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Abstract

Approximate Bayesian Computational (ABC) methods, or likelihood-free methods, have
appeared in the past fifteen years as useful methods to perform Bayesian analysis when
the likelihood is analytically or computationally intractable. Several ABC methods have
been proposed: MCMC methods have been developed by Marjoram et al. [2003] and by
Bortot et al. [2007] for instance, and sequential methods have been proposed among oth-
ers by Sisson et al. [2007], Beaumont et al. [2009] and Del Moral et al. [2009]. Recently,
sequential ABC methods have appeared as an alternative to ABC-PMC methods [see for in-
stance McKinley et al., 2009, Sisson et al., 2007]. In this paper a new algorithm combining
population-based MCMC methods with ABC requirements is proposed, using an analogy
with the parallel tempering algorithm [Geyer, 1991]. Performance is compared with existing
ABC algorithms on simulations and on a real example.

Keywords: Approximated Bayesian Computational, likelihood-free, intractable likelihood, paral-
lel tempering, population-based, Monte Carlo Markov chain.
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1 Introduction

The principle of Approximate Bayesian Computation (ABC) algorithms is to evaluate the pos-
terior density when the likelihood function is intractable. More precisely, let x ∈ D ⊆ R

n be an
observed vector, θ ∈ R

d a parameter of interest, and π(.) the prior distribution of θ. The aim of
an ABC algorithm is to evaluate the following posterior density:

π(θ | x) ∝ f(x | θ)π(θ).

The likelihood f(x | θ) is supposed to be analytically or computationally intractable. Hence
the first requirement is that its calculation is not necessary. The second requirement is the rel-
ative ease of simulation from the model, given a parameter θ. These requirements are fulfilled
in several areas in which ABC methods have been used, including genetics [Pritchard et al.,
1999, Leuenberger et al., 2010], extreme values theory [Bortot et al., 2007], Gibbs random fields
[Grelaud et al., 2009] or epidemiology [Tanaka et al., 2006, Sisson et al., 2007].

The first ABC algorithm has been proposed by Tavaré et al. [1997], and is simply a rejection
algorithm. It consists in generating jointly θ′ ∼ π and z′ ∼ f(.|θ′). The generated θ′ is accepted if
the equality z′ = x holds, and is then denoted by θ1. This process is repeated until n generated θ′

have been accepted. The accepted {θ1, θ2, . . . , θn} form an i.i.d. sample from the target posterior
π(. | x), that is why this algorithm is often called the exact ABC algorithm. It has been extended
by Pritchard et al. [1999] in order to be applied in continuous state spaces. The idea is to accept
a simulated z′ if it is sufficiently close to the observed x. The condition z′ = x is replaced by
a distance ρ(z′, x) < ε, where ρ(., .) is a one dimensional function and ε is a tolerance level. In
case of large datasets z′ and x, it can be computationally demanding to calculate ρ(z′, x). Hence
a second refinement is to compare summary statistics instead of the complete datasets, and the
condition becomes ρ(S(z′), S(x)) < ε, with S a statistic which can be multi-dimensional. The
algorithm proposed by Pritchard et al. [1999] includes these two refinements and is considered
as the standard of the ABC algorithms. This algorithm gives an i.i.d. sample from the following
joint posterior distribution:

πε(z, θ | x) ∝ π(θ)f(z | θ)1{ρ(S(z),S(x))<ε}(z). (1)

It is usually the marginal in θ which is of interest; that is πε(θ | x) ∝
∫
πε(z, θ | x)dz. If S provides

a good summary of the data and if ε is sufficiently small, then πε(θ | x) can be considered as a
reasonable approximation of the target posterior π(θ | x). Of course, the quality of the obtained
approximation depends on the calibration of the algorithm by choosing ε, ρ(., .) and S.

The acceptance rates of the standard ABC algorithm can be very low, hence several improve-
ments have been proposed, using MCMC or sequential schemes.

1.1 ABC-MCMC schemes

Algorithms have been proposed by Marjoram et al. [2003], Bortot et al. [2007] and Ratmann et al.
[2007], the reference method being the one of Marjoram et al. [2003] who suggested the use of
a Markov kernel q(.|.) to propose a new parameter from a previous accepted one. The validity
of this algorithm called ABC-MCMC is ensured, as the generated Markov chain (θ(t), z(t)) is er-
godic, and its invariant density is the target πε(z, θ | x). The acceptance rates of this algorithm
are higher than those obtained with a standard ABC algorithm, but two drawbacks are observed:
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• In case of small ε the sampler can encounter difficulties to move in the parameter space.
Indeed, the acceptance rate is proportional to the probability of simulating a z′ such that
ρ(S(z′), S(x)) < ε, which is itself proportional to the likelihood [see Sisson et al., 2007].
This probability is relatively low if ε is small, and in practice when the ABC-MCMC
enters an area of relatively low probability, the acceptance probabilities to move elsewhere
are quite small and the sampler encounters difficulties to move from this part of the space.
As a consequence, not only the sampler sticks in the distribution tails, but also these tails
are not well visited.

• The samples obtained are dependent, and often highly correlated. This is inherent in many
methods based on MCMC, and not necessarily a problem, but if one needs non-correlated
particles, sometimes thinning of the chain should be done.

Modified toy example and ABC-MCMC
To illustrate the behavior of the ABC-MCMC in distribution tails, we use a modified toy ex-
ample inspired from the example studied in Sisson et al. [2007], Beaumont et al. [2009] and
Del Moral et al. [2009]. The prior for θ is uniform U(−10, 10), the model is a mixture of Gaus-
sian distributions given by x | θ ∼ 0.45N (θ, 1) + 0.45N (θ, 1/100) + 0.1N (θ − 5, 1) (1 and 1/100
denoting the variances), and the posterior distribution associated with an observation x = 0 is
the mixture:

θ | x = 0 ∼
(

0.45N (0, 1) + 0.45N (0,
1

100
) + 0.1N (5, 1)

)

1[−10,10](θ).

