

(
|C|+ δ − 1

2

)
− δ + 2|C|

2
log det(ΣG)C

−
∑
S∈S

[
|S|(|S|+ δ − 1)

2
log(τ)− log Γ|S|

(
|S|+ δ − 1

2

)
−δ + 2|S|

2
log det(ΣG)S

]
− τ

2
tr(Σ−1G ) .

Furthermore,

log π(G|r) = kG log

(
r

1− r

)
+m log(1− r) .

As a consequence, there exists Ψ a function of (Y,ΣG ,G, δ) independent of θ = (τ, r) such that

log f(Y,G,ΣG |τ) = Ψ (Y,ΣG ,G, δ)

+
δ − 1

2
p log(τ) +m log(1− r) +

1

2
×〈 ∑

C∈C |C|2 −
∑

S∈S |S|2
tr(Σ−1G )
kG

 ,

 log(τ)
−τ

log
(

r
1−r

)
〉 , (13)

where 〈·, ·〉 is the scalar product of R3. Finally, following (13), the complete likelihood function
belongs to the exponential family and the minimal sufficient statistic S = (S1, S2, S3) is such
that:

S1(Y,G,ΣG) =
∑
C∈C
|C|2 −

∑
S∈S
|S|2

S2(Y,G,ΣG) = tr(Σ−1
G )

S3(Y,G,ΣG) = kG .

In an exponential model, the SA-step of the SAEM-MCMC algorithm reduces to the approxima-
tion of the minimal sufficient statistics. Thus, we can now write the three steps of the SAEM-
MCMC algorithm: let (γk)k∈N be a sequence of positive numbers such that

∑
k γk = ∞ and∑

k γ
2
k <∞.
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Algorithm 1 SAEM-MCMC algorithm

(1) Initialize θ̂(0), s(0)
1 , s(0)

2 and s(0)
3 .

(2) At iteration k,

• [S-Step] generate G(k),Σ
(k)
G from M iterations of a MCMC procedure – detailed in Section 3 –

with G,ΣG |Y, θ̂(k−1) as stationnary distribution.
• [SA-Step] update

(
s

(k)
i

)
i=1,2,3

using a stochastic approximation scheme: i = 1, 2, 3

s
(k)
i = s

(k−1)
i + γk

(
Si(Y,G(k),Σ

(k)
G )− s(k−1)

i

)
.

• [M-Step] maximize the joint log-likelihood (13):

τ̂ (k) =
(δ − 1)p+ s

(k)
1

s
(k)
2

r̂(k) =
s

(k)
3

m
.

(3) Set k = k + 1 and return to (2) until convergence.

The convergence of the estimates sequence supplied by this SAEM-MCMC algorithm is ensured
by the results of Kuhn and Lavielle (2004). Indeed, first, the complete likelihood belongs to the
exponential family and the regularity assumptions required by Kuhn and Lavielle (2004) (assump-
tions M1-M5 and SAEM2) are easily verified. Secondly, the convergence requires the ergodicity
of the Markov Chain generated at S-step towards the stationary distribution that is the distribution
of G,ΣG |Y, θ̂(k−1). Finally, the properties of (γk)k∈N allow to apply the results of Kuhn and
Lavielle (2004) and we conclude that the estimates sequence (θ̂(k))k∈N converges almost surely
towards a (local) maximum of the function f(Y|θ).

3 A new Metropolis-Hastings sampler

At each iteration k of the SAEM algorithm, a couple (G,ΣG) has to be generated under the poste-
rior distribution G,ΣG |Y, θ(k−1). As described in Giudici and Green (1999), Brooks et al. (2003)
and Wong et al. (2003), this simulation can be achieved using a variable dimension MCMC scheme
like the reversible jump algorithm. In case of an HIW prior distribution on ΣG , the marginal likeli-
hood is available in closed form (8) and, therefore, there is no need to resort to a variable dimension
MCMC scheme.
At iteration k of the SAEM algorithm, the simulation of (G,ΣG)(k) can be achieved through the
following two steps procedure:
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• [S1-step] G(k) ∼ π(G|Y, θ(k−1))

• [S2-step] Σ
(k)
G ∼ π(ΣG |G(k),Y, θ(k−1))

According to (7), the second step [S2-step] of this procedure resolves into the simulation of HIW
distributions the principle of which is detailed in Carvalho et al. (2007).
For the first step [S1-step], we have to resort to an MCMC algorithm but not of variable dimension
since the chain is generated in the decomposable graphs space with p vertices.
To sample for the posterior in the space of graphs, Armstrong et al. (2009) use the fact that the
marginal likelihood is available in closed form and introduce a Metropolis-Hastings (MH) algo-
rithm. At iteration t, their add and delete MH proposal consists of picking uniformly at random
an edge such that the current graph with or without this edge stays decomposable; and deducing
the proposed graph by deleting the generated edge to the current graph if it contains this edge or
adding the generated edge otherwise.
Let G be the current graph, G−G the set of decomposable graphs derived from G by removing an
edge and G+

G the set of decomposable graphs derived from G by adding an edge. For pedagogical
reasons, we present here an add and delete MH sampler slightly different from the one of Arm-
strong et al. (2009). In our proposal, we first decide at random if we try to delete or to add an edge.
The two schemes has exactly the same properties. Our add and delete algorithm is initialized on
G(0) and the following procedure is repeated until the convergence is reached.

