Skip to main content
Log in

Smoothing combined estimating equations in quantile regression for longitudinal data

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

Quantile regression has become a powerful complement to the usual mean regression. A simple approach to use quantile regression in marginal analysis of longitudinal data is to assume working independence. However, this may incur potential efficiency loss. On the other hand, correctly specifying a working correlation in quantile regression can be difficult. We propose a new quantile regression model by combining multiple sets of unbiased estimating equations. This approach can account for correlations between the repeated measurements and produce more efficient estimates. Because the objective function is discrete and non-convex, we propose induced smoothing for fast and accurate computation of the parameter estimates, as well as their asymptotic covariance, using Newton-Raphson iteration. We further develop a robust quantile rank score test for hypothesis testing. We show that the resulting estimate is asymptotically normal and more efficient than the simple estimate using working independence. Extensive simulations and a real data analysis show the usefulness of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Brown, B.M., Wang, Y.G.: Standard errors and covariance matrices for smoothed rank estimators. Biometrika 92, 149–158 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • Brown, B.M., Wang, Y.G.: Induced smoothing for rank regression with censored survival times. Stat. Med. 26, 828–836 (2007)

    Article  MathSciNet  Google Scholar 

  • Chen, K., Ying, Z., Zhang, H., Zhao, L.: Analysis of least absolute deviation. Biometrika 95, 107–122 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Crowder, M.: On the use of a working correlation matrix in using generalized linear models for repeated measures. Biometrika 82, 407–410 (1995)

    Article  MATH  Google Scholar 

  • Diggle, P.J., Heagerty, P.J., Liang, K.Y., Zeger, S.L.: Analysis of Longitudinal Data. Oxford University Press, Oxford (2002)

    Google Scholar 

  • Fu, L., Wang, Y.G.: Quantile regression for longitudinal data with a working correlation model. Comput. Stat. Data Anal. 56, 2526–2538 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  • Hall, P., Sheather, S.J.: On the distribution of a studentized quantile. J. R. Stat. Soc. B 50, 381–391 (1988)

    MATH  MathSciNet  Google Scholar 

  • Hansen, P.L.: Large sample properties of generalized method of moments estimators. Econometrica 50, 1029–1054 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  • He, X., Fu, B., Fung, W.K.: Median regression of longitudinal data. Stat. Med. 22, 3655–3669 (2003)

    Article  Google Scholar 

  • Hendricks, W., Koenker, R.: Hierarchical spline models for conditional quantiles and the demand for electricity. J. Am. Stat. Assoc. 87, 58–68 (1992)

    Article  Google Scholar 

  • Hunter, D.R., Lange, K.: Quantile regression via an MM algorithm. J. Comput. Graph. Stat. 9, 60–77 (2000)

    MathSciNet  Google Scholar 

  • Johnson, L.M., Strawderman, R.L.: Induced smoothing for the semiparametric accelerated failure time model: asymptotics and extensions to clustered data. Biometrika 96, 577–590 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  • Jung, S.: Quasi-likelihood for median regression models. J. Am. Stat. Assoc. 91, 251–257 (1996)

    Article  MATH  Google Scholar 

  • Koenker, R.: Quantile regression for longitudinal data. J. Multivar. Anal. 91, 74–89 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Koenker, R.: Quantile Regression. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  • Koenker, R., Bassett, G.: Regression quantiles. Econometrica 50, 1577–1584 (1978)

    Article  MathSciNet  Google Scholar 

  • Kocherginsky, M., He, X., Mu, Y.: Practical confidence intervals for regression quantiles. J. Comput. Graph. Stat. 14, 41–55 (2005)

    Article  MathSciNet  Google Scholar 

  • Liang, K.Y., Zeger, S.L.: Longitudinal data analysis using generalized linear models. Biometrika 73, 13–22 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  • Li, H., Yin, G.: Generalized method of moments estimation for linear regression with clustered failure time data. Biometrika 96, 293–306 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  • Mu, Y., Wei, Y.: A dynamic quantile regression transformation model for longitudinal data. Stat. Sin. 19, 1137–1153 (2009)

    MATH  MathSciNet  Google Scholar 

  • Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7, 308–313 (1965)

    Article  MATH  Google Scholar 

  • Qu, A., Li, R.: Nonparametric modeling and inference function for longitudinal data. Biometrics 62, 379–391 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Qu, A., Lindsay, B., Li, B.: Improving generalised estimating equations using quadratic inference functions. Biometrika 87, 823–836 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  • Tang, C.Y., Leng, C.: Empirical likelihood and quantile regression in longitudinal data analysis. Biometrika 98, 1001–1006 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  • Wang, H.: Inference on quantile regression for heteroscedastic mixed models. Stat. Sin. 19, 1247–1261 (2009)