Using S(x) = x and ρ(x, z) = |z − x|, the approximation of this posterior π(θ | x = 0) can be
written as:

πε(θ | x = 0) ∝

0.45
[

Φ(ε− θ) + Φ(10(ε− θ))− Φ(−ε− θ)− Φ(10(−ε− θ))
]

+0.1
[

Φ(ε− θ + 5)− Φ(−ε− θ + 5)
]

,

where Φ denotes the distribution function of a N (0, 1). Using a tolerance level ε = 0.025, the
approximated posterior is indistinguishable from the exact posterior density. As in Sisson et al.
[2007] and Beaumont et al. [2009], we used a N (θ(t−1), 0.152) as the proposal q(. | θ(t−1)). The
algorithm was run on 20.106 iterations with a burn-in of 5.106, and it appears that for some runs
the chain did not succeed to visit the small mode around 5, while for others it stayed stuck in
this local mode and does not visit well the global mode around 0. Figure 1 shows the results
of two runs. It is clear that these results are not satisfactory. As a comparison, the population
obtained by a standard ABC is given in Figure 2. It is quite good, hence the issue observed in the
distribution tail is specific to MCMC, it is not due to the ABC approximation of the likelihood.

1.2 Contribution of the paper

Until now ABC methods using MCMC schemes were not completely satisfactory. Hence sequen-
tial algorithms have been proposed by different authors: Sisson et al. [2007], Beaumont et al.
[2009] (similar algorithms have been proposed by Sisson et al. [2009] and Toni et al. [2009]), and
more recently Del Moral et al. [2009] (a similar algorithm has been proposed by Drovandi and Pettitt
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Figure 1: ABC-MCMC for the modified toy example: samples obtained by two runs (20.106

iterations with 5.106 iterations of burn-in) for tolerance levels of 0.025. The orange dotted curves
stand for the exact posterior distribution, the green dotted curves for the target approximation,
and densities of obtained samples are represented in gray.

Figure 2: Modified Toy Example: population associated with a tolerance level of 0.025 (5000
samples) obtained with a standard ABC. The orange dotted curve stands for the exact posterior
distributions, the green dotted curve for the target approximation, and the weighted population
are represented in gray. In this example the acceptance rate is of 3%.
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[2011]). The ABC-PMC of Beaumont et al. [2009] is simple to use and to implement, and it
gives non-biased results from the approximate posterior πε(θ | x). A more recent algorithm is
the ABC-SMC of Del Moral et al. [2009]: both tolerance levels and transition kernels are au-
tomatically calibrated at each iteration, and several datasets are generated given a proposed
parameter. These sequential ABC schemes are now very popular. They compare favorably to
MCMC schemes, but they have not been compared to MCMC schemes using a population of
chains.
In this paper we are interested in developing such a method, by doing an analogy with the Paral-
lel Tempering algorithm used in classical MCMC methods [Geyer, 1991, Geyer and Thompson,
1995]. In particular, we want to know if using a population-based approach the drawback of
ABC-MCMC schemes concerning distribution tails can be avoided. Moreover, we would like to
compare the behavior of this approach with ABC-PMC and ABC-SMC algorithms, especially in
distribution tails.

The paper is organized as follows. In Section 2 we introduce the new population-based ABC-
MCMC scheme, that we call ABC-PT algorithm. In Section 3 this algorithm is illustrated on the
modified toy example and on real data, and comparisons with the ABC-MCMC, ABC-PMC and
ABC-SMC algorithms are done. Finally, the method and the results are discussed in Section 4.

2 The ABC-PT algorithm

2.1 Standard Parallel Tempering (PT)

When the goal is to sample from a multi-modal target density π, classical MCMC methods
like Metropolis-Hastings algorithm [Metropolis et al., 1953, Hastings, 1970] or Gibbs sampler
[Gelfand and Smith, 1990] for instance, are often trapped into local modes from where they
cannot escape in reasonable time. To avoid this problem, the principle of PT is to introduce
N temperatures and to run in parallel N associated MCMC chains with target distributions
being tempered distributions of the target π. The first chain targets π, and since the tempered
distributions become flatter as the temperature increases, the chains at high temperatures can
move easily between modes and explore the whole parameter space. Each iteration of the PT
algorithm is decomposed into two types of moves: local moves via classical MCMC algorithms
to update the different chains, and global moves allowing swaps between two chains. The use of
these swaps enables new modes to be propagated through the different chains, thereby improving
mixing. The first chain associated with the target distribution will then be able to escape from
local modes.

2.2 Analogy with the PT in an ABC framework

The analogy with the PT is the following: a population of N chains is used, chains of higher
orders should be able to move easily in the parameter space, and chains of lower orders should
give precise approximations of the target posterior. These last chains can have some difficulties
to exit local modes, so exchange moves between chains should be defined so that the chains of
lower orders can visit all the parameter space, and hence can exit low probability areas.
To achieve this in an ABC framework, chains of higher orders are associated with high tolerance
levels, while chains of lower orders are associated with low tolerance levels. A sequence of
tolerance levels is then defined as ε = (ε1, ε2, . . . , εN ), with ε1 < ε2 < . . . < εN . The ith
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chain is associated with εi. In particular the first chain is associated with ε1 the tolerance level
required for the approximation of the posterior of interest, and the chain associated with the
higher tolerance level ǫN should be able to exit areas of low posterior probabilities.

The set of parameters associated to the N chains is written θ = (θ1, θ2, . . . , θN ) with θi ∈
Θ ⊆ R

d, and z = (z1, z2, . . . , zN ) denotes the associated simulated datasets. The state associated
to the ith chain is (zi, θi), for i ∈ {1, . . . , N}.