Algorithm 2 Add and Delete MH proposal

At iteration t,

(a) Choose at random (with probability 1/2) to delete or add an edge to G(t−1).

(a.1) If delete an edge, enumerate G−G(t−1) and generate Gp according to the uniform distribution
on G−G(t−1) .

(a.2) If add an edge, enumerate G+
G(t−1) and generate Gp according to the uniform distribution on

G+
G(t−1) .

(b) Calculate the MH acceptance probability
ρ(G(t−1),Gp) such that π(G|Y, θ) is the invariant distribution of the Markov chain.

(c) With probability ρ(G(t−1),Gp), accept Gp and set G(t) = Gp, otherwise reject Gp and set
G(t) = G(t−1).

12



The acceptance probability ρ(G(t−1),Gp) is equal to α(G(t−1),Gp) ∧ 1 where

α(G(t−1),Gp) =
π(Gp|Y, δ, r,Φ)

π(G(t−1)|Y, δ, r,Φ)

q(G(t−1)|Gp)
q(Gp|G(t−1))

with

q(G(t−1)|Gp)
q(Gp|G(t−1))

=


|G+

G(t−1)
|

|G−Gp |
if add

|G−
G(t−1)

|

|G+
Gp |

if delete

Note that because in general |G+
G(t−1) | 6= |G−Gp |, the proposal distribution is not symmetric. The

ratio π(Gp|Y,δ,r,Φ)

π(G(t−1)|Y,δ,r,Φ)
is evaluated with formula (10).

The enumerations of G−G(t−1) and G+
G(t−1) are not obvious and can be time-consuming. To tackle

this point, we apply the results of Giudici and Green (1999) characterizing the set of moves (add
and delete) which preserve the decomposability of the graph. These criteria lead to a fast enumer-
ation.
Armstrong et al. (2009) prove that this scheme2 is more efficient than the variable dimension
sampler of Brooks et al. (2003), which is itself an improvement of the reversible jump algorithm
proposed by Giudici and Green (1999). Their proposal is clearly irreducible and, therefore, the
theoretical convergence of the produced Markov
Chain towards the stationary distribution
π(G|Y, τ) is ensured, following standard results on MH schemes.

However, in practice, the space of decomposable graphs is so large that the chain may take quite
some time to reach the invariant distribution. To improve this point, we introduce a data-driven
MH kernel which uses the informations contained in the inverse of the empirical covariance ma-
trix. To justify this choice, recall that,because of the Gaussian graphical model properties, if the
inverse empirical covariance between vertices i and j is near zero, we can presume that there is
no edge between vertices i and j. Then, during the MH iterations, if the current graph contains an
edge between vertices i and j, it is legitimate to propose removing this edge. The same type of
reasoning can be done if the absolute value of the inverse empirical covariance between vertices
k and l is large. Indeed, in that case, and if during the MH iterations the current graph does not
contain an edge between vertices k and l, it is legitimated to propose to add this edge. With this
proposal, once the random choice to add or delete an edge has been done, the proposed graph is
not chosen uniformly within the class of decomposable graphs but according to the values of the
inverse empirical covariances.

2In Armstrong et al. (2009), the step on the space of graphs represents a Gibbs step of an hybrid sampler (as already
explained, they consider a hierarchical model where that the hyper-parameter τ is a random variable).
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Let K denote the inverse empirical covariance matrix: K = (SY/n)−1. G(t−1) \ (i, j) (respec-
tively G(t−1)∪(i, j)) denotes the graph G(t−1) where the edge (i, j) has been removed (respectively
added).
The Data Driven kernel is the following one :

Algorithm 3 Data Driven MH proposal

At iteration t,

(a) Choose at random to delete or add an edge to G(t−1).

(a.1) If delete an edge, enumerate G−G(t−1) and generate Gp according to the distribution such that

P
[
Gp = G(t−1) \ (i, j)|G(t−1)

]
∝ 1

|Ki,j |
.

(a.2) If add an edge, enumerate G+
G(t−1) and generate Gp according to the distribution such that

P
[
Gp = G(t−1) ∪ (i, j)|G(t−1)

]
∝ |Ki,j | .

