
Statistics and Computing manuscript No.
(will be inserted by the editor)

Efficient Computation of Nonparametric Survival
Functions via a Hierarchical Mixture Formulation

Yong Wang 1 and Stephen M. Taylor 2

Received: June 2011 / Accepted: date

Abstract We propose a new algorithm for computing
the maximum likelihood estimate of a nonparametric

survival function for interval-censored data, by extend-

ing the recently-proposed constrained Newton method

in a hierarchical fashion. The new algorithm makes use

of the fact that a mixture distribution can be recursively
written as a mixture of mixtures, and takes a divide-

and-conquer approach to break down a large-scale con-

strained optimization problem into many small-scale

ones, which can be solved rapidly. During the course of
optimization, the new algorithm, which we call the hier-

archical constrained Newton method, can efficiently re-

allocate the probability mass, both locally and globally,

among potential support intervals. Its convergence is

theoretically established based on an equilibrium anal-
ysis. Numerical study results suggest that the new al-

gorithm is the best choice for data sets of any size and

for solutions with any number of support intervals.

Keywords: Nonparametric maximum likelihood; survival

function; interval censoring; clinical trial; constrained
Newton method; disease-free survival

1 Introduction

Interval-censored data can easily arise in fields like epi-

demiological studies and clinical trials. For example,

HIV/AIDS studies may yield various types of interval-
censored data (Siegfried et al., 2005; Chen et al., 2007;

1. Department of Statistics, The University of Auck-
land, Private Bag 92019, Auckland 1142, New Zealand.
Tel.: +64-9-9234700. Fax: +64-9-3737018. E-mail:
yongwang@auckland.ac.nz
2. Auckland University of Technology, Private
Bag 92006, Auckland 1142, New Zealand. E-mail:
steve.taylor@aut.ac.nz

Kumwenda et al., 2008). To investigate the influence
of risk factors or the effectiveness of treatments, re-

searchers often need to estimate and compare survival

functions for different groups of subjects. One can choose

to use parametric models, but parametric assumptions

may fail in the real world and lead to significantly bi-
ased estimates or even incorrect conclusions. In con-

trast, the assumption-free, nonparametric maximum like-

lihood approach is advantageous in this regard and is

widely adopted in practice. However, the lack of fast al-
gorithms for finding the nonparametric maximum like-

lihood estimate (NPMLE) of a survival function hin-

ders the application of this methodology, e.g., when a

large-scale problem is studied or a bootstrap or other

resampling procedure needs to be performed.

Owing to the difficulty of computing the NPMLE,

a common, practical approach to dealing with general

interval-censored data is imputation (Sun, 2006, sec-

tion 2.4). By replacing an interval-censored observation
with one or more points from that interval, the non-

parametric Kaplan-Meier survival curve can be used.

However this throws away some of the information in

the data, and therefore introduces bias and reduces the

power of statistical tests applied to the data.

For computing the NPMLE of a survival function,

a number of algorithms have been proposed in the past,

e.g., the expectation-maximization (EM) algorithm (Turn-

bull, 1974, 1976; Dempster et al., 1977), the iterative

convex minorant (ICM) algorithm (Groeneboom, 1991;
Groeneboom and Wellner, 1992; Jongbloed, 1998), the

hybrid ICM-EM algorithm (Wellner and Zhan, 1997),

the subspace-based Newton (SBN) method (Dümbgen

et al., 2006), the constrained Newton method (CNM)
(Wang, 2007, 2008), and the support reduction (SR)

algorithm (Groeneboom et al., 2008). A general dimen-

sion reduction technique was also proposed by Wang



2 Yong Wang 1 and Stephen M. Taylor 2

(2008) that can help improve the performance of an al-

gorithm. Numerical studies conducted by Wang (2008)

showed that an algorithm may perform well in some

scenarios but unsatisfactorily in others, and no algo-

rithm can efficiently handle high-dimensional problems
with many support intervals.

Our new algorithm presented below is an extension

to the CNM and is based on the fact that the non-

parametric survival function for interval-censored data
has a mixture structure (Böhning et al., 1996). The

CNM has a quadratic order of convergence and requires

in practice only a small number of iterations to con-

verge. Nevertheless, when the maximum likelihood es-

timate has a large number of support intervals, as may
arise in large-scale survival studies, its computation cost

can be extremely high due to solving a large-scale con-

strained linear regression problem at each iteration. In

such cases, its overall performance is understandably
very poor. To overcome this difficulty, the new algo-

rithm makes use of the fact that a mixture distribution

can be recursively written as a mixture of mixtures and

be represented in a hierarchical form. Using such a hier-

archy breaks down a large-scale optimization problem
into many small-scale ones that are all of the same na-

ture and can be solved quickly by the constrained New-

ton method. Furthermore it allows an efficient flow of

probability mass at all levels among the support inter-
vals and hence rapid convergence can be expected.

This hierarchical structure was also used by Pilla

and Lindsay (2001) to propose several alternative EM

methods, which are hybrids of the EM algorithm and

the univariate Newton-Raphson method. Even with their
significant performance improvement upon the conven-

tional EM algorithm, we suggest that the potential of

the hierarchical structure has not been fully realized.

The EM algorithm is known to have a slow conver-
gence, and the pairing of support points (intervals), as

needed inevitably by the univariate Newton-Raphson

method, can be inefficient at redistributing probabil-

ity mass even in a local area. These two drawbacks,

however, can be readily resolved simultaneously by the
CNM, which has a rapid convergence and can easily

handle higher-dimensional problems. Evidence shows

that combining the CNM with a hierarchical structure

brings about remarkable performance gain, both nu-
merically and analytically. Since our new hierarchical

algorithm is developed around a single algorithm, namely

the CNM, it also has a conceptually simpler formula-

tion.

The remainder of the paper is organized as follows.
In Section 2, the nonparametric maximum likelihood

estimation and computation of a survival function are

briefly reviewed. The hierarchical constrained Newton

method is described in Section 3, with its convergence

established in Section 4, using an equilibrium approach.

Section 5 presents results of numerical studies that com-

pare the performance of the new algorithm and com-

petitors. Concluding remarks are given in Section 6.