2.2.1 Local moves

Each chain is locally updated using an iteration of an ABC-MCMC algorithm, with associated
tolerance level and transition kernel. In order to improve the exploration of the parameter space
by higher order chains, the transition kernels associated with these chains should enable large
moves. As the tolerance levels associated with these chains are high, the probabilities to accept
the proposed moves can remain reasonably high. On the opposite, transition kernels associated
with lower order chains should propose smaller moves, to have more chance to accept the proposed
moves. We then propose to use tempered transition kernels, using a sequence of temperatures
T1 = 1 < T2 < . . . < TN (such tempered transitions kernels have been used by Ratmann et al.
[2007]). In particular the ith chain is associated with εi, Ti and a symmetric transition kernel
qi(. | .). For instance qi(. | .) can be a Gaussian transition kernel tempered by Ti. This ith chain
is associated with the following joint distribution:

πεi(zi, θi | x) ∝ π(θi)f(zi | θi)1{ρ(S(zi),S(x))<εi}(zi).

We also introduce:

π∗
ε(z,θ | x) =

N∏

i=1

πεi(zi, θi | x).

2.2.2 Exchange moves

To perform an exchange move between two chains, a pair of chains is chosen uniformly. The
orders of these chains are denoted by i and j (i < j), and the states proposed by the exchange
move are written θ

′ and z
′. We denote by q(z′,θ′ | z,θ) the probability of proposing (z′,θ′)

from (z,θ). We propose to exchange the state (zi, θi) of chain i with the state (zj , θj) of chain
j. We then have:

θ
′ = (θ1, . . . , θj, . . . , θi, . . . , θN ),

z
′ = (z1, . . . , zj , . . . , zi, . . . , zN ).

The acceptance probability to ensure reversibility of the move will be the following (using the
classical detailed balance condition):

α = 1 ∧
π∗
ε
(z′,θ′ | x)q(z,θ | z′,θ′)

π∗
ε
(z,θ | x)q(z′,θ′ | z,θ)

,

= 1 ∧
π∗
ε
(z′,θ′ | x)

π∗
ε
(z,θ | x)

. (2)
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Indeed, as the pair of chains is chosen uniformly among all the possible pairs, it is clear that
q(z,θ | z′,θ′) = q(z′,θ′ | z,θ). In addition we have:

π∗
ε
(z′,θ′ | x)

π∗
ε
(z,θ | x)

=
πεi(z

′
i, θ

′
i | x)πεj (z

′
j , θ

′
j | x)

πεi(zi, θi | x)πεj (zj , θj | x)
,

=
f(z′i | θ

′
i)1{ρ(S(z′

i
),S(x))<εi}(z

′
i)

f(zi | θi)1{ρ(S(zi),S(x))<εi}(zi)

×
f(z′j | θ

′
j)1{ρ(S(z′

j
),S(x))<εj}(z

′
j)

f(zj | θj)1{ρ(S(zj),S(x))<εj}(zj)
,

=
1{ρ(S(zj),S(x))<εi}(zj)1{ρ(S(zi),S(x))<εj}(zi)

1{ρ(S(zi),S(x))<εi}(zi)1{ρ(S(zj),S(x))<εj}(zj)
. (3)

By construction ǫi < ǫj, and
1{ρ(S(zi),S(x))<εi}(zi)1{ρ(S(zj),S(x))<εj}(zj) = 1.
Therefore (3) simply reduces to 1{ρ(S(zj),S(x))<εi}(zj), and the exchange moves is accepted if
{ρ(S(zj), S(x)) < εi}. This exchange move satisfies ABC requirements as there is no need to
compute any likelihood. We can note that this acceptance rate depends only on the tolerance
level εi.

2.3 ABC-PT algorithm

Define a sequence of tolerance levels ε1 < ε2 < . . . < εN , and a sequence of temperatures
T1 = 1 < T2 < . . . < TN .

ABC-PT

To obtain a Markov chain of length n:

1. t = 1. Use the standard ABC algorithm to obtain N realizations:

For i in {1, . . . , N},

generate (θ
(0)
i , z

(0)
i ) from πεi(z, θ | x).

Set θ
(0) = (θ

(0)
1 , θ

(0)
2 , . . . , θ

(0)
N ) and z

(0) = (z
(0)
1 , z

(0)
2 , . . . , z

(0)
N ).

2. For t in {2, . . . , n}:

(a) LOCAL MOVES ABC-MCMC: For i in {1, . . . , N}:

i. Generate θ′i from qi(. | θ
(t−1)
i ) depending on Ti.

ii. Generate z′i given θ′i, from f(. | θ′i).

Set (θ
(t)
i , z

(t)
i ) = (θ′i, z

′
i) with probability

α = min

{

1,
π(θ′i)qi

(

θ
(t−1)
i | θ′i

)

π(θ
(t−1)
i )qi

(

θ′i | θ
(t−1)
i

)

}

1{ρ(S(z′
i
),S(x))<εi}(z

′
i).
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Else set (θ
(t)
i , z

(t)
i ) = (θ

(t−1)
i , z

(t−1)
i ).

(b) EXCHANGE MOVES:

N exchange moves are proposed:

N pairs of chains are chosen uniformly in all possible pairs with replacement.

For each of them: Denote by i and j (i < j) the orders of a chosen pair

of chains.

Exchange (zi, θi) with (zj , θj)
if ρ(S(zj), S(x)) < εi.

At each iteration N exchange moves are proposed. Indeed, it appears from our experience
that only one proposition is not sufficient to enable a good mixing of the first chain of interest.
Moreover increasing the number of exchange moves improves the mixing with the first chain of
interest and allows to obtain less correlated samples.

2.4 Improving acceptance rates in ABC-PT

In order to increase the acceptance rate of the exchange moves in the ABC-PT algorithm, we
consider a K-partition of the tolerance levels space, for a fixed integer K. In this way we obtain
K disjoint subsets E1, · · · , EK , that we shall call rings. A chain of order i is associated to a
ring Ej if ρ(S(zi), S(x)) ∈ Ej. In the exchange move part of the ABC-PT algorithm, two chains
are then chosen such that they are associated to the same ring. Thus, the second part of the
algorithm is modified as follows:

(b) EXCHANGE MOVES WITH RINGS:

N exchange moves are proposed:

For each exchange move a ring with at least two associated chains is chosen randomly

and two associated chains are chosen uniformly in this ring.

