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Abstract The fractional birth and the fractional death

processes are more desirable in practice than their clas-

sical counterparts as they naturally provide greater flex-

ibility in modeling growing and decreasing systems. In

this paper, we propose formal parameter estimation

procedures for the fractional Yule, the fractional lin-

ear death, and the fractional sublinear death processes.

The methods use all available data possible, are com-

putationally simple and asymptotically unbiased. The

procedures exploited the natural structure of the ran-

dom inter-birth and inter-death times that are known to

be independent but are not identically distributed. We

also showed how these methods can be applied to cer-

tain models with more general birth and death rates.

The computational tests showed favorable results for

our proposed methods even with relatively small sample
sizes. The proposed methods are also illustrated using

the branching times of the plethodontid salamanders

data of Highton and Larson (1979).
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1 Introduction

Recently, generalizations of the classical birth and death

processes have been developed using the techniques of

fractional calculus. These are called the fractional birth

(Uchaikin et al. 2008; Orsingher and Polito 2010; Ca-

hoy and Polito 2012) and the fractional death (Ors-

ingher et al. 2010) processes, correspondingly. A ma-

jor advantage of these models over their classical coun-

terparts is that they can capture both Markovian and

non-Markovian structures of a growing or decreasing

system.

When the birth and death rates are both linear, they

are then called the fractional linear birth or fractional

Yule or Yule–Furry process (fYp) and fractional linear

death process, respectively. The classical linear birth
or Yule process has been widely used to model various

stochastic systems such as cosmic showers in physics

and epidemics in biology to name a few (see e.g., Nee

et al. 1994a; Aldous 2001; Nee 2001; Paradis 2012).

Note also that the fractional linear birth process was

partially investigated by Uchaikin et al. (2008) using

the Riemann-Liouville derivative operator but was con-

tinued and generalized by Orsingher and Polito (2010)

using the Caputo derivative. The inter-birth time dis-

tribution, which provided a way to simulate the fYp

was derived in Cahoy and Polito (2012). With this,

we adopt the fYp from Orsingher and Polito (2010).

In addition, the definition of the fractional linear and

fractional sublinear death processes are taken from Ors-

ingher et al. (2010).

For completeness, we first enumerate some proper-

ties of the fractional Yule (with one progenitor) and

the fractional linear death (with initial population size

n0 > 1) processes, which will be used in the subse-

quent discussions. Table 1.1 below shows the probabil-
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ity P̃ (t) of no event (no birth or no death) at time t,

the state probability mass function Pi(t) or the proba-

bility of having (i− 1) births or (n0− i) deaths by time

t, the probability density function fi(t) of the indepen-

dent but non-identically distributed random inter-event

times, the mean, and the variance of the fractional Yule

and the fractional linear death processes. Note that the

fractional Yule and the fractional linear death processes

have the parameters λ > 0 and µ > 0 as the birth and

death intensities, correspondingly.

Note that

Eδ,β (x) =

∞∑
j=0

xj

Γ (δj + β)
(1.1)

is the Mittag–Leffler function. 1

In this article, we propose regression-based proce-

dures to estimate the parameters of the fractional lin-

ear birth, the fractional linear death, and the fractional

sublinear death processes. The rest of the paper is or-

ganized as follows. In Section 2, the specific functional

forms of the inter-death time distributions and the vari-

ances of the fractional linear and sublinear death pro-

cesses are obtained. These results allowed us to apply

our methods to these processes. Section 3 introduces

the proposed method using the fractional Yule, the frac-

tional linear death, and the fractional sublinear death

processes as examples. The section also shows some ex-

tensions of the procedures to certain models. Section

4 contains the empirical test results and the real-data

application of the proposed methods for the case of the
fYp only as similar inference procedures can be applied

to the fractional linear and fractional sublinear death

processes. The summary and extensions of our study

are given in Section 5.

2 More properties of the fractional linear and

fractional sublinear death processes

We now derive some properties which will permit us to

apply the proposed estimation procedures to the frac-

tional linear death and the fractional sublinear death

processes. More specifically, the theorems below showed

that the inter-death times for both the fractional linear

and sublinear death processes are Mittag-Leffler dis-

tributed. The variances of both processes are also de-

rived.