2 Estimation of a nonparametric survival
function

2.1 Nonparametric maximum likelihood estimation

Let O1, . . . , On ⊂ [0,∞) denote the censoring intervals
in which, respectively, n independent times to event are

known to have fallen. Each censoring interval may, e.g.,

result from follow-up visits, which also need to be inde-

pendent of the event time. The aim here is to estimate

the distribution of the time to event nonparametrically
by the maximum likelihood approach based on these

interval-valued observations. Generally, depending on

the type of censoring, each interval Oi can be open,

semi-open or closed. As pointed out by Peto (1973)
and Turnbull (1976), the NPMLE of the survival func-

tion could only have positive masses on a subset of

O1 ∪ · · · ∪ On, namely the set of maximal intersection

intervals. An intersection interval is a nonempty inter-

section of any combination of O1, . . . , On and a maxi-
mal intersection interval is an intersection interval that

contains no other intersection interval (Wong and Yu,

1999; Gentleman and Vandal, 2001; Maathuis, 2005)

Denote by I1, . . . , Im the maximal intersection in-

tervals after being sorted from left to right according
their positions on the real line. Then the NPMLE must

have all of its support on a subset of {I1, . . . , Im}. For

any Ij allocated with a positive mass, it is impossible

to determine the distribution of mass within it, and one
therefore focuses on estimating its overall mass pj . Let

J = {1, . . . , m}, the index set of these intervals, and

p = (p1, . . . , pm)⊤, a point in the (m − 1)-dimensional

probability simplex

P ≡ {p : p⊤1 = 1,p ≥ 0},

where 0 = (0, . . . , 0)⊤ and 1 = (1, . . . , 1)⊤. Let δij = 1

if Ij ⊆ Oi, and δij = 0 otherwise. Given p, the proba-

bility for the event time to be in Oi is

fi = fi(p) =

m
∑

j=1

pjδij , (1)

and the log-likelihood function of p is

ℓ(p) =
n

∑

i=1

log

( m
∑

j=1

pjδij

)

. (2)



Efficient Computation of Nonparametric Survival Functions via a Hierarchical Mixture Formulation 3

The NPMLE p̂ maximizes ℓ(p) among all p ∈ P ,

which is characterized by the vertex directional deriva-

tive (Lindsay, 1995; Böhning et al., 1996). The gradient

vector of the log-likelihood function is given by

g = g(p) =
∂ℓ(p)

∂p
,

whose largest element is

g∗ = g∗(p) = max
1≤j≤m

{gj(p)}.

Denoting by ej the jth vertex of P , the jth vertex di-

rectional derivative from p is defined as

dj(p) ≡
∂ℓ{(1 − ǫ)p + ǫej}

∂ǫ

∣

∣

∣

∣

ǫ=0

= gj(p) − n. (3)

At p̂, we have
{

dj(p̂) = 0, if p̂j > 0,

dj(p̂) ≤ 0, if p̂j = 0.
(4)

For any p ∈ P , it holds that

max
1≤j≤m

{dj(p)} ≥ ℓ(p̂) − ℓ(p), (5)

due to the concavity of the log-likelihood.

For notational simplicity, we will frequently write h

for the value of a function h(p) that is evaluated at a

generic estimate p ∈ P , when no ambiguity about p

should arise.

2.2 The constrained Newton method

The constrained Newton method for computing the NPMLE

is briefly described here. Let

si = (δi1, . . . , δim)⊤/fi, i = 1, . . . , n,

S = (s1, . . . , sn)⊤.

Then the log-likelihood function ℓ(p) has the following

gradient vector and Hessian matrix:

∂ℓ(p)

∂p
= S⊤1,

∂2ℓ(p)

∂p∂p⊤
= −S⊤S.

Using the Taylor series expansion about p and letting

η = p′ − p, one obtains

ℓ(p′) − ℓ(p) = 1⊤Sη −
1

2
η
⊤S⊤Sη + o(||Sη||2)

= −
1

2
||Sp′ − 2||2 +

n

2
+ o(||Sη||2), (6)

where Sp = 1 and 2 = (2, . . . , 2)⊤. Therefore, maxi-

mizing ℓ(p′) in the neighbourhood of p can be approx-

imated by solving the least squares linear regression

problem with equality and non-negativity constraints:

min
p′

||Sp′ − 2||2, s.t. p′⊤1 = 1,p′ ≥ 0. (7)

This problem can be efficiently solved by the NNLS al-
gorithm of Lawson and Hanson (1974) (for solving a

least squares problem with non-negativity constraint),

after a transformation suggested by Dax (1990); see Ap-

pendix A.

To ensure monotone increase and global convergence,
a line search is needed. Let p′ = p + η be the solution

to problem (7). The new vector is p + σu
η, using the

smallest u ∈ {0, 1, 2, . . .} that satisfies the inequality

ℓ(p + σu
η) ≥ ℓ(p) + ασug⊤

η, 0 < α <
1

2
. (8)

In our implementation, the values σ = 1
2 and α = 1

3

were used.

2.3 Dimension-reduced computation

Solving problem (7) on the full dimensional (m − 1)-

simplex of P can be computationally very expensive,
and is not necessary. For interval-censored data, the

NPMLE p̂ may have a much smaller number of posi-

tive elements and it is hence possible to restrict the op-

timization in dimension-reduced simplexes, ideally the

one that corresponds to only the positive elements of p̂.
A strategy for expanding the support set progressively

is proposed in Wang (2008). Its idea is to start with

a small support set and expand it rapidly. Specifically,

in each iteration it adds to the support set the candi-
date support intervals that have the maximum gradi-

ent values between inclusively every two neighbouring

support intervals that are currently in the support set.

The dimension-reduced CNM thus expands the support

set at an exponential rate, if necessary. Once near the
NPMLE, it maintains virtually the same support set as

the NPMLE, as desired.

Let us denote by js1 < · · · < jsms
the ordered in-

dexes of the ms positive elements of the sth iterate

ps ∈ P . Always we have js1 = 1 and jsms
= m, due to

Lemma 1 of Wang (2008).

Algorithm 1 (CNM) Choose a small τ > 0 and set

s = 0. From an initial estimate p0 with ℓ(p0) > −∞,

repeat the following steps.

Step 1 : set Js = {js1, · · · , jsms
}, the index set of the

positive elements of ps.



4 Yong Wang 1 and Stephen M. Taylor 2

Step 2 : compute d1(ps), . . . , dm(ps). If

max1≤j≤m{dj(ps)} ≤ τ , stop.

Step 3 : find J ∗
s ≡ {j∗s1, . . . , j

∗
s,ms−1}, where

j∗sl = arg maxjsl≤j≤js,l+1
{dj(ps)}.

Step 4 : compute ps+1 by solving problem (7), using
only the elements indexed by J+

s ≡ Js ∪ J ∗
s , and

by performing the line search (8).

Step 5 : set s = s + 1.

The above dimension reduction technique can also

be used in combination with other algorithms that can

effectively find redundant support intervals, i.e., set their

probability masses to zero. The dimension-reduced ver-
sions of the iterative convex minorant algorithm (Groene-

boom, 1991; Groeneboom and Wellner, 1992; Jongbloed,

1998), the hybrid ICM-EM algorithm (Wellner and Zhan,

1997) and the subspace-based Newton method (Dümbgen

et al., 2006) are also considered by Wang (2008), and
all give enhanced performance.

3 The hierarchical constrained Newton method

3.1 A hierarchical formulation

Owing to the additivity of probability mass, the mix-

ture model (1) can be rewritten in a hierarchical form

as follows. First let us partition the index set J into

disjoint subsets J1, . . . , Jb, and reformulate model (1)
as follows:

fi =
m

∑

j=1

pjδij =
b

∑

k=1

πk





∑

j∈Jk

pj

πk
δij



 =
b

∑

k=1

πkfik,

where πk =
∑

j∈Jk
pj and fik =

∑

j∈Jk

pj

πk
δij . This

turns the original mixture model with m components

into one with only b components. Each new component
fik is itself a mixture, so the model becomes a mix-

ture of mixtures. Clearly we can carry on this process

of reformulation for each fik, and for each of its new

components, and so on, until there are insufficient ele-

ments left for further partitioning. Thus a hierarchy of
mixture models is constructed.