For each of them: Denote by i and j (i < j) the orders of a chosen pair of chains.

Exchange (zi, θi) with (zj , θj) if ρ(S(zj), S(x)) < εi.

In practice, taking into account these rings, if an exchange between two selected chains i
and j is proposed, then the acceptance probability 1{ρ(S(zj),S(x))<εi}(zj) is generally greater than
in the case where the two chains are chosen uniformly (without rings). Note that this idea of
partitioning can be related to the construction of rings of energy of the states space proposed in
Kou et al. [2006].

3 Illustrations on modified toy example

3.1 ABC-PT

We use the modified toy example presented in the Introduction to study the behavior of the ABC-
PT algorithm, especially in distribution tails and in local posterior modes. We take N = 15
chains, and imitating the ABC-MCMC algorithm, the tempered transition kernels used are

qi(.|θ
(t−1)
i ) ∼ N (θ

(t−1)
i , 0.152Ti), i = 1, . . . , N . Concerning the sequence of temperatures, we

choose T1 = 1 and TN = 4. The other temperatures can be chosen by evenly spacing them

8



Figure 3: ABC-PT for the modified toy example: approximations obtained
by each of the N chains, the associated sequence of tolerance levels is ε =
(2, 1.4625, 1.0694, 0.7820, 0.5719, 0.4182, 0.3058, 0.2236, 0.1635, 0.1196, 0.0874, 0.0639, 0.0468, 0.0342, 0.025),
for 600 000 iterations with a burn-in of 150 000. The orange dotted curves stand for the exact
posterior distribution, the green dotted curves for the target approximation, and densities of
obtained samples are represented in gray.

ǫ 2 0.78 0.31 0.12 0.047 0.025

Local acceptance rates 65.8% 45.6% 26.0% 12.5% 5.4% 3.0%
Accepted exchange moves 106 711 171 678 191 311 187 557 156 676 107 330

Table 1: Modified toy example: acceptance rates for local moves and number of accepted ex-
change moves, for chains 15, 12, 9, 6, 3 and 1 of the ABC-PT.

on a logarithmic scale, by evenly spacing their inverses, or by evenly spacing their inverses
geometrically [see for instance Kou et al., 2006, Nagata and Watanabe, 2008, Neal, 1996]. In
this example we decide to space them on a logarithmic scale. Concerning the tolerance levels,
once ε1 and εN are chosen, it gives satisfactory results to choose the others by using a sequence of
proportionality constants [approach similar to the one of Beaumont et al., 2009] or by regularly
spacing them on a logarithmic scale (which is a special case of a sequence of proportionality
constants). In this example they are chosen evenly spaced on a logarithmic scale between ε1 =
0.025 and εN = 2. We checked that the highest order chain associated with TN = 4 and εN = 2
easily explores the parameter space. The algorithm is run for 600 000 iterations with a burn-in
period of 150 000 iterations.

Figures 3 and 4 show the obtained approximations πǫi(.|x) for the N chains in parallel. They
are satisfactory, the two modes being well visited. Table 1 presents the acceptance rates and
the numbers of accepted exchange moves for six of the 15 chains: on average, 2.05 moves are
accepted per iteration (out of 15).
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Figure 4: ABC-PT for the modified toy example: approximations obtained by the chain asso-
ciated with tolerance level of 0.025 (600 000 iterations with a burn-in of 150 000). The orange
dotted curves stand for the exact posterior distribution, the green dotted curves for the target
approximation, and densities of obtained samples are represented in gray.

Compared with the approximations obtained with the ABC-MCMC algorithm, the results
obtained with ABC-PT are greatly improved in terms of exploration of the parameter space.
Indeed, the first chain of interest succeeds to visit the small mode around 5, and it is not trapped
in this local mode. Moreover, the results of different runs appeared very similar indicating that
the results of ABC-PT are reproducible. Table 2 shows that there is also an improvement in
terms of autocorrelations. In Figure 5 the traces of the two algorithms are given, and it is
observed that the mixing of the chain is improved by ABC-PT compared to ABC-MCMC.

thinning Nb of samples Order 1 Order 10 Order 20
none 15.106 1 1 1

ABC-MCMC 100 15.104 0.999 0.994 0.990
1000 15.103 0.994 0.968 0.951
none 45.104 0.842 0.367 0.284

ABC-PT (chain 1) 10 45.103 0.361 0.198 0.142
50 9.103 0.215 0.093 0.082

Table 2: Modified toy example: autocorrelations of order 1, 10 and 20 of the chain obtained by
ABC-MCMC, and of the first chain obtained by ABC-PT (with or without thinning the chains).
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Figure 5: Modified toy example: On the left the trace of a chain obtained by ABC-MCMC
(example corresponding to the right part of Figure 1), on the right the trace of a first chain
obtained by ABC-PT.

3.2 Comparison with ABC-PMC

The ABC-PMC of Beaumont et al. [2009] is run on the modified toy example. The decreasing se-
quence of tolerance levels used is the same than in Beaumont et al. [2009], that is (2, 1.5, 1, 0.5, 0.1, 0.025).
Six weighted populations of size 5000 are generated, and represented in Figure 6. The results
are much better than those obtained by the ABC-MCMC. In particular, the sampler is not stuck
in distribution tails. However it seems that as the tolerance level decreases, the tails are under-
covered and in particular the small mode around 5, see the left of Figure 7. That is also observed
for the standard toy example (without the small mode around 5), see the right of Figure 7.

Remark 3.1 The ABC-PMC algorithm has been run with the same sequence of tolerance levels
than those used for the ABC-PT: 15 populations were generated, hence it took more time than a
run in which only a sequence of six tolerance levels is used. It appeared that the 15th weighted
population associated with ε1 = 0.025 did not cover better the local mode around 5. Moreover
the diversity of this population was decreased, as its Effective Sample Size was of 3858.295,
compared to 4164.55 for the 6th population when six populations were generated. Note that like
the ABC-PT, the results of the ABC-PMC were reproducible.