1 Note: The entries with (**) are new results and are de-
rived in Section 2.

Theorem 2.1 The inter-death time T νk of the fractional

linear death process {Mν(t), t > 0} with death rate in-

tensity µ > 0, and n0 ∈ N initial individuals are inde-

pendent but are non-identically distributed with proba-

bility density function

Pr{T νk ∈ dt}/dt = µ(n0 − k)tν−1Eν,ν(−µ(n0 − k)tν),

where k = 0, 1, . . . , n0 − 1, and T νk is the random time

separating the kth and (k + 1)th death.

Proof We prove the theorem by induction. When k = 0

we obtain

Pr{T ν0 ≤ t} = Pr{Mν(t) < n0} (2.1)

= 1− Pr{Mν(t) = n0}
= 1− P̃ (t) (see Table 1.1)

= 1− Eν,1(−µn0tν).

Therefore

Pr{T ν0 ∈ dt}/dt =
d

dt
Pr{T ν0 ≤ t} (2.2)

= µn0t
ν−1Eν,ν(−µn0tν).

For k = 1 we observe

Pr{T ν0 + T ν1 ∈ dt}/dt (2.3)

=
d

dt
Pr{T ν0 + T ν1 < t}

=
d

dt
Pr{Mν(t) < n0 − 1}

=
d

dt

[
1− Pr{Mν(t) = n0} − Pr{Mν(t) = n0 − 1}

]
.

Using Table 1.1 we get

Pr{T ν0 + T ν1 ∈ dt}/dt (2.4)

= − d

dt
Eν,1(−µn0tν)

− d

dt
[n0Eν,1(−(n0 − 1)µtν)− n0Eν,1(−n0µtν)]

= µn0t
ν−1Eν,ν(−µn0tν)

+ n0(n0 − 1)µtν−1Eν,ν(−µ(n0 − 1)tν)

− n20µtν−1Eν,ν(−µn0tν)

= n0(n0 − 1)µtν−1 [Eν,ν(−µ(n0 − 1)tν)

−Eν,ν(−µn0tν)] .

To check the preceding results, we can obtain the Laplace

transform as∫ ∞
0

e−wt Pr{T ν0 + T ν1 ∈ dt} (2.5)

=
n0(n0 − 1)µ

wν + µ(n0 − 1)
− n0(n0 − 1)µ

wν + µn0
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Table 1.1 Known properties of fractional Yule (Nν(t)) and linear death (Mν(t)) processes.

fractional Yule process fractional linear death process

P̃ (t) Eν,1(−λtν) Eν,1(−µn0tν)

Pi(t)
∑i
j=1

(
i−1
j−1

)
(−1)j−1Eν,1(−λjtν), i ≥ 1

(
n0

i

)∑n0−i
j=0

(
n0−i
j

)
(−1)jEν,1(−(i+ j)µtν), 0 ≤ i ≤ n0

fi(t) λitν−1Eν,ν(−λitν), i ≥ 1 µ(n0 − i)tν−1Eν,ν(−µ(n0 − i)tν), 0 ≤ i ≤ n0 − 1 (∗∗)

Mean Eν,1 (λtν) n0Eν,1 (−µtν)

Variance 2Eν,1 (2λtν) − Eν,1 (λtν) − (Eν,1 (λtν))2 n0(n0 − 1)Eν,1(−2µtν) + n0Eν,1(−µtν) − n2
0 (Eν,1(−µtν))2 (∗∗)

=
µn0

wν + µn0
· µ(n0 − 1)

wν + µ(n0 − 1)

=

∫ ∞
0

e−ws Pr{T ν0 ∈ ds}
∫ ∞
0

e−wy Pr{T ν1 ∈ ds}

=

∫ ∞
0

e−wt
∫ t

0

Pr{T ν1 ∈ d(t− s)}Pr{T ν0 ∈ ds}

=

∫ ∞
0

Pr{T ν0 ∈ ds}
∫ ∞
s

e−zt Pr{T ν1 ∈ d(t− s)},

which is just a convolution of two independent variables

T ν0 and T ν1 . For a general k it is sufficient to note that

Pr{T ν0 + · · ·+ T νk ∈ dt} (2.6)

=

∫ t

0

Pr{T νk ∈ d(t− s)}Pr{T ν0 + · · ·+ T νk−1 ∈ ds}.