With this hierarchical structure, a large-sized mix-

ture model is rewritten into many much smaller-sized

mixture models. This helps to break down the original
optimization problem of dimension m into many that

are identical in nature but of smaller dimension b. We

can apply the CNM to each mixture model in the hier-

archy, in a way described below.

Note that throughout the paper we always treat J
as an ordered set and preserve the order in all group-

ings and partitions. This does not affect the eventual

convergence of the proposed algorithm, but it is help-

ful for its speed since a maximal intersection interval is

mostly correlated with its neighboring ones.

3.2 Allocation within a block

Consider an arbitrary subset (or block) B of J . Write

the mass allocated to it according to p ∈ P as

πB = πB(p) =
∑

j∈B

pj

and define the average gradient of B with πB > 0 as

ḡB = ḡB(p) =

∑

j∈B pjgj

πB
.

There are two special cases. For an atomic block B =
{j}, j ∈ J , we always define ḡB = gj even if pj = 0;

and for the entire set J , it always holds that ḡJ = n

for any p with ℓ(p) > −∞, because p⊤g = p⊤S⊤1 and

Sp = 1.

Let B, with πB(p) > 0, be composite (as opposed

to atomic) and have partition P = {B1, . . . , Bt}, where

B = ∪t
k=1Bk and each subblock Bk is either atomic, or

composite with a positive mass. In what follows, we re-

strict our attention to the non-overlapping case, namely
Bj ∩Bk = ∅ if j 6= k. One may also allow the subblocks

to overlap one another by dividing the mass of any

shared component among overlapping subblocks, but

tentative numerical studies suggest that this is compu-
tationally less efficient. With a (non-overlapping) par-

tition P , we also have πBk
and ḡBk

for each subblock

Bk, due to the above definitions. Let

πP = πP (p) = (πB1 , . . . , πBt
)⊤,

gP = gP (p) = (ḡB1 , . . . , ḡBt
)⊤,

and denote the maximum gradient of partition P by

g∗P = g∗P (p) = max
1≤k≤t

{ḡBk
}.

One could increase the value of ℓ(p) by increasing
the value of the blockwise log-likelihood

ℓP (π;p) ≡
n

∑

i=1

log

{ t
∑

k=1

πkfik +
∑

j /∈B

pjδij

}

,

s.t. π ≥ 0 and π
⊤1 = πB , where fik =

∑

j∈Bk
pjδij/πBk

.

The probability for observation Oi is now a function of

π:

fi = fi(π) =
t

∑

k=1

πkfik +
∑

j /∈B

pjδij .



Efficient Computation of Nonparametric Survival Functions via a Hierarchical Mixture Formulation 5

Let f+k(j) = pj/πBk
, for j ∈ Bk. Then f+k has unit

mass and is a probability density (or mass) function de-

fined on Bk given p. These blockwise densities consti-

tute part of the entire mixture distribution, with mixing

proportions π.
The constrained Newton method can be applied to

maximizing ℓP (π;p) in almost an identical manner as

to maximizing ℓ(p). Here the unknown is π, with the

fik’s being held fixed. Denoting

siP = (fi1, . . . , fit)
⊤/fi, i = 1, . . . , n,

SP = (s1P , . . . , snP )⊤,

we have

∂ℓP (π;p)

∂π
= S⊤

P 1,

∂2ℓP (π;p)

∂π∂π⊤
= −S⊤

PSP .

Similar to the Taylor series expansion (6) that leads

to the least squares problem (7), we derive that maxi-

mizing ℓP (π;p) over π can be achieved by solving the

following least squares problem iteratively:

min
π

′

||SP π
′ − SP π − 1||2, s.t. π

′⊤1 = πB, π′ ≥ 0.

(9)

This is a problem that can also be solved by Dax’s (1990)

method (see Appendix A).
Note that when π = πP (= πP (p)), it always holds

that

gP = S⊤
P 1.

For a new estimate π
′ that replaces πP , each pj for

j ∈ Bk is updated to

p′j =
π′

kpj

πBk

. (10)

As a result, π′
k = π′

Bk
(≡ πBk

(p′) =
∑

j∈Bk
p′j), which

is desirable. For π
′ to be an ascent direction from πP ,

it must satisfy

g⊤
P (π′ − πP ) > 0,

or equivalently

g⊤
P π

′

πB
− ḡB > 0.

Note that g⊤
P π

′/πB is the average gradient with respect

to π
′. Therefore, ℓP (π;p) is maximal at πP , if and only

if

g∗P = ḡB;

i.e., the maximum gradient equals the average gradient.

3.3 Hierarchical allocation

With the above method for blockwise updating of mix-

ing proportions, one can maximize ℓ(p) by redistribut-

ing the probability mass among blocks or, indeed, blocks

of blocks. The performance of the resulting algorithm

depends on how efficiently the probability mass is trans-
ferred. Of many possible ways of partitioning J , it ap-

pears that using a hierarchical structure of partitions

is most efficient at transferring probability mass, both

locally and globally.
The building of a hierarchy starts with a given in-

dex set J +
s ⊂ J , such as that defined in step 4 of

Algorithm 1, where π
J

+
s

= 1 and each j ∈ J+
s cor-

responds to an atomic block. In the bottom layer of

the hierarchy, the atomic blocks are grouped according
to their neighborhood into, say, t(1) roughly equal-sized

blocks. In the layer above it, neighboring blocks are fur-

ther grouped into t(2) superblocks. One continues this

grouping process, until a tree-like hierarchical structure
of blocks is fully constructed, with a single superblock

in the top layer. All blocks in each layer of the hierarchy

have the total mass 1.

The constrained Newton method can be used to up-

date the mixing proportions for the subblocks of each
block in each layer. Let J +

s have partition P with t

blocks in a particular layer, and its kth block Bk has

partition Pk, for k = 1, . . . , t. We hence need to solve

the following least squares problem:

min
π

′

P1
,··· ,π′

Pt

t
∑

k=1

||SPk
π

′
Pk

− SPk
πPk

− 1||2, (11)

s.t. π
′⊤
Pk

1 = πBk
and π

′
Pk

≥ 0, for k = 1, . . . , t. This

problem breaks down to t individual problems of form

(9), each of which can be solved quickly. While the order
of updating the layers does not affect the convergence

of the algorithm, in our implementation we chose to

traverse all the layers from the bottom up and thus a

recursive function call can be used. Certainly one does

not have to find the exact solution that maximizes each
ℓPk

(π;p). Solving problem (11) approximately for each

layer, using just one update step per traverse of the hi-

erarchy, or perhaps two for higher-level layers, is overall

more cost-effective.
For algorithmic convergence, one must allow suffi-

cient mass transfer among the blocks during the com-

putation. Hereby we enforce the following condition on

all composite blocks Bk in the hierarchy:

πBk
(p) ≥ γ, (12)

for some pre-given γ > 0. This is a necessary condi-

tion for establishing convergence; see the proof of The-

orem 1. Note that the p in condition (12) needs not be



6 Yong Wang 1 and Stephen M. Taylor 2

p̂ but instead can be ps, the sth iterate for estimating

p. This makes the practical satisfaction of the condi-

tion very easy, e.g., by changing dynamically the block

size or collapsing nearby ones. Since γ can be arbitrar-

ily small, it does not make much difference in practice
if one only restricts each composite block to having a

positive mass.