3.3 Comparison with ABC-SMC

We also compare the results of the ABC-PT with those obtained with the ABC-SMC [Del Moral et al.,
2009]. We take ǫ = 0.025 and α = 0.95. To run ABC-SMC and ABC-PMC with similar CPU
times, we first take M = 1 and 15 000 particles, see the left of Figure 8. The Effective Sample
Size is of 11242. We also run the ABC-SMC for M = 10 and 20 000 particles, see the right
of 8. The Effective Sample Size is of 14666.98. Generally, it appears that the results of the
ABC-SMC are reproducible and similar to those obtained by the ABC-PT. However, we can
note two differences: using the ABC-SMC the global mode around 0 is slightly under-covered,
and the ABC-SMC has the advantage to give non-correlated samples.
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Figure 6: ABC-PMC for the modified toy example: the six populations are associated with
tolerance levels of 2, 1.5, 1, 0.5, 0.1 and 0.025 (5000 samples). The orange dotted curves stand
for the exact posterior distribution, the green dotted curves for the target approximation, and
the weighted populations are represented in gray.

Figure 7: ABC-PMC zoom: populations associated with a tolerance level of 0.025 (5000 samples),
for the modified toy example on the left, and for the standard toy example on the right. The
orange dotted curves stand for the exact posterior distributions, the green dotted curves for the
target approximation, and the weighted populations are represented in gray.
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Figure 8: ABC-SMC for the modified toy example, for a tolerance level of 0.025: on the left the
results for M = 1 and 15 000 particles, on the right the results for M = 10 and 20 000 particles.
The orange dotted curves stand for the exact posterior distribution, the green dotted curves for
the target approximation, and densities of obtained samples are represented in gray.

Remark 3.2 In an ABC framework, all sequential methods require simulating a number of
pseudo-observations proportional to the number of particles. But their computational costs dif-
fer concerning the calculation of some importance weights: this cost is quadratic in the number
of particles for the algorithms of Beaumont et al. [2009] (ABC-PMC), Sisson et al. [2007] and
Toni et al. [2009], while it is linear for the adaptive ABC-SMC of Del Moral et al. [2009] [see
also Beskos et al., 2011]. Comparison with the ABC-MCMC or the ABC-PT is not easy. Indeed,
MCMC methods give unweighted correlated samples, hence the use of the effective sample size
is not relevant. To compare the sequential and MCMC approaches, comprehensive convergence
studies of the MCMC methods in an ABC framework should be achieved, taking into account the
number N of chains, the temperature spacings [see Atchadé et al., 2010], as well as the autocor-
relations.

3.4 Comparison with N independent parallel chains

Finally we compare the results of the ABC-PT with those obtained with N independent parallel
chains. The 15 independent chains are locally updated by an ABC-MCMC algorithm during 600
000 iterations with a burn-in period of 150 000 iterations, with ε = 0.025 and N (θ(t−1), 0.152)
as the proposal q(. | θ(t−1)). Figure 9 shows on three runs that the results obtained for the N
independent chains are not reproducible: the run represented on the left enables to detect the
small mode around 5 (which is a little bit over-covered), the run on the middle detect the small
mode which is quite under-covered, while the run on the right did not detect it at all (none of the
15 chains succeeded to visit this mode). The traces of each of the 15 chains are similar to those
of the ABC-MCMC algorithm, see the left of Figure 5. On the opposite, it appears that thanks
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Figure 9: Modified toy example: three runs of 15 independent parallel chains with tolerance
levels of 0.025 (600 000 iterations with a burn-in of 150 000 for each chain, hence we obtain 6
750 000 post-burn-in samples).

thinning Nb of samples Order 1 Order 10 Order 20
none 45.104 0.622 0.264 0.238

ABC-PT (chain 1) 10 45.103 0.268 0.148 0.111
50 9.103 0.193 0.070 0.048

Table 3: Modified toy example: autocorrelations of order 1, 10 and 20 of the first chain obtained
by ABC-PT with 3 rings of tolerance levels (with or without thinning the chains).

to the exchange moves, the ABC-PT always succeeds to visit the small mode, and to escape it.

3.5 ABC-PT using rings

We illustrate the approach with rings on the modified toy example. As previously we use N = 15,
TN = 4, ǫ1 = 0.025 and ǫN = 2. We choose K = 3 rings containing the same number of tolerance
levels. We get E1 = [0, 0.103], E2 =]0.103, 0.495], and E3 =]0.495, 2]. The algorithm is run for
600 000 iterations with a burn-in period of 150 000 iterations. The results are given in Figure 10.
Compared to the ABC-PT without rings, we observe that for an average of about +13% of CPU
times, an increase of about +83% of accepted exchange moves is obtained. All the N(N − 1)/2
exchange rates between chains increase with the use of rings, and especially the rates between
chains with high temperatures. Matrices of accepted exchange rates obtained on two runs of
ABC-PT (with or without rings) are given in Appendix (Tables 7 and 8). An improvement in
terms of autocorrelation is also observed as shown in Table 3.
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Figure 10: Approximations obtained by the first chain after an ABC-PT algorithm with N = 15
chains, with 3 rings of tolerance levels (600 000 iterations with a burn-in of 150 000). The orange
dotted curves stand for the exact posterior distribution, the green dotted curves for the target
approximation, and densities of obtained samples are represented in gray.

4 Illustration on tuberculosis data

We consider the real example of tuberculosis transmission studied by Tanaka et al. [2006], Sisson et al.
[2007] and Blum [2010]. The data come from a study of a tuberculosis epidemic in San Francisco
during 1991 and 1992 [Small et al., 1994]. They consist of DNA fingerprint at the IS6110 marker
for 473 isolates, which are grouped in 326 distinct genotypes represented as follows:

301 231 151 101 81 52 44 313 220 1282,

where nk indicates that k clusters of size n were observed.
A model of disease transmission and marker mutation is defined, which is an extension of a

birth and death process: a birth corresponds to a new infection and a death corresponds to a
host dead or healed. A system of stochastic differential equations is used, and is governed by
three rates: α the birth rate per case per year, δ the death rate per case per year and θ the
mutation rate per case per year (see Appendix B). However interest parameters for biologists are
the transmission rate α − δ, the doubling time log(2)/(α − δ) and the reproductive value α/δ,
results will then be given for these parameters in the following.