    MATH  Google Scholar 

  • Wang, Y.G., Carey, V.: Working correlation structure misspecification, estimation and covariate design: implications for generalised estimating equations performance. Biometrika 90, 29–41 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • Wang, H., Fygenson, M.: Inference for censored quantile regression models in longitudinal studies. Ann. Stat. 37, 756–781 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  • Wang, H., He, X.: Detecting differential expressions in GeneChip microarray studies: a quantile approach. J. Am. Stat. Assoc. 102, 104–112 (2007)

    Article  MATH  Google Scholar 

  • Wang, H., Zhu, Z., Zhou, J.: Quantile regression in partially linear varying coefficient models. Ann. Stat. 37, 3841–3866 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  • Wei, Y., He, X.: Conditional growth charts (with discussion). Ann. Stat. 34, 2069–2131 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Xue, L., Qu, A., Zhou, J.: Consistent model selection for marginal generalized additive model for correlated data. J. Am. Stat. Assoc. 105, 1518–1530 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank the associate editor and two referees whose comments have led to a much improved paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenlei Leng.

Additional information

C. Leng’s research is supported in part by NUS academic research grants. W. Zhang’s research is supported by the NSF of China (Nos. 11271347, 11171321).

Appendix

Appendix

To prove the theorems, we first give a set of regularity conditions. For any matrix A, ∥A∥ denotes the modulus of the largest singular values of A. We mainly follow Johnson and Strawderman (2009) for the proof and make the following standard assumptions (Koenker 2005).

Assumption A.1

The dimension p of covariates x ij is fixed; m→∞ and max{n i } is bounded. The distribution functions \(F_{ij}(z)=P(y_{ij}-x_{ij}^{T}\beta_{\tau}\le z|x_{ij})\) are absolutely continuous, with continuous densities f ij and its first derivative uniformly bounded away from 0 and ∞ at the points 0, i=1,…,m;j=1,…,n i .

Assumption A.2

The true β τ is in the interior of a compact set Θ∈ℝp.

Assumption A.3

There exist finite matrices A lk (l,k=1,…,a) and nonsingular matrices G l (β τ ),l=1,…,a such that

  1. (1)

    \(\lim_{m\rightarrow\infty} \frac{1}{m}\sum_{i=1}^{m}x_{i}^{T}\varGamma_{i}M_{li}M^{T}_{ki}\varGamma_{i}x_{i}=A_{lk},\ l,k= 1, \ldots,a\).

  2. (2)

    \(\lim_{m\rightarrow\infty} \frac{1}{m}\sum_{i=1}^{m}x_{i}^{T}\varGamma_{i}M_{li}\varGamma_{i}x_{i}=G_{l}(\beta_{\tau}), l=1,\ldots,a\).

  3. (3)

    \(\lim_{m\rightarrow\infty}\frac{1}{\sqrt{m}} \max\|x_{ij}\|=0\).

Proof of Theorem 1

Without loss of generality, we consider the lth component of S(β) and let \(\beta=\beta_{\tau}+\delta/\sqrt{m}\),

(9)

where 0<δ<∞, ε i =y i x i β τ and \(Z_{i}=I(\varepsilon_{i}<x_{i}\delta/\sqrt{m})-I(\varepsilon_{i}<0)\). For the second term, write

By Assumption A.3 (1) and (2), we have

(10)

By Cauchy-Schwartz Inequality and Assumption A.3, for all ζ∈ℝp with ζ T ζ=1,

(11)

Therefore combining (9)–(11), we have

$$ m^{1/2}S(\beta)=m^{1/2}S(\beta_\tau)-G_m( \beta_\tau)\delta+o_p(1), $$
(12)

where \(G_{m}(\beta_{\tau})=(G_{m,1}^{T}(\beta_{\tau}),\ldots ,G_{m,a}^{T}(\beta_{\tau}))^{T}\) with \(G_{m,l}(\beta_{\tau})=\frac{1}{m}\sum_{i=1}^{m} x_{i}^{T}\varGamma_{i}M_{li}\varGamma_{i}x_{i}\), l=1,…,a.