Instead of performing a line search after updating

each πPk
, which is costly, one could perform a single

line search for all the blocks in a layer. Let each πPk

be updated to π
′
Pk

= πPk
+ ηPk

by solving the least
squares problem (11), and, accordingly, p to p′ = p+η

by using formula (10). One then chooses the smallest

u ∈ {0, 1, 2, . . .} that satisfies

ℓ(p + σu
η) − ℓ(p) ≥ ασug⊤

η = ασu
t

∑

k=1

g⊤
Pk

ηPk
. (13)

Since every ηPk
is an ascent direction due to solving

problem (11), so is η, a convex combination of ascent

directions.

With such a hierarchy, the constrained Newton method

is thus able to redistribute the probability mass, both
locally via the blocks at the bottom, and among increas-

ingly larger regions by climbing up the hierarchy. We

summarize the above developments for the hierarchical

constrained Newton method as follows.

Algorithm 2 (HCNM) The initialization and the
first three steps are the same as in Algorithm 1.

Step 4 : let partition P (s,0) = {{j} : j ∈ J +
s } and l = 1.

Repeat the following substeps:

Step 4.1 : build partition P (s,l) by grouping the neigh-

boring blocks in P (s,l−1). (Make sure πB(ps) ≥ γ
for every B ∈ P (s,1).)

Step 4.2 : for layer l, update psl (once or twice) by

solving problem (11) and by performing line search

(13).
Step 4.3 : if P (s,l) has only one block, break; otherwise,

set l = l + 1.

Step 5 : let ps+1 be the final solution of step 4. Set

s = s + 1.

From bottom up, the number of blocks in each layer

decreases at an exponential rate and hence the vast ma-
jority of computation cost is for the bottom layer. For

each traverse of the hierarchy, we choose to update ps

once for the bottom layer and twice for each of the

other layers in Step 5 of Algorithm 2. This helps reduce
the total number of iterations and improve overall per-

formance, as compared with one update per layer per

traverse.

3.4 Block size formula

The size of a block, namely the number of its sub-

blocks, is important for the performance of the algo-
rithm. Using larger blocks results in a smaller total

number of blocks, which increases the efficiency of mass

transfer per iteration, but at a higher cost for the con-

strained Newton method to update mixing proportions

each time; and using smaller blocks does the opposite.
In the numerical studies given in Section 5, the block

size ranges roughly between 20 and 60, as determined

by the following simple formula that only depends on

m+
s = |J +

s |, the size of J+
s .

Motivated by a time complexity consideration (see

Section 6), we determine the block size on the logarith-
mic scale of m+

s . With a bit of rounding done afterwards

for even partitioning, the block size for the entire hier-

archy is determined by the formula

b = max{a1, a2 log2(m
+
s /a3)}, (14)

and a blockwise computation is only carried out when a
subset has more than 1.5a1 elements. In our implemen-

tation, the default values are set to a1 = 20, a2 = 10

and a3 = 100, which appears to work quite well for

a range of problems that we studied. Table 1 gives a

few block sizes computed from this formula with de-
fault settings. Note that the CNM can easily handle

a problem of dimension up to 200, suggesting that the

blockwise computation remains effective even if the size

of the original problem is extremely large.

m+
s 400 1600 6400 25600 · · · ∼ 108

b 20 40 60 80 · · · 200

Table 1 Block sizes determined by (14), with a1 = 20, a2 =
10 and a3 = 100

4 Convergence analysis: an equilibrium

approach

In this section, we establish the convergence of Algo-

rithm 2 for computing the NPMLE. The proof below

can be easily extended to other similar situations, e.g.,

when the support space is continuous or when blocks
overlap one another. Moving probability mass between

blocks can be compared to liquid flow under gravity be-

tween containers or to gas transfer from high concentra-

tion to low concentration, both of which will eventually
settle down to their respective global equilibrium. Here

in particular, probability mass is transferred from low

average gradient areas to high average gradient areas,



Efficient Computation of Nonparametric Survival Functions via a Hierarchical Mixture Formulation 7

in a discrete fashion by an algorithm, until the global

equilibrium of uniform average gradient, which is n, is

achieved.

With this analogy in mind, let us first define the

equilibrium that characterizes a blockwise NPMLE. Re-
call that a partition P is always so chosen that each

Bk ∈ P is either atomic, or composite with πBk
(p) > 0.

This ensures that ḡBk
(p) is always defined. With some

p ∈ P , block B ⊂ J is said to be at equilibrium for
partition P = {B1, . . . , Bt}, if

{

ḡBk
(p) = ḡB(p), if πBk

(p) > 0;

ḡBk
(p) ≤ ḡB(p), otherwise,

(15)

for k = 1, . . . , t. This implies that there exists no as-
cent direction from πP (p), so ℓP (π;p) is maximized

at πP (p). It is basically the same NPMLE character-

ization condition (4) but applied to a block. As a re-

sult, B is at equilibrium for partition P , if and only if

g∗P (p) = ḡB(p).

We will also say that B is at global equilibrium, if

it is at equilibrium for every partition of B or, equiva-

lently, for the partition with all atomic blocks. There-

fore, by applying this to J , the following three state-
ments are equivalent:

(a) p̂ maximizes ℓ(p);

(b) g∗(p̂) = n;

(c) With p̂, J is at global equilibrium.

In other words, the NPMLE is also characterized by the

global equilibrium.

In the following, we establish the global convergence
of any sequence created by Algorithm 2, by showing

its convergence to each blockwise equilibrium and thus,

due to sufficient mass transfer among the blocks, to the

global equilibrium. The proofs are omitted for the next

two lemmas, which are blockwise extensions of Lem-
mas 1 and 2 in Wang (2007) and can be established in

virtually the same way. Denote P0 = {p ∈ P : ℓ(p) ≥
ℓ(p0) > −∞}.

Lemma 1 There exists an upper bound U > 0 such

that, for any B ⊂ J with any partition P , and any
direction ηP = πP (p′) − πP (p) with p′ ∈ P and p ∈
P0,

η
⊤
P S⊤

P SP ηP ≤ π2
BU ≤ U.

Lemma 2 The backtracking search (13) always suc-

ceeds within a finite number of steps independent of any

p ∈ P0 and any partitions.

Now let us define the convergence to a blockwise

equilibrium, as specified by condition (15).