The likelihood of this model can not be written explicitly. However it is easy (although long)
to simulate datasets from this model [see Tanaka et al., 2006, for details]. This example is then
particularly suited for the use of ABC methods. We use the same simulation process than in
Tanaka et al. [2006].

To compare simulated and observed data, two summary statistics considered as relevant by
the biologists are used: the number of distinct genotypes in the studied sample g, and the gene
diversity H defined by H = 1 −

∑g
i=1(

ni

n )2, where ni is the size of cluster with genotype i and
n is the size of the sample. The values gobs and Hobs denote the two statistics obtained on the
observed data. A simulated sample of size n associated to g and H is considered close to the
observed data if 1

n |gobs − g|+ |Hobs −H| < ε, where ε is a suitable tolerance level.
Prior distributions for the parameters α and δ are uniforms on the interval [0, 5] with

α > δ. Concerning the mutation rate θ, many studies have been conducted to estimate it
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chain 1 chain 2 chain 3 chain 4 chain 5 chain 6 chain 7

chain 1 3.8 22.6 17.0 13.2 10.7 7.6 5.6
chain 2 . 13.9 76.1 58.8 44.5 34.0 25.2
chain 3 . . 16.2 77.0 58.9 43.9 33.6
chain 4 . . . 17.9 77.3 56.3 45.0
chain 5 . . . . 18.9 74.3 59.9
chain 6 . . . . . 19.9 78.3
chain 7 . . . . . . 20.4

Table 4: ABC-PT for the tuberculosis example: the diagonal gives local acceptance rates, and
outside the diagonal are given the proportions of accepted exchange moves.

[see Tanaka et al., 2006, for references], which enable us to take the following informative prior:
θ ∼ N (0.198, 0.067352) truncated on the left at 0.

Concerning the ABC-PT algorithm, the vector of parameters is denoted by φ = (α, δ, θ),

and φ
(t)
i is the vector of the chain i at time t, for i = 1, ..., N . As in Tanaka et al. [2006], the

transition kernel for the first chain q1(.|φ
(t−1)
1 ) corresponds to a N (φ

(t−1)
1 ,Σ), with:

Σ =





0.52 0.225 0
0.225 0.52 0
0 0 0.0152



 .

For the other chains, qi(. | φ
(t−1)
i ) corresponds to a N (φ

(t−1)
i ,Σi), with Σi = Σ1/Ti . We took

N = 7 chains, associated with temperatures between T1 = 1 and TN = 2 evenly spaced on a
logarithmic scale. We used a Quad-Core Xeon E5320 1.86GHz processor with 8GB of RAM and
we chose a minimum tolerance level of 0.01 to have reasonable acceptance rates for generated
chains [to be compared with the tolerance level of 0.0025 taken by Tanaka et al., 2006]. The
sequence of tolerance levels was evenly spaced on a logarithmic scale as follows: ε1 = 0.01, ε2 =
0.03, · · · , ε7 = 0.1.

Results

The algorithm was run for 20 000 iterations with a burn-in period of 2 000 iterations, it took
about 4.5 days. The first chain was locally updated in 3.8 % of the iterations, and accepted
on average 0.25 exchange move per iteration (5095 total moves). Concerning the set of N = 7
chains, on average 3.07 exchange moves were accepted per iteration (among 7). Table 4 gives
the local acceptance rates for each chain, and proportions of accepted exchange moves for each
pair of chain (among the proposed exchange moves).

Table 5 gives the posterior estimates of the interest parameters, obtained from the first chain.
These estimates are of the same orders than those obtained by Tanaka et al. [2006], Sisson et al.
[2007] and Blum [2010]. The mean transmission rate is around 0.60, describing the rate of increase
of the number of cases in the population. The doubling time gives the same information, as it is
just a transformation of the transmission rate. This parameter is used by biologists, as it can be
easily interpreted (period of time required to double the percentages of cases in the population).
Here it is estimated around 1.35 years. The credibility interval of the reproductive value (number
of new infections generated by one case) is quite large, as we have positive posterior probabilities

16



ABC-PT results Tanaka et al. [2006] results Blum [2010] results

Mean Median 95% CI Mean Median 95% CI Posterior Mode 95% CI

Transmission rate 0.59 0.58 (0.29,0.92) 0.69 0.68 (0.38-1.08) 0.56 (0.16-0.95)
Doubling time 1.35 1.20 (0.76,2.41) 1.08 1.02 (0.64-1.82) 1.16 (0.73-4.35)

Reproductive rate 5.98 2.29 (1.20,17.35) 19.04 3.43 (1.39-79.71) 4.00 (2.24-117.45)
Mutation rate 0.25 0.25 (0.15,0.35)

Table 5: ABC-PT for the tuberculosis example: posterior estimates of the parameters of interest,
on the 18 000 post-burn-in iterations of the first chain: mean, median and 95% credibility interval.

Figure 11: Posterior densities of the transmission rate, the doubling time, and the reproductive
rate, obtained by the algorithms ABC-PT, ABC-MCMC, ABC-MCMC and standard ABC.

for few very small values of δ, corresponding to high values of this rate. The mean is then
unstable. However, most of the posterior values are around the median (see Figure 11), which
should then be preferred compared to the mean.

We then compared the results of the ABC-PT algorithm with those of the standard ABC,
ABC-MCMC and ABC-PMC algorithms. The same minimum tolerance level of 0.01 is used
for all the algorithms. Concerning standard ABC, 1000 samples were generated; concerning
ABC-MCMC 350 000 iterations were performed with a burn-in period of 50 000 iterations;
and concerning ABC-PMC 10 populations of 1000 samples were generated using the following
sequence of tolerance levels [from Sisson et al., 2007]: ε1 = 1, ε10 = 0.01 and εk = 0.5(εk−1 +
ε10), k = 2, . . . , 9. Note that for the ABC-PMC algorithm we used weighted covariance matrices
as suggested in Filippi et al. [2011] to get optimal kernels.