(b) Calculate the MH acceptance probability
ρ(G(t−1),Gp) such that π(G|Y, τ) is the invariant distribution of the Markov chain.

(c) With probability ρ(G(t−1),Gp), accept Gp and set G(t) = Gp, otherwise reject Gp and set
G(t) = G(t−1).

The algorithm is initialized on G(0) and the procedure is repeated until the convergence is reached.
Finally, in view of some numerical experiments and in order to keep the good properties in terms
of exploration of the standard MH kernel, we propose to use in practice a combination of the
standard add and delete MH kernel and the previously presented data-driven kernel. This point is
detailed in the next section.

4 Numerical experiments

In this part, we illustrate the statistical performances of our methodology on three different data
sets. The second one is a simulated example which highlights the convergence properties of the
SAEM-MCMC algorithm. The first and third examples appeared in Whittaker (1990) and have
been widely used to evaluate the statistical performance of graphical models methodology, one can
see for instance Giudici and Green (1999); Armstrong et al. (2009). Through these two examples,
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the importance of the choice of the hyper-parameters and the efficiency of the new MCMC sampler
are underlined.

4.1 The Fret’s heads dataset Whittaker (1990)

Fret’s heads dataset contains head measurements on the first and the second adult son in a sample
of n = 25 families. The p = 4 variables are the head length of the first son, the head breadth of
the first son, the head length of the second son and the head breadth of the second son. 61 graphs
are decomposable among the 64 possibles graphs.
We compare three different prior distributions on (ΣG ,G).

1. We first consider the prior distribution suggested by Jones et al. (2005) e.g.

δ = 3 and r = 1/(p− 1)
Φ = τIp with τ = δ + 2 .

2. In a second experiment, we use the prior distribution proposed in Carvalho and Scott (2009)
i.e

δ = 1 Φ =
Sy
n
.

Furthermore, r ∼ β(1, 1) resulting into

π(G) ∝
(
m
kG

)−1

.

3. Finally, we use our prior distribution e.g,

δ = 1 , Φ = τIp .

and a Bernouilli prior of parameter r on the edges of G.
Using the SAEM algorithm described previously, we estimate τ and r to

τ̂ = 0.3925 , r̂ = 0.6052 .

On this example, there are only 61 decomposable graphs and so we are able to compute exactly
the posterior probabilities {π(G|y),Gdecomposable} for every prior distribution. At that point,
we are interested in comparing the posterior probabilities of the five most probable decomposable
graphs for the three previously prior distribution. The results are resumed in Table ??.
The empirical Bayes estimation of τ is quite smaller than the value provided by the heuristic of
Jones et al. (2005). As a consequence, the posterior probabilities of graphs are really different.
Moreover, the approach of Carvalho and Scott (2009) gives results not in agreement with one of
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Prior Most probable posterior graphs and posterior probability p(G|y)

Jones et al. (2005)

1

23

4 1

23

4 1

23

4

0.24076 0.16924 0.11761

Carvalho and Scott
(2009)

1

23

4 1

23

4 1

23

4

0.30512 0.19979 0.10813

SAEM

1

23

4 1

23

4 1

23

4

0.28613 0.18219 0.1264

Table 1: Fret’s heads dataset : the three most probable posterior graphs using various prior on
(ΣG ,G).

the two others method. The way the hyper-parameters τ and r are considered is essential, since
that drastically influences the results.

4.2 Simulated Datasets

We consider 10 artificial datasets where p = 9. These datasets are simulated according to model
(1) with the graph of Figure 1. τ , δ and n are set equal to 0.03, 1 and 100 respectively.
The SAEM-MCMC algorithm has been performed on the 10 datasets in order to estimate the
hyper-parameter τ . The algorithm is arbitrary initialized with τ̂ (0) = 0.001 and r̂(0) = 0.5. Given
τ̂ (0), G is initialized with a standard backward procedure based on the posterior probabilities with
r̂(0).
The step of the stochastic approximation scheme is chosen as recommended by Kuhn and Lavielle
(2005): γk = 1 during the first iterations 1 ≤ k ≤ K1, and γk = (k − K1)−1 during the
subsequent iterations. The initial guess on τ̂ (0) and r̂(0) could be far from a local maximum of
the likelihood function and the first iterations with γk = 1 allow the sequence of estimates to
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converge to a neighborhood of a local maximum. Subsequently, smaller step sizes during K−K1