Definition 1 With a sequence {ps : ps ∈ P0}, B ⊂ J
with πB(ps) > 0 is said to approach the equilibrium

for partition P , if for any Bk ∈ P with mass bounded

away from zero,

lim
s→∞

{ḡBk
(ps) − ḡB(ps)} = 0 (16)

and for any Bk ∈ P with mass approaching zero,

lim
s→∞

max
k

{ḡBk
(ps) − ḡB(ps)} ≤ 0. (17)

Lemma 3 With {ps : ps ∈ P0}, B ⊂ J approaches
the equilibrium for partition P , if and only if

lim
s→∞

{g∗P (ps) − ḡB(ps)} = 0. (18)

Proof First, let g∗P (ps) − ḡB(ps) → 0. Because

g∗P (ps) − ḡB(ps) = g∗P (ps) −
t

∑

k=1

πBk
(ps)ḡBk

(ps)

πB(ps)

=

t
∑

k=1

πBk
(ps)

πB(ps)
{g∗P (ps) − ḡBk

(ps)}

and every term of the last expression has to be non-

negative, we have g∗P (ps)− ḡBk
(ps) → 0 for every Bk ∈

P with mass bounded away from 0. Hence, condition

(16) holds. Condition (17) also holds, because g∗P (ps)
is maximal.

The converse is clearly true, by combining condi-

tions (16) and (17).

The following theorem shows that the global equi-

librium is achieved by achieving all blockwise equilib-
ria. Note that hierarchies may differ from iteration to

iteration. Also, the proof only requires the satisfication

of the Armijo rule, and thus no exact optimization is

needed for any partial problem.

Theorem 1 Let p̂ maximize ℓ(p) and {ps} be any se-

quence created by Algorithm 2. Then as s → ∞,

(a) every block in a hierarchy constructed by the algo-

rithm approaches the equilibrium for its partition;

(b) g∗(ps) → n;
(c) ℓ(ps) → ℓ(p̂).

Proof By construction, ℓ(ps) increases monotonically

and must converge to a finite value no greater than

ℓ(p̂). Let us denote by psl the iterate prior to updating
ps for layer l. Due to line search (13) and Lemma 2,

ℓ(ps,l+1) − ℓ(psl) ≥ ασū
t

∑

k=1

gPk
(psl)

⊤
ηPk

(psl), (19)

where ū is an upper bound on the number of backtrack-

ing steps, which is independent of s and l.



8 Yong Wang 1 and Stephen M. Taylor 2

To establish statement (a), we only need to establish

limit (18) for every composite block Bk in the hierar-

chy which, by restriction (12), has πBk
(psl) ≥ γ > 0.

Assume that maxk,l{g∗Pk
(psl) − ḡBk

(psl)} does not ap-

proach 0 as s → ∞ and there must be infinitely many
s such that maxBk,l{g∗Pk

(psl)− ḡBk
(psl)} ≥ τ for some

τ > 0. Then for such a block, it holds that, for any

0 ≤ ǫ ≤ 1,

ℓ(ps+1) − ℓ(ps) ≥ ℓ(ps,l+1) − ℓ(psl) ≥ ασū(ǫγτ −
ǫ2U

2
),

due to the optimality of ηPk
for solving problem (11)

and Lemma 1; see the proof of Theorem 1 in Wang
(2007) for a similar reasoning. Without loss of general-

ity, assume γτ/U ≤ 1 and let ǫ = γτ/U . Then,

ℓ(ps+1) − ℓ(ps) ≥
ασūγ2τ2

2U
, (20)

which is positive and independent of s. This contra-

dicts the Cauchy property for a convergent sequence.

Therefore, from Lemma 3, the proof of statement (a) is
completed.

Due to Definition 1, the average gradient of every

block with a positive mass converges to the average

gradient of its immediate superblock. Since ḡJ (ps) = n
for every ps and there is a finite number of blocks,

all of these average gradients must converge to n as

s → ∞. Because the atomic block that has g∗(ps) is

always included in the hierarchy, the proof of statement

(b) is completed.
Statement (c) follows from inequality (5).

5 Numerical studies

This section presents the results of our numerical stud-

ies that compare the proposed HCNM with other al-

gorithms available in the literature. Table 2 lists the
algorithms included in the studies, all in Example 1

and some in Example 2. We did not implement the hy-

brid EM and univariate Newton-Raphson methods of

Pilla and Lindsay (2001) that also use the hierarchical
structure of a mixture model, since the EM algorithm

is well-known for its slow convergence and we observe

that the pairing of support points (i.e., block size = 2)

is not an efficient way of exchanging probability mass.

Pilla and Lindsay (2001) only numerically studied prob-
lems with up to 64 potential support points, whereas

the problems studied below can have thousands of true

support points. The studies in the following focus on

relatively large-sized problems. It should be noted that
for small-sized problems, these algorithms may have dif-

ferent relative performance and should all perform rea-

sonably well to meet practical needs.

In our studies, each algorithm was terminated when

the following condition was satisfied:

max1≤j≤m{dj(ps)}

|ℓ(ps)|
≤ τ. (21)

We used τ = 10−5 for the faster algorithms, including

SR, SBN, SBNDR, ICM-EM, ICMDR-EM, CNM and

HCNM, and larger values of τ for the others. For a sin-

gle problem, this stopping criterion is practically the

same as that described in step 2 of Algorithms 1 and 2.
The scaling of dj here is to allow for the magnitude of

the log-likelihood. Note that always ℓ(p) < 0, because
∏n

i=1 fi(p) < 1. This ensures the number of accurate

digits in the log-likelihood and that the performance
of an algorithm on different problems can be compared

fairly. An extremely slow algorithm was also stopped if

the number of iterations exceeded 10000. By the num-

ber of iterations, here and below, we mean that of the

outermost loop of an algorithm. Having the number of
iterations recorded helps understand the performance

of an algorithm; for comparison of different algorithms,

we prefer running times.

All computations were performed in R. In particu-
lar, we used the R packages “Icens” (Gentleman and

Vandal, 2009) for VEM and GPM, and “MLEcens”

(Maathuis, 2007) for the SR method, which was im-

plemented in the C language with an R interface func-

tion. Slight modifications were made to their original
code to produce and extract information needed for

Table 3, as well as to enforce the same stopping cri-

terion (21). “Icens” also provides an implementation

of the intra-simplex direction method (ISDM) (Lesper-
ance and Kalbfleisch, 1992). However, it uses VEM to

update the probability vector that defines an intra-

simplex, which is not what is described in the original

paper. We found, without including the results here,

that this version of ISDM had a very slow convergence.
We wrote the R code for the other algorithms, except

that the NNLS algorithm, needed internally by CNM

and HCNM for solving a least squares problem with

non-negativity constraint, was given in FORTRAN (Law-
son and Hanson, 1974). The computer used for the stud-

ies has a 2.40GHz Intel Core 2 Duo processor.

Example 1 The study reported by Kumwenda et al.

(2008) looked at the infection-free survival of infants
being breast-fed by mothers with the HIV-1 virus in

Malawi. Infants who were unfortunate enough to be al-

ready infected at birth were excluded from the study.