Posterior estimates of parameters obtained by these three algorithms were close to those of
the ABC-PT, see Figure 11.

• Standard ABC algorithm: an average number of 408 data generation steps were needed to
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obtain one sample. This algorithm took approximately 6.5 days.

• ABC-PMC algorithm: 203 data generation steps were necessary on average to obtain one
particle and computing time was about 4.5 days.

• ABC-MCMC algorithm: 9 days were required. The chain was updated in 3.8 % of iter-
ations. The obtained simulations are more correlated than those of the first chain of the
ABC-PT algorithm. See Table 6, which gives for the α parameter the autocorrelations
of the chain obtained by ABC-MCMC, and of the first chain obtained by ABC-PT, with
or without thinning. Similar results were obtained for the parameters δ et θ. Hence an
improvement of the ABC-PT over the ABC-MCMC in terms of autocorrelations was ob-
served. If one is interested in having samples not too correlated, it appears from Table 6
that in order to have autocorrelations decreasing rapidly and non significant from the fifth
order, every 500th sample must be kept for the ABC-MCMC algorithm, and every 15th
sample must be kept for ABC-PT. As a consequence, 583 (350 000/600) and 117 (20 000
× 7 / 1200) data generation steps are required on average to obtain one realization of the
target posterior from the ABC-MCMC and the ABC-PT respectively. Figure 12 gives the
autocorrelation plot for the ABC-PT when all the samples are kept, and when a thinning
of 15 is used.

thinning Nb of samples Order 1 Order 10 Order 20
none 300 000 0.991 0.919 0.850

ABC-MCMC 100 3 000 0.513 0.107 0.032
500 600 0.162 0.056 0.017
none 18 000 0.812 0.456 0.296

ABC-PT (chain 1) 10 1 800 0.473 0.007 -0.040
15 1 200 0.402 0.005 0.029

Table 6: For the α parameter: autocorrelations of order 1, 10 and 20 of the chain obtained by
ABC-MCMC, and of the first chain obtained by ABC-PT (with or without thinning the chains).

Note that the obtention of correlated samples is part of any MCMC method, and satisfactory
estimates can nevertheless be achieved.

5 Discussion

The ABC-PT algorithm developed in this paper is a new likelihood-free method based on the
Markov Chain Monte Carlo theory. On the studied examples, results obtained by the algorithm
are better than those obtained by the classical ABC-MCMC algorithm, in terms of exploration
of the parameter space, and of autocorrelations of the generated chain. The performances of this
new algorithm appear equivalent to those of the ABC-PMC and of the ABC-SMC, which are
sequential methods. These sequential methods have the advantage to generate non-correlated
samples. However, on the modified toy example the ABC-PMC appeared to slightly under-
cover posterior distribution tails and the local mode, while the ABC-SMC appeared to slightly
under-cover the global mode. The choice between ABC-PT, ABC-PMC and ABC-SMC should
then depend on the simulation’s objective. We would recommend to use the ABC-PT or the
ABC-SMC if we suspect that the posterior of interest is multi-modal, with small modes in low
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Figure 12: For the α parameter, autocorrelation plots of the first chain obtained by ABC-PT:
on the left all samples are kept, on the right every 15th sample is kept.

probability areas. Concerning the computational cost of the ABC-PT, a convergence study
should be achieved, taking into account the number N of chains, the temperature spacings [see
Atchadé et al., 2010], as well as the autocorrelations.

From a theoretical point of view the N chains of the ABC-PT all together can be considered as
a Markov chain, and the ABC-PT algorithm generates a Markov chain for (z,θ) with stationary
distribution π∗

ε
(z,θ | x). The chain obtained for ε1 is the chain of interest, because it provides

samples corresponding to πε1(z1, θ1 | x) which is the target distribution. The marginal in θ1
πε1(θ1 | x) can be considered as a good approximation of the posterior of interest π(. | x) if ε1 is
small enough and S well chosen according to our data.

From a practical point of view, the ABC-PT requires calibration of the sequence of tolerance
levels, and of the sequence of temperatures. Practical guidelines have been given in the modified
toy example, see section 3.1. As seen in section 3.5, it is possible to improve the acceptance rate
of the exchange moves by considering a partition of the tolerance levels space to choose the pairs
of chains to exchange. The total number of accepted exchange moves was increased by about
83%, with only 13% of additional CPU time.

In this paper the ABC-PT algorithm only uses one type of global move, which is the ex-
change move. However, it is always possible to define other types of global moves, like those
of the Evolutionary Monte Carlo of Liang and Wong [2001] for instance. It is also possible to
define delayed rejection moves, see for instance Green and Mira [2001] and Jasra et al. [2007].
It would be of particular interest to use the simulations generated by the other chains than
the first chain, by developing a method in the same spirit than those of Beaumont et al. [2002]
or Blum and François [2010]. Moreover, as proposed by a reviewer, we can take advantage of
using a schedule of varying ε1 for the first chain of interest, to improve its mixing. Finally, we
think that using a pre-determined sequence of tolerance levels is not the best way to obtain a
pre-determined number of samples with a tolerance level as small as possible, for a given com-
putational time. In the lines of Müller et al. [2004] it would then be interesting to use a non
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pre-determined sequence of tolerance levels, and hence to have an adaptive algorithm.
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A Matrices of exchange rates for ABC-PT with and without rings

Tables 7 and 8 compare accepted exchange rates between chains based on the modified toy
example, using ABC-PT algorithms with or without rings. The rate between chains i and j
is equal to the number of accepted exchange moves between these chains divided by the total
number of iterations. It is observed that the use of rings allows more accepted exchange moves,
especially between high tempered chains.