By exploiting again the Laplace transform and writing

Dν
k = T ν0 + · · ·+ T νk , we have∫ ∞
0

e−wt Pr{Dν
k ∈ dt} (2.7)

=

∫ ∞
0

e−wt
∫ t

0

Pr{T νk ∈ d(t− s)}Pr{Dν
k−1 ∈ ds}

=

∫ ∞
0

Pr{Dν
k−1 ∈ ds}

∫ ∞
s

e−zt Pr{T νk ∈ d(t− s)}

=

∫ ∞
0

e−ws Pr{Dν
k−1 ∈ ds}

∫ ∞
0

e−wy Pr{T νk ∈ dy}

=

k∏
j=0

∫ ∞
0

e−ws Pr{T νj ∈ ds}

=

k∏
j=0

µ(n0 − j)
wν + µ(n0 − j)

. �

We now determine the variance of the fractional lin-

ear death process {Mν(t), t > 0}. Consider equation

(1.6) of Orsingher et al. (2010). That is,
dν

dtν p
ν
k(t) = µ(k + 1)pνk+1(t)− µkpνk(t), 0 ≤ k ≤ n0,

pνk(0) =

{
1, k = n0,

0, 0 ≤ k < n0.

(2.8)

It is then straightforward to arrive at{
∂ν

∂tνG
ν(u, t) = −µ(u− 1) ∂

∂uG
ν(u, t),

Gν(u, 0) = un0 ,
(2.9)

where Gν(u, t) =
∑n0

k=0 u
kpνk(t) is the probability gen-

erating function of the fractional linear death process.

This in turn leads to{
∂ν

∂tνH(t) = −2µH(t),

H(0) = n0(n0 − 1),
(2.10)

where H(t) = E(Mν(t)(Mν(t) − 1)) is the second fac-

torial moment. The solution to (2.10) reads

H(t) = n0(n0 − 1)Eν,1(−2µtν), (2.11)

and the variance can be immediately obtained as

VarMν(t) = H(t) + EMν(t)− (EMν(t))2 (2.12)

= n0(n0 − 1)Eν,1(−2µtν)

+ n0Eν,1(−µtν)− n20(Eν,1(−µtν))2.

Note that the above expression, when ν = 1, simplifies

to the variance of the classical linear death process, i.e.

VarM1(t) = n0e
−µt(1− e−µt). (2.13)

Below is the algorithm to generate a typical sam-

ple path of a fractional linear death process in Figure

2.1. Note that there are several sub-algorithms to gen-

erate the inter-death times T νj ’s that are available in

the literature (see e.g., Cahoy and Polito 2012).

Algorithm:

Step 1. Let k = 0 and the population size equal n0.

Step 2. Simulate T νk , and let the kth death time be

Dν
k = T ν0 + T ν1 + T ν2 + · · ·+ T νk .

Step 3. Set the population size n0 − k, and k = k+ 1.

Step 4. Repeat Steps 2–3 for k = 1, . . . , n0 − 1.
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Fig. 2.1 Sample paths of the classical linear death process
(top) and the fractional linear death process (bottom) in the
interval with parameters (ν, λ) = (0.75, 1) and initial popula-
tion size n0 = 40.

It can be gleaned from Figure 2.1 that the sam-

ple path of the fractional linear death process (bot-

tom) seems to decay faster at small times but is slower

for large times than its classical counterpart. The fig-

ure also indicates that it is capable of producing death

bursts especially at early stages (corresponding to small

times).

The inter-death time distribution for the fractional

sublinear death process can be easily deduced (whose

proof follows from the previous result and is omitted)

from the preceding theorem as follows.