More than 3000 infants were randomized into three
groups and were monitored for up to two years. The

three groups were a control group (receiving standard

treatment) and two types of extended treatment. The



Efficient Computation of Nonparametric Survival Functions via a Hierarchical Mixture Formulation 9

Abbreviation Method References

EM Expectation-maximization Turnbull (1974, 1976); Dempster et al. (1977)
GPM Gradient projection Wu (1978)
VEM Vertex exchange Böhning (1986)
ICM Iterative convex minorant Groeneboom (1991); Jongbloed (1998)
ICM-EM Hybrid ICM and EM Wellner and Zhan (1997)
SBN Subspace-based Newton Dümbgen et al. (2006)
SR Support reduction Groeneboom et al. (2008)
ICMDR Dimension-reduced ICM Wang (2008)
ICMDR-EM Dimension-reduced ICM-EM Wang (2008)
SBNDR Dimension-reduced SBN Wang (2008)
CNM Dimension-reduced constrained Newton Wang (2007, 2008)
HCNM Hierarchical CNM This paper

Table 2 Algorithms included in the studies

Time (months)

S
ur

vi
va

l P
ro

ba
bi

lit
y

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 6 12 18 24

Right end
Mid−point
Left end
True

Time (months)

S
ur

vi
va

l P
ro

ba
bi

lit
y

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 6 12 18 24

NPMLE
True

(a) (b)

Fig. 1 The true and estimated survival functions: (a) Kaplan-Meier estimates (based on imputed data); (b) NPMLE.

Algorithm s
ℓ(p̂)−ℓ(ps)

|ℓ(p̂)|

maxj{dj(ps)}

|ℓ(p̂)|
Time (s)

ICM 10000 2.54×10−2 3.05×10−1 7518.5
ICMDR 10000 2.54×10−2 3.05×10−1 6770.3
VEM 2057 5.26×10−4 1.00×10−2 3602.1
GPM 1218 1.28×10−4 9.96×10−3 1875.9
EM 901 8.11×10−8 1.06×10−4 657.0
SR 151 1.61×10−10 1.39×10−7 390.5
CNM 13 1.74×10−15 2.99×10−8 287.5
SBN 43 3.14×10−8 1.55×10−6 127.2
SBNDR 19 1.39×10−9 7.18×10−6 32.8
ICM-EM 43 2.18×10−10 8.65×10−6 29.0
ICMDR-EM 43 1.50×10−10 8.65×10−6 27.4
HCNM 12 7.40×10−12 7.01×10−6 13.7

Table 3 Performance of algorithms on the data set in Example 1.

aim of the study was to test whether these extended
treatments were more effective in preventing the trans-

mission of the virus from the mother to the infant in

the breast milk.

Fig. 1(a) illustrates an undesirable characteristic of

imputation in this context. The illustration is based on

simulated data with 3000 observations intended to fol-

low the methods used by Kumwenda et al. (2008). In
particular, two Weibull distributions, with shape pa-

rameters 0.5 and 0.9 respectively and the same scale

parameter 730, were used to generate, respectively, the

HIV infection times, which were further censored by the

intervals between follow-up visits, and the exact times
of unfortunate deaths. It was either the exact death



10 Yong Wang 1 and Stephen M. Taylor 2

time or the censoring interval of an HIV infection that

was recorded, in days, for each subject, whichever ap-

peared first. To be more realistic, we also introduced a

small amount of random delay to each of the follow-up

inspection dates that were scheduled at 1, 3, 6, 9 and
14 weeks and at 6, 9, 12, 15, 18 and 24 months after

birth. Each random delay had an exponential distribu-

tion with a rate equal to 5% of the length of the time

interval between the current and the next follow-up.
The three most common types of imputation were used:

choosing the right end, midpoint and left end of the cen-

soring intervals, respectively. Clearly the Kaplan-Meier

survival curves do not model well the underlying sur-

vival, since their shapes exhibit an artifact of the study
design. The scolloped patterns arise from the series of

scheduled follow-up inspections, which determine the

endpoints of the censoring intervals. In comparison, the

NPMLE, shown in Fig. 1(b), makes more efficient use
of the data and provides a smoother and more accu-

rate estimate of the survival curve. Note that because

of the existence of exact observations or the imputation

that replaces intervel-censored observations with their

exact endpoints, all maximal intersection intervals turn
out to points precisely. Therefore, despite that we use

rectangles to represent the nonuniqueness on Ij , they

reduce to points and each estimated survival function

is simply a curve.
The performance of the algorithms on the data set

generated above is given in Table 3, in descending order

of computation time, as well as roughly in ascending or-

der of solution accuracy. The “exact” NPMLE p̂ used in

the table was produced by the HCNM, and confirmed
by other fast algorithms, through iterating indefinitely

until the log-likelihood value failed to numerically in-

crease, an indication that the machine precision was

reached. Most algorithms took long times to converge,
and some were so slow that larger values of τ had to

be used to terminate them earlier. Although the CNM

used nearly the least number of iterations, owing to its

quadratic order of convergence, its computation time

was not short, owing to the size of the problem. By
contrast, the HCNM even used one less iteration and

reduced the computation time dramatically, by 20-fold,

which made it the fastest of all.

Example 2 In this study, we used the same scheme for

data generation as described in Wang (2008). To gen-
erate a data set, n exact event times are first drawn

independently from the exponential distribution with

mean 1, and r × n (0 ≤ r < 1) of them, randomly

chosen, will remain uncensored. For each censored ob-
servation, a random sample of size 10 is drawn from the

same exponential distribution, which divides [0,∞) into

11 disjoint subintervals. The subinterval that contains

the exact event time replaces it. Clearly, when r = 0,

all observations are purely interval-censored; and when

0 < r < 1, there are both exact and interval-valued ob-

servations. This data generation scheme is perhaps less

realistic than that used in Example 1, but it helps com-
pare systematically the performance of the algorithms

in different scenarios, which is the focus of the study

here. From our computing experience, the general con-

clusions drawn here remain consistent with those when
other data generation schemes are used.

Only ICMDR-EM, SBNDR, CNM and HCNM were

included in this study. Except in a few cases where

the computational cost is too high, we investigated the

performance of the four algorithms in these situations:
(r, n) ∈ {0%, 10%, 30%, 50%, 70%, 90%}×{400, 1600, 6400}.
Based on 20 replications in each situation, the exper-

imental results are displayed in Table 4, including the

mean and standard deviation (in parentheses) of both
the number of iterations and computation time that

were needed by each algorithm. Fig. 2 also shows the

mean computation times of the algorithms plotted against

r for each size of data set.

In all situations, the performance of the HCNM was
pleasing. It was practically no worse than the best of its

competitors in every situation, and clearly the fastest

algorithm for large data sets and in situations with large

proportions of exact observations. It was also clear that
the relative performance gaps between the HCNM and

other algorithms increased with n. Results for the CNM

deteriorated rapidly as n or r increased. The SBNDR

algorithm showed a similar, though less extreme, de-

terioration in these situations. Although the ICMDR-
EM algorithm performed consistently worse than the

HCNM, it is interesting to note that its mean com-

putation time curve has a concave shape, even with

a decreasing trend for large values of r. This can be
explained by its use of a diagonal Hessian approxima-

tion that is increasingly accurate as r increases (Wang,

2008).