additional iterations ensure the almost sure convergence of the algorithm to a local maximum
of the likelihood function. We implemented the SAEM-MCMC algorithm with K1 = 100 and
K = 300. At the S-step of the algorithm, the Markov Chain supplied by the MCMC algorithm
is of length M = 500 during the first 5 iterations of the SAEM scheme and M = 10 for the
remaining iterations.
Figure 2 illustrates the convergence of the parameter estimates considering 2 arbitrary chosen data-
sets. The estimated sequences are represented as a function of the iteration number. During the first
iterations of SAEM, the parameter estimates fluctuate, reflecting the Markov Chain construction.
After 100 iterations, the curves smooth but still continue to converge towards a neighborhood of a
local maximum of the likelihood function. Convergence is obtained after 300 iterations.
Considering the 10 datasets, fir the parameter τ the relative bias is negligible and the relative root
mean square error (RMSE) amounts to 32.10%. Note that the same study has been conducted with
a uniform prior on G In that case, the algorithm only involves the parameter τ and the correspond-
ing RMSE is equal to 23.5%.
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Figure 2: Simulated datasets: evolution of the SAEM-MCMC τ̂ (k) estimations (left) and r̂(k)

estimations (right) on 2 datasets.
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4.3 The Fowl bones dataset Whittaker (1990)

This dataset concerns bone measurements which are taken from n = 276 white leghorn fowl. The
6 variables are skull length, skull breadth, humerous (wings), ulna (wings), femur (legs) and tibia
(legs). On such a dataset, the determination of the best decomposable Gaussian graphical model
results in finding the best graph within 18, 154 decomposable graphs (55% of the possible graphs).
Using this example, we aim at illustrating the fact that a careful choice of the transition kernel in
the MCMC algorithm ensures a better exploration of the support of the posterior distribution. To
do this, we compare the performances of the add and delete proposal of Armstrong et al. (2009)
to those given by the data-driven one.
In a first step, we use the SAEM-MCMC algorithm to calibrate the value of τ and r. We obtain
τ∗ = 0.674 and r∗ = 0.69.
In a second step, using this fixed value of τ and r, we generate 2 Markov chains of 110 000
iterations. The first one is simulated using the add and delete kernel. For the second one, we use
exclusively the add and delete kernel during 10000 iterations : this phase of burn-in allows a large
exploration of the decomposable graphs space. During the last 100000 iterations, we alternatively
and systematically use the add and delete and data-driven kernels.
To illustrate the performance of this new kernel, we compute exactly the posterior probabilities
p(G|Y; τ∗, r∗) for each decomposable graph of size p = 6. We concentrate our efforts on the
graphs such that p(G|Y; τ∗, r∗) ≤ 0.001 (resulting into 107 graphs among the 18154 ones) as-
suming the the other ones are of small interest because nearly never reached by the Markov chains.
For each graph of interest Gint, we count the number of times each Markov Chain reached it (after
having removed the burnin period). We finally obtain an estimation of the posterior probability by
each chain:

π̂1(Gint|Y; τ∗, r∗) =
|{t;G(t)

1 = Gint}|
100 000

π̂2(Gint|Y; τ∗, r∗) =
|{t;G(t)

2 = Gint}|
100 000

These values are compared to the theoretical ones p(Gint|Y; τ∗, r∗). In Figure 3, we plot the
estimated densities of the quantities relative errors

π̂1(Gint|Y; τ∗, r∗)− p(Gint|Y; τ∗, r∗)

p(Gint|Y; τ∗, r∗)
× 100

in solid line, and
π̂2(Gint|Y; τ∗, r∗)− p(Gint|Y; τ∗, r∗)

p(Gint|Y; τ∗, r∗)
× 100

in dashed line.
We note that the density corresponding to the errors involved by the data-driven kernel is more
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Figure 3: Fowl bones data set: densities of the relative errors on the posterior probabilities for the
107 most probable graphs. add and delete kernel in solid line and data-driven kernel in dashed
line.

concentrate around the value 0. The large errors in the add an delete density are due to the graphs
with small probabilities. Thus, the new kernel explores more efficiently the posterior distribution.
The acceptance rate is higher for the data-driven chain (see Figure 4).

5 Conclusion and discussion

An empirical Bayes strategy estimating prior hyper-parameters in a Gaussian graphical model
using a SAEM-MCMC algorithm is introduced.
That proposal does not depend on any calibrating parameters and can be viewed as a default option
for decomposable graphical model determination. Some empirical studies show the relevance of
the proposed approach and the good properties of the introduced algorithms.
However, Scott and Berger (2010) has recently found considerable differences between fully Ba-
yes and empirical Bayes strategies in the context of variable selection. It would be very interesting
to investigate, both from theoretical and practical perspectives, on such a discrepancy in the case
of decomposable graphical model selection.
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Figure 4: Fowl bones data set: evolution of the acceptance ratio for the add and delete Markov
chains (solid line) and the data driven Markov chains (− dashed line).
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