Let S (β)=S(β τ )−G m (β τ )(ββ τ ) and \(Q^{*}_{m}(\beta)=\{S^{*}(\beta)\}^{T}\{\varSigma^{*}_{m}(\beta)\}^{-1}S^{*}(\beta)\) where \(\varSigma^{*}_{m}(\beta)=\frac{1}{m}\sum_{i=1}^{m}S_{i}^{*}\cdot\{S_{i}^{*}\}^{T}-S^{*}(\beta )\{S^{*}(\beta)\}^{T}\) with \(S_{i}^{*}(\beta)=S_{i}(\beta_{\tau})-G_{m,i}(\beta-\beta_{\tau}), i=1,\ldots,a\). We then have that

$$\sup_{\|\beta-\beta_\tau\|<t/\sqrt{m}}\bigl \Vert Q_m(\beta)-Q_m^*(\beta) \bigr \Vert =o_p\bigl(m^{-1}\bigr) $$

for any fixed t>0. By (1) of Assumption A.3 and the boundedness of \(\psi_{\tau}(y_{i}-x_{i}'\beta_{\tau})\psi^{T}_{\tau}(y_{i}-x_{i}'\beta_{\tau})\), we have

$$\sup_{\|\beta-\beta_\tau\|<t/\sqrt{m}}\bigl \Vert \varSigma^*_m(\beta)-\varSigma ( \beta_\tau)\bigr \Vert \rightarrow0, $$

for any fixed t>0, in probability, where \(\varSigma(\beta_{\tau})= \mathit{cov}(\sqrt {m}S(\beta_{\tau}))\).

From (12) and the definition of S (β), we can see that S(β) is asymptotically equivalent to S (β). Thus in a neighborhood of β τ , the objective function Q m (β) is asymptotically equivalent to the smoothed objective function \(Q_{m}^{*}(\beta)\) at the rate of 1/m. We then conclude that the minimizer of Q m (β) in a neighborhood of β τ is also minimizing the smoothed objective function \(Q_{m}^{*}(\beta)\) asymptotically. Since \(\hat{\beta}\) minimizes Q m (β), and equivalently \(Q_{m}^{*}(\beta )\), we obtain that

The second derivative matrix is asymptotically positive definite, which guarantees a unique minimum. Since \(\hat{\beta}\) satisfies \(\partial Q_{m}^{*}(\beta)/\partial\beta |_{\hat{\beta}}=0\) and \(Q_{m}(\beta_{\tau})=Q_{m}^{*}(\beta_{\tau})\), and by the continuity of \(\partial Q_{m}^{*}(\beta)/\partial\beta\) at β τ , \(\hat{\beta}\) convergences to β τ in probability, as m→∞.

Since m 1/2 S(β τ ) converges to a zero-mean normal distribution with a variance-covariance matrix Σ(β τ ), letting G(β τ )=lim m→∞ G m (β τ ) and by Slutsky’s theorem, we have

$$\sqrt{m}(\hat{\beta}-\beta_\tau)\rightarrow N\bigl(0, \bigl(G^T(\beta_\tau )\varSigma^{-1}( \beta_\tau)G(\beta_\tau)\bigr)^{-1}\bigr). $$

 □

Proof of Theorem 2

Without loss of generality, we consider the lth component of \(\tilde{S}\), \(\tilde{S}_{(l)}(\beta)=E_{\vartheta}S_{(l)}(\beta+m^{-1/2}\varOmega^{1/2}\vartheta)\), where ϑN(0,I p ). Then by the differentiability of \(\tilde {S}_{(l)}(\beta)\) and Taylor expansion, for all ∥δ∥≤C for some finite constant C, we have

$$ \sqrt{m}\tilde{S}_{(l)}(\beta_\tau+\delta/ \sqrt{m})=\sqrt {m}\tilde {S}_{(l)}(\beta_\tau)-E \tilde{S}'_{(l)}(\beta_\tau)\delta+o(1), $$
(13)

where \(E\tilde{S}'_{(l)}(\beta_{\tau})=\frac{1}{m}\sum_{i=1}^{m} x_{i}^{T}\varGamma_{i}M_{li}D_{i}x_{i}\) and D i is a n i ×n i diagonal matrix with elements \(E_{\varepsilon_{ij}}\phi(\sqrt{m}\frac{\varepsilon_{ij}}{r_{ij}})\frac{\sqrt{m}}{r_{ij}}\). Notice that

where ∫ϕ(x)f ij (0)dx=f ij (0) and \(|{\frac{r_{ij}}{\sqrt{m}}}\int\!\phi(x)f_{ij}(w^{*})x dx| \le M{\frac{r_{ij}}{\sqrt{m}}}\int|x|\phi (x)dx\rightarrow0\). Thus \(E\tilde{S}'_{(l)}(\beta_{\tau})=G_{ml}(\beta_{\tau})+o(1)\).