6 Concluding remarks

A new algorithm, called the hierarchical constrained

Newton method (HCNM), is presented and studied for

computing the NPMLE of a survival function. It uses a

divide-and-conquer approach to break down the prob-
lem into small ones in a hierarchical structure, which

are of the same nature as the original problem and can

be solved quickly. The algorithm makes use of the “mix-

ture of mixtures” structure of the problem and can be
readily implemented as a recursive function. Its perfor-

mance was consistently among the best in every case

we studied.



Efficient Computation of Nonparametric Survival Functions via a Hierarchical Mixture Formulation 11

Method #Iterations Time (s) #Iterations Time (s) #Iterations Time (s)

n = 400
r = 0% r = 10% r = 30%

ICMDR-EM 26.6 (5.2) 0.102 (0.016) 36.5 (5.3) 0.180 (0.024) 34.5 (3.0) 0.303 (0.029)
SBNDR 19.9 (3.2) 0.094 (0.016) 14.6 (2.0) 0.090 (0.013) 9.6 (2.0) 0.110 (0.027)
CNM 7.3 (1.5) 0.044 (0.008) 7.0 (2.1) 0.063 (0.014) 5.5 (0.5) 0.134 (0.013)
HCNM 7.5 (1.1) 0.056 (0.009) 7.9 (1.6) 0.075 (0.013) 6.5 (0.6) 0.101 (0.010)

r = 50% r = 70% r = 90%
ICMDR-EM 25.6 (1.5) 0.347 (0.019) 17.4 (1.5) 0.326 (0.027) 10.4 (1.2) 0.242 (0.030)
SBNDR 5.4 (0.7) 0.122 (0.013) 4.4 (0.7) 0.166 (0.034) 3.8 (0.4) 0.218 (0.047)
CNM 5.0 (0.2) 0.252 (0.014) 4.5 (0.6) 0.375 (0.060) 4.0 (0.5) 0.479 (0.070)
HCNM 5.7 (0.5) 0.127 (0.011) 4.7 (0.5) 0.138 (0.015) 4.7 (0.6) 0.175 (0.024)

n = 1600
r = 0% r = 10% r = 30%

ICMDR-EM 26.8 (3.7) 1.03 (0.13) 59.4 (4.2) 3.44 (0.27) 43.5 (1.9) 5.21 (0.24)
SBNDR 32.0 (4.3) 1.51 (0.21) 16.8 (2.2) 1.43 (0.19) 6.6 (1.1) 1.85 (0.35)
CNM 7.4 (0.8) 0.59 (0.04) 5.8 (0.5) 1.19 (0.10) 5.0 (0.2) 5.38 (0.28)
HCNM 8.8 (1.3) 0.69 (0.07) 8.7 (1.4) 0.85 (0.12) 5.5 (0.5) 1.06 (0.10)

r = 50% r = 70% r = 90%
ICMDR-EM 25.8 (1.6) 4.78 (0.26) 16.1 (1.4) 3.99 (0.33) 9.0 (0.6) 2.88 (0.21)
SBNDR 5.0 (0.7) 4.32 (0.92) 4.0 (0.2) 7.45 (0.79) 3.2 (0.4) 9.24 (3.90)
CNM 4.7 (0.5) 13.52 (1.61) 4.0 (0.2) 21.37 (1.53) 3.5 (0.5) 27.85 (5.66)
HCNM 4.5 (0.5) 1.34 (0.16) 4.1 (0.3) 1.64 (0.14) 4.0 (0.0) 2.07 (0.01)

n = 6400
r = 0% r = 10% r = 30%

ICMDR-EM 27.3 (4.8) 14.5 (1.8) 94.2 (3.6) 78.7 (3.2) 44.5 (1.8) 126.7 (5.5)
SBNDR 49.9 (5.2) 32.6 (4.2) 13.2 (1.9) 28.3 (5.3) 5.3 (0.8) 105.4 (32.1)
CNM 8.5 (1.5) 10.7 (1.1) 5.7 (1.2) 60.2 (14.2) 4.4 (0.5) 327.5 (46.5)
HCNM 9.2 (0.9) 10.2 (0.7) 6.8 (0.9) 10.6 (1.2) 4.6 (0.5) 15.4 (1.8)

r = 50% r = 70% r = 90%
ICMDR-EM 23.2 (0.6) 122.8 (3.9) 14.4 (1.2) 109.1 (9.2) 7.4 (0.8) 69.9 (8.1)
SBNDR 4.0 (0.2) 245.6 (25.7) — — — —
CNM 4.1 (0.3) 768.2 (75.9) — — — —
HCNM 4.2 (0.4) 23.4 (2.7) 3.5 (0.6) 27.9 (5.6) 3.0 (0.0) 32.9 (0.1)

Table 4 Results for Example 2: mean (standard deviation) number of iterations and computation time.

n = 400

Proportion of Exact Observations, r

C
om

pu
ta

tio
n 

T
im

e 
(s

)

0.
0

0.
2

0.
4

0.
6

0.
8

0% 30% 50% 70% 90%

ICMDR−EM
SBNDR
CNM
HCNM

n = 1600

Proportion of Exact Observations, r

C
om

pu
ta

tio
n 

T
im

e 
(s

)

0
2

4
6

8
10

0% 30% 50% 70% 90%

ICMDR−EM
SBNDR
CNM
HCNM

n = 6400

Proportion of Exact Observations, r

C
om

pu
ta

tio
n 

T
im

e 
(s

)

0
50

10
0

15
0

0% 30% 50% 70% 90%

ICMDR−EM
SBNDR
CNM
HCNM

Fig. 2 Mean computation time, comparing HCNM with competing algorithms.

While specific details still need to be worked out,

the HCNM can also be applied to the bivariate and,
more generally, multivariate cases; see also Bogaerts

and Lesaffre (2004) and Maathuis (2005) for fast al-

gorithms for finding the maximal intersection regions

in the multivariate case. In such cases, one only needs

to partition the set of potential support regions (as op-
posed to intervals discussed in this paper) into a hier-

archy of blocks, based on their neighborhood informa-

tion, and possibly in a dynamic manner so that condi-

tion (12) is guaranteed. Then the rest of the computa-
tion can proceed very much in the same way.

The time complexities of CNM and HCNM depend

mainly on that of the NNLS algorithm. While the worst-
case time complexity of NNLS is perhaps much higher,

in our extensive numerical studies it consistently ex-

hibits O(nm2), where n is the number of rows and m

(≤ n) the number of columns of the design matrix that

is provided to NNLS as input. This is of the same or-
der as solving an ordinary least squares problem. If

this holds true, and since NNLS dominates the com-

putational cost of CNM, the full-dimensional and the

dimension-reduced CNM have, respectively, time com-
plexities O(nm2) and O(nm̂2 + nm) per iteration, m



12 Yong Wang 1 and Stephen M. Taylor 2

being the number of maximal intersection intervals and

m̂ the number of support intervals of the NPMLE. By

using the block size formula (14), it is easy to derive

that HCNM has time complexity O(nm̂ log(m̂) + nm)

per iteration. If, in addition, HCNM does not take many
more iterations than CNM, with supporting evidence

given in Tables 3 and 4, it gives a dramatic reduction

in time complexity over CNM. As a result, one can ex-

pect a remarkable performance gain in practice, espe-
cially when m̂ is large. This, and the fact that for small

m̂, HCNM reduces to CNM which is already fast in this

case, made it the only algorithm that performed best in

all circumstances we studied. It is thus the best choice

in practice where m̂ is inevitably unknown beforehand.

