Skip to main content
Log in

Two step estimation for Neyman-Scott point process with inhomogeneous cluster centers

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

This paper is concerned with parameter estimation for the Neyman-Scott point process with inhomogeneous cluster centers. Inhomogeneity depends on spatial covariates. The regression parameters are estimated at the first step using a Poisson likelihood score function. Three estimation procedures (minimum contrast method based on a modified K function, composite likelihood and Bayesian methods) are introduced for estimation of clustering parameters at the second step. The performance of the estimation methods are studied and compared via a simulation study. This work has been motivated and illustrated by ecological studies of fish spatial distribution in an inland reservoir.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baddeley, A., Møller, J., Waagepetersen, R.P.: Non- and semiparametric estimation of interaction in inhomogeneous point patterns. Stat. Neerl. 54, 329–350 (2000)

    Article  MATH  Google Scholar 

  • Bertram, B.C.R.: Living in groups: predators and prey. In: Krebs, J.R., Davies, N.B. (eds.) Behavioural Ecology, 1st edn., pp. 64–96. Blackwell, Oxford (1978)

    Google Scholar 

  • Brix, A., Senoussi, R., Couteron, P., Chadouf, J.: Assessing goodness of fit of spatially inhomogeneous Poisson processes. Biometrika 88(2), 487–497 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  • Diggle, P.J.: Statistical Analysis of Spatial Point Patterns, 2nd edn. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  • Dvořák, J., Prokešová, M.: Moment estimation methods for stationary spatial cox processes—a comparison. Kybernetika (2012, submitted)

  • Guan, Y.: A composite likelihood approach in fitting spatial point process models. J. Am. Stat. Soc. 101, 1502–1512 (2006)

    Article  MATH  Google Scholar 

  • Guttorp, P., Thorarinsdottir, T.L.: Bayesian inference for non-Markovian point processes. In: Porcu, E., Montero, J.M., Schlather, M. (eds.) Advances and Challenges in Space-Time Modelling of Natural Events. Springer, Berlin (2012)

    Google Scholar 

  • Illian, J., Penttinen, A., Stoyan, H., Stoyan, D.: Statistical Analysis and Modelling of Spatial Point Patterns. Wiley, New York (2008)

    MATH  Google Scholar 

  • Jarolim, O., Kubecka, J., Cech, M., Vasek, M., Peterka, J., Matena, J.: Sinusoidal swimming in fishes: the role of season, density of large zooplankton, fish length, time of the day, weather condition and solar radiation. Hydrobiologia 654, 253–265 (2010)

    Article  Google Scholar 

  • Møller, J., Waagepetersen, R.P.: Statistical Inference and Simulation for Spatial Point Processes. Chapman & Hall/CRC, London (2004)

    Google Scholar 

  • Møller, J., Waagepetersen, R.P.: Modern statistics for spatial point processes. Scand. J. Stat. 34(4), 643–684 (2007)

    Google Scholar 

  • Peterka, J., Cech, M., Vasek, M., Juza, T., Drastik, M., Prchalova, M., Kubecka, J., Matena, J.: Fish occurrence in the open water habitat of the eutrophic canyon shaped rimov reservoir (Southern Bohemia): comparing indirect and direct methods of investigation. In: Kubecka, J. (ed.) Fish Stock Assessment Methods for Lakes and Reservoirs. HBI BC AS CR, Ceske Budejovice (2007), 42 pp.

    Google Scholar 

  • Pitcher, T.J.: Sensory information and the organisation of behaviour of shoaling cyprinid. Anim. Behav. 27, 126–149 (1979)

    Article  Google Scholar 

  • Prokešová, M.: Inhomogeneity in spatial point processes—geometry versus tractable estimation. Image Anal. Stereol. 29(3), 133–141 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  • Schoenberg, F.P.: Consistent parametric estimation of the intensity of a spatial-temporal point processes. J. Stat. Plan. Inference 128, 79–93 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • Simmonds, E.J., MacLennan, D.N.: Fisheries Acoustics, 2nd edn. Wiley-Blackwell, Oxford (2005)

    Book  Google Scholar 

  • Stoyan, D., Kendall, W.S., Mecke, J.: Stochastic Geometry and Its Applications, 2nd edn. Wiley, Chichester (1995)

    MATH  Google Scholar 

  • Waagepetersen, R.P.: An estimating function approach to inference for inhomogeneous Neyman-Scott processes. Biometrics 63(1), 252–258 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Waagepetersen, R.P., Guan, Y.: Two-step estimation for inhomogeneous spatial point processes. J. R. Stat. Soc. B 71(3), 685–702 (2009)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank to three referees and Samuel Soubeyrand for their helpful comments and Samuel Soubeyrand for checking the program codes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Mrkvička.

Additional information

The work was supported by the Grant Agency of Czech Republic, Projects Nos. P201/10/0472 and 206/07/1392. The access to the MetaCentrum computing facilities, provided under the programme “Projects of Large Infrastructure for Research, Development, and Innovations” LM2010005 funded by the Ministry of Education, Youth, and Sports of the Czech Republic, is acknowledged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mrkvička, T., Muška, M. & Kubečka, J. Two step estimation for Neyman-Scott point process with inhomogeneous cluster centers. Stat Comput 24, 91–100 (2014). https://doi.org/10.1007/s11222-012-9355-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-012-9355-3

Keywords

Navigation