Following the proof of Theorem 1, if

$$ m^{1/2}\bigl \Vert \tilde{S}(\beta_\tau)-S( \beta_\tau)\bigr \Vert \rightarrow0 $$
(14)

holds in probability, then

$$\sup_{\|\beta-\beta_\tau\|<t/\sqrt{m}}\bigl \Vert \tilde{Q}_m(\beta )-Q_m^*(\beta )\bigr \Vert =o_p\bigl(m^{-1} \bigr), $$

and thus \(\tilde{\beta}\) converges to β τ in probability.

To see that (14) holds, write

$$\tilde{S}(\beta_\tau)-S(\beta_\tau)=\int _{\mathbb{R}^p}\bigl[S\bigl(\beta_\tau +m^{-1/2}u \bigr)-S(\beta_\tau)\bigr]\phi_\varOmega(u)du, $$

where ϕ Ω (⋅) denotes the pdf of Ω 1/2 ϑ. Let K m (u,β τ )=∥S(β τ +m −1/2 u)−S(β τ )−m −1/2 G(β τ )u∥. Then, since \(\int_{\mathbb{R}^{p}}u\phi_{\varOmega}(u)du=0\), the triangle inequality implies

(15)

for any ϵ m >0. By Assumption A.3 and the proof of (12), it is easy to see that

$$ \sup_{\|b-\beta_\tau\|\le d_m}\frac{\|S(b)-S(\beta_\tau)+G(\beta_\tau )(b-\beta_\tau)\|}{1+m^{1/2}\|b-\beta_\tau\|}=o_p \bigl(m^{-1/2}\bigr) $$
(16)

for any positive sequences d m →0. Suppose ϵ m =o(m 1/2), then taking b=β τ +m 1/2 u, d m =m −1/2 ϵ m , (16) implies

$$ \sup_{\|u\|\le\epsilon_m}\frac{K_m(u;\beta_\tau)}{1+\|u\|}=o_p \bigl(m^{-1/2}\bigr). $$
(17)

An easy calculation, in combination with (17), now shows that the first integral on the right-hand side of the inequality in (15) converges in probability to zero, even if ϵ m →∞. With regard to the second term on the right-hand side of (15), we may use the definition of K m (⋅;β τ ) and the triangle inequality to write \(\sqrt{m}\int_{\|u\|> \epsilon _{m}}K_{m}(u,\beta_{\tau})\phi_{\varOmega}(u)du\le A_{1}+A_{2}\), where

For all βΘ, ∥S(β)∥≤A for some positive constant A<∞ by Assumptions A.2 and A.3, hence A 1≤2Am 1/2P(∥Ω 1/2 ϑ∥>ϵ m )→0 as m→∞. Similarly, \(\int_{\|u\|>\epsilon_{m}}\|u\|\phi_{\varOmega}(u)du\rightarrow0\). Therefore, the second integral on the right-hand side of the inequality in (15), also converges in probability to zero. It follows that (14) converges in probability to zero as m→∞.

The asymptotic normality of \(\tilde{\beta}\) is obtained directly following the proof of Theorem 1. The proof is completed. □

Proof of Theorem 3

Following the similar argument in the proof of Theorem 1, under Assumptions A.1–A.3 and the null hypotheses H 0, we obtain

$$ \hat{\alpha}-\alpha_\tau=O_p\bigl(m^{-1/2} \bigr), $$
(18)

where \(\hat{\alpha}=\arg\min_{\alpha}\tilde{Q}(\alpha)\) under the null hypothesis H 0. Let

where \(M_{i}=(M_{1i}^{T},\ldots,M_{ai}^{T})^{T}\). Then following a similar argument as in the proof of Lemma A.2 in Wang and He (2007), for some constant C,

$$ \sup_{\|t\|\le C}\bigl \Vert r_m(t)-E\bigl \{r_m(t)\bigr\}\bigr \Vert =o_p(1). $$
(19)

A Taylor expansion of E{r m (t)} around 0 gives

(20)

where the last step is due to the fact that Z T Δ=0 by construction. Now, (20) together with (19) and (18) yields

$$ U_{(1)}-m^{-1/2}\sum_i \bigl[I_a\otimes\bigl(Z_i^T \varGamma_i\bigr)\bigr]M_i\psi_\tau ( \varepsilon_i)=o_p(1). $$
(21)

Note that U (1) is a a(pq)-dimensional vector. The asymptotic normality of U (1) follows then from the Lindberg-Feller Central Limit Theorem, which together with similar argument as in the proof of Theorem 1 completes the proof. □

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leng, C., Zhang, W. Smoothing combined estimating equations in quantile regression for longitudinal data. Stat Comput 24, 123–136 (2014). https://doi.org/10.1007/s11222-012-9358-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-012-9358-0

Keywords

Navigation