Acknowledgments

The authors thank the two anonymous reviewers for

constructive comments and Bruce Lindsay for helpful

suggestions. This research was supported by a Marsden

grant of the Royal Society of New Zealand (9145/3608546).

A Linear regression over a simplex

Consider the constrained least squares problem:

min
x

||Ax− b||2, s.t. x⊤1 = δ, x ≥ 0,

for δ > 0. It can be solved by the NNLS algorithm of Law-
son and Hanson (1974), after a transformation suggested by
Dax (1990). Letting y = x/δ and c = b/δ, it is apparent that
the problem is equivalent to

min
y

||Ay − c||2, s.t. y⊤1 = 1, y ≥ 0,

which is further equivalent to

min
y

||Py||2, s.t. y⊤1 = 1, y ≥ 0, (22)

where P = A − (c, . . . , c). The solution to problem (22) can
be found by solving the following least squares problem with
only non-negativity constraints:

min
y

||Py||2 + |y⊤1 − 1|2, s.t. y ≥ 0. (23)

By relating the Karush-Kuhn-Tucker conditions for both prob-
lems, Dax established that if ỹ solves problem (23), then
ỹ/ỹ⊤1 solves problem (22).

Problem (23) can be solved by the NNLS algorithm of
Lawson and Hanson (1974).

References

Bogaerts, K. and Lesaffre, E. (2004). A new, fast algorithm to
find the regions of possible support for bivariate interval-
censored data. Journal of Computational & Graphical Statis-
tics 13, 330–340.

Böhning, D. (1986). A vertex-exchange-method in D-optimal
design theory. Metrika 33, 337–347.

Böhning, D., Schlattmann, P., and Dietz, E. (1996). In-
terval censored data: A note on the nonparametric max-
imum likelihood estimator of the distribution function.
Biometrika 83, 462–466.

Chen, L., Jha, P., Sirling, B., Sgaier, S. K., Daid, T., Kaul,
R., and Nagelkerke, N. (2007). Sexual risk factors for HIV
infection in early and advanced HIV epidemics in Sub-
Saharan Africa: systematic overview of 68 epidemiological
studies. PLoS ONE 2, e1001.

Dax, A. (1990). The smallest point of a polytope. Journal of
Optimization Theory and Applications 64, 429–432.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Max-
imum likelihood from incomplete data via the EM algo-
rithm. Journal of the Royal Statistical Society, Ser. B 39,
1–22.

Dümbgen, L., Freitag-Wolf, S., and Jongbloed, G. (2006).
Estimating a unimodal distribution from interval-censored
data. Journal of the American Statistical Association 101,
1094–1106.

Gentleman, R. and Vandal, A. C. (2001). Computational
algorithms for censored-data problems using intersection
graphs. Journal of Computational & Graphical Statistics 10,
403–421.

Gentleman, R. and Vandal, A. C. (2009). Icens: NPMLE for
censored and truncated data. R package version 1.18.0.

Groeneboom, P. (1991). Nonparametric maximum likelihood
estimators for interval censoring and deconvolution. Tech-
nical Report 378, Department of Statistics, Stanford Uni-
versity.

Groeneboom, P., Jongbloed, G., and Wellner, J. A. (2008).
The support reduction algorithm for computing nonpara-
metric function estimates in mixture models. Scandinavian
Journal of Statistics 35, 385–399.

Groeneboom, P. and Wellner, J. A. (1992). Information
Bounds and Nonparametric Maximum Likelihood Estimation.
Basel: Birkhäuser.

Jongbloed, G. (1998). The iterative convex minorant algo-
rithm for nonparametric estimation. Journal of Computa-
tional & Graphical Statistics 7, 301–321.

Kumwenda, N. I., Hoover, D. R., Mofenson, L. M., Thigpen,
M. C., Kafulafula, G., Li, Q., Mipando, L., Nkanaunena,
K., Mebrahtu, T., Bulterys, M., Fowler, M. G., and Taha,
T. E. (2008). Extended antiretroviral prophylaxis to reduce
breast-milk HIV-1 transmission. New England Journal of
Medicine 359, 119–129.

Lawson, C. L. and Hanson, R. J. (1974). Solving Least Squares
Problems. Prentice-Hall, Inc.

Lesperance, M. L. and Kalbfleisch, J. D. (1992). An algorithm
for computing the nonparametric MLE of a mixing distri-
bution. Journal of the American Statistical Association 87,
120–126.

Lindsay, B. G. (1995). Mixture Models: Theory, Geometry and
Applications, Volume 5 of NSF-CBMS Regional Conference
Series in Probability and Statistics. Institute for Mathemat-
ical Statistics: Hayward, CA.

Maathuis, M. H. (2005). Reduction algorithm for the NPMLE
for the distribution of bivariate interval-censored data.
Journal of Computational & Graphical Statistics 14, 352–
362.

Maathuis, M. H. (2007). MLEcens: Computation of the MLE
for bivariate (interval) censored data. R package version
0.1-2.

Peto, R. (1973). Experimental survival curves for interval-
censored data. Applied Statistics 22, 86–91.



Efficient Computation of Nonparametric Survival Functions via a Hierarchical Mixture Formulation 13

Pilla, R. S. and Lindsay, B. G. (2001). Alternative
EM methods for nonparametric finite mixture models.
Biometrika 88, 535–550.

Siegfried, N., Clarke, M., and Volmink, J. (2005). Ran-
domised controlled trials in Africa of HIV and AIDS: de-
scriptive study and spatial distribution. BMJ 331, 742.

Sun, J. (2006). The Statistical Analysis of Interval-censored
Failure Time Data. Springer.

Turnbull, B. W. (1974). Nonparametric estimation of a sur-
vivorship function with doubly censored data. Journal of
the American Statistical Association 69, 169–173.

Turnbull, B. W. (1976). The empirical distribution func-
tion with arbitrarily grouped, censored and truncated data.
Journal of the Royal Statistical Society, Ser. B 38, 290–295.

Wang, Y. (2007). On fast computation of the non-parametric
maximum likelihood estimate of a mixing distribution.
Journal of the Royal Statistical Society, Ser. B 69, 185–198.

Wang, Y. (2008). Dimension-reduced nonparametric max-
imum likelihood computation for interval-censored data.
Computational Statistics & Data Analysis 52, 2388–2402.

Wellner, J. A. and Zhan, Y. (1997). A hybrid algorithm for
computation of the nonparametric maximum likelihood es-
timator from censored data. Journal of the American Sta-
tistical Association 92, 945–959.

Wong, G. Y. and Yu, Q. (1999). Generalized MLE of a joint
distribution function with multivariate interval-censored
data. Journal of Multivariate Analysis 69, 155–166.

Wu, C. F. (1978). Some algorithmic aspects of the theory of
optimal designs. Annals of Statistics 6, 1286–1301.