2 3 4 5 6 7 8 9 10 11 12 13 14 15

chain 1 0.16 0.12 0.09 0.06 0.04 0.03 0.02 0.01 0.01 0.01 0.01 0.00 0.00 0.00

chain 2 . 0.16 0.12 0.09 0.06 0.04 0.03 0.02 0.01 0.01 0.01 0.01 0.00 0.00

chain 3 . . 0.16 0.12 0.08 0.056 0.04 0.03 0.02 0.01 0.01 0.01 0.01 0.00

chain 4 . . . 0.16 0.11 0.077 0.05 0.04 0.03 0.02 0.01 0.01 0.01 0.01

chain 5 . . . . 0.15 0.10 0.07 0.05 0.04 0.03 0.02 0.02 0.01 0.01

chain 6 . . . . . 0.11 0.08 0.05 0.04 0.03 0.02 0.02 0.01 0.01

chain 7 . . . . . . 0.10 0.07 0.06 0.04 0.03 0.02 0.01 0.01

chain 8 . . . . . . 0.15 0.11 0.08 0.05 0.04 0.02 0.02

chain 9 . . . . . . . . 0.23 0.16 0.11 0.07 0.05 0.04

chain 10 . . . . . . . . . 0.30 0.19 0.13 0.09 0.06

chain 11 . . . . . . . . . . 0.22 0.15 0.11 0.08

chain 12 . . . . . . . . . . . 0.24 0.18 0.14

chain 13 . . . . . . . . . . . . 0.43 0.34

chain 14 . . . . . . . . . . . . . 0.77

Table 7: ABC-PT with 3 rings for the modified toy example: the diagonal gives local acceptance
rates, and outside the diagonal are given the proportions of accepted exchange moves.

B Formula for the Tuberculosis example

We used the same notations than Tanaka et al. [2006]. The number of cases of genotype i at
time t is denoted by Xi(t), G(t) is the number of distinct genotypes that have existed in the
population up to and including time t, and N(t) is the total number of cases at time t.

N(t) =

G(t)
∑

i=1

Xi(t).

The genotypes are labeled 1, 2, 3, . . . for convenience, although the ordering has no meaning,
except that i = 1 represents the parental type from which others are descended (directly or
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2 3 4 5 6 7 8 9 10 11 12 13 14 15

chain 1 0.10 0.08 0.06 0.04 0.03 0.02 0.02 0.01 0.01 0.01 0.00 0.00 0.00 0.00

chain 2 . 0.10 0.08 0.06 0.04 0.03 0.02 0.02 0.01 0.01 0.01 0.00 0.00 0.00

chain 3 . . 0.11 0.08 0.06 0.04 0.03 0.02 0.02 0.01 0.01 0.01 0.00 0.00

chain 4 . . . 0.10 0.08 0.06 0.04 0.03 0.02 0.02 0.01 0.01 0.01 0.00

chain 5 . . . . 0.10 0.08 0.05 0.04 0.03 0.02 0.02 0.01 0.01 0.01

chain 6 . . . . . 0.10 0.08 0.06 0.04 0.03 0.02 0.02 0.01 0.01

chain 7 . . . . . . 0.10 0.08 0.06 0.04 0.03 0.02 0.01 0.02

chain 8 . . . . . . 0.10 0.08 0.06 0.04 0.03 0.02 0.02

chain 9 . . . . . . . . 0.10 0.08 0.06 0.04 0.03 0.02

chain 10 . . . . . . . . . 0.10 0.08 0.06 0.04 0.03

chain 11 . . . . . . . . . . 0.22 0.15 0.06 0.04

chain 12 . . . . . . . . . . . 0.11 0.08 0.05

chain 13 . . . . . . . . . . . . 0.10 0.07

chain 14 . . . . . . . . . . . . . 0.10

Table 8: ABC-PT for the modified toy example: the diagonal gives local acceptance rates, and
outside the diagonal are given the proportions of accepted exchange moves.

indirectly). The three rates of the system are the birth rate per case per year α, the death rate
per case per year δ, and the mutation rate per case per year θ. Tanaka et al. [2006] define the
following probabilities:

Pi,x(t) = P (Xi(t) = x),

P̄n(t) = P (N(t) = n) and P̃g(t) = P (G(t) = g).

The time evolution of Pi,x(t) is described by the following differential equations:

dPi,x(t)

dt
= −(α+ δ + θ)xPi,x(t)

︸ ︷︷ ︸

no event

+α(x− 1)Pi,x−1(t)
︸ ︷︷ ︸

birth

+(δ + θ)(x+ 1)Pi,x+1(t)
︸ ︷︷ ︸

death or mutation

, x = 1, 2, . . . (4)

dPi,0(t)

dt
= (δ + θ)Pi,1(t). (5)

Initially there is only one copy of the ancestral genotype, hence the initial conditions are:
Pi,x(0) = 0 for all (i, x), except P1,1(0) = 1, and for i = 2, 3, 4, . . ., Pi,0(0) = 1.
To take into account the creation of new genotypes, the probability P̃g(t) is described by the
following differential equations (only a mutation can create a new genotype):

dP̃g(t)

dt
= −θN(t)P̃g(t)

︸ ︷︷ ︸

no mutation

+ θN(t)P̃g−1(t)
︸ ︷︷ ︸

mutation

, g = 2, 3, 4, . . . (6)

dP̃1(t)

dt
= −θN(t)P̃1(t). (7)

The initial condition is G(0) = 1. Let tg be the time when a new genotype g is created, we have
Pg,1(tg) = P (Xg(tg) = 1) = 1, and Pg,x(tg) = P (Xg(tg) = x) = 0 for x 6= 1.
The total number of cases N(t) is described by the following differential equations (only a birth
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or a death influence changes in this number):

dP̄n(t)

dt
= −(α+ δ)nP̄n(t)

︸ ︷︷ ︸

no birth, no death

+α(n− 1)P̄n−1(t)
︸ ︷︷ ︸

birth

(8)

+ δ(n + 1)P̄n+1(t)
︸ ︷︷ ︸

death

, n = 1, 2, . . .

dP̄0(t)

dt
= δP̄1(t). (9)

The initial conditions are P̄1(0) = 1 and P̄n(0) = 0 for n 6= 1.
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