Theorem 2.2 The fractional sublinear death process

{Mν(t), t > 0}, with death intensity rate µ > 0, and

n0 ∈ N initial individuals has the following probability

density function of the inter-death times Tνk’s

Pr{Tνk ∈ dt}/dt = µ(k + 1)tν−1Eν,ν(−µ(k + 1)tν),

with k = 0, 1, . . . , n0 − 1, where Tνk is the random time

separating the kth and (k + 1)th death.

The variance of the fractional sublinear death pro-

cess can be determined by considering equation (3.45)

of Orsingher et al. (2010). Recall that

∂2

∂u2
Gν(u, t)

∣∣∣∣
u=1

= E [Mν(t) (Mν(t)− 1)] (2.14)

= H(t).

Then

dν

dtν
H(t) = −2µ(n0+1) (EMν(t) + Pr{Mν(t) = 0} − 1)

+ 2µH(t) (2.15)

= −2µ(n0 + 1)

(
n0∑
k=1

(
n0
k

)
(−1)kEν,1(−kµtν)

+

n0∑
k=1

(
n0 + 1

k + 1

)
(−1)k+1Eν,1(−µktν)

)
+ 2µH(t)

= −2µ(n0+1)

[
n0∑
k=1

[(
n0
k

)
−
(
n0 + 1

k + 1

)]
(−1)kEν,1(−kµtν)

]
+ 2µH(t)

= 2µ(n0 + 1)

n0∑
k=1

(
n0
k + 1

)
(−1)kEν,1(−kµtν)

+ 2µH(t).

Using the initial condition H(0) = n0(n0 − 1) and let-

ting H̃(w) be the Laplace transform of H(t), we write

wνH̃(w)− wν−1n0(n0 − 1) (2.16)

= 2µ(n0 + 1)

n0∑
k=1

(
n0
k + 1

)
(−1)k

wν−1

wν + kµ
+ 2µH̃(w).

Hence,

H̃(w) (2.17)

= n0(n0 − 1)
wν−1

wν − 2µ
+ 2µ(n0 + 1)

n0∑
k=1

(
n0
k + 1

)
×

(−1)kwν−1
1

(wν + kµ)(wν − 2µ)

= n0(n0 − 1)
wν−1

wν − 2µ
+ 2µ(n0 + 1)

×
n0∑
k=1

(
n0
k + 1

)
(−1)kwν−1

[
1

wν + kµ
− 1

wν − 2µ

]
1

(−2µ)

= n0(n0−1)
wν−1

wν − 2µ
+

wν−1

wν − 2µ
(n0+1)

n0∑
k=1

(
n0
k + 1

)
(−1)k
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−(n0 + 1)

n0∑
k=1

(
n0
k + 1

)
(−1)k

wν−1

wν + kµ

=
wν−1

wν − 2µ
(1−n0)−(n0+1)

n0∑
k=1

(
n0
k + 1

)
(−1)k

wν−1

wν + kµ
.

The second factorial moment can be easily shown as

H(t) = −(n0 − 1)Eν,1(2µtν) (2.18)

+(n0 + 1)

n0∑
k=1

(
n0
k + 1

)
(−1)k+1Eν,1(−kµtν).

Thus, the variance simply follows as

VarMν(t) = H(t) + EMν(t)− [Mν(t)]
2

= −(n0 − 1)Eν,1(2µtν) + (n0 + 1)

n0∑
k=1

(
n0
k + 1

)
×(−1)k+1Eν,1(−kµtν)

+

n0∑
k=1

(
n0 + 1

k + 1

)
(−1)k+1Eν,1(−µktν)

−

[
n0∑
k=1

(
n0 + 1

k + 1

)
(−1)k+1Eν,1(−kµtν)

]2
.

Note that the algorithm above could be easily adopted

to simulate sample trajectories of the fractional sublin-

ear death process.

3 Parameter estimation

3.1 Estimation for the fractional Yule or linear birth

process

We now illustrate our estimation approach for the fYp

with birth rate λi, i ≥ 1. Furthermore, assume that a

sample trajectory of n births corresponding to n ran-

dom inter-birth times Ti’s of the fractional linear birth

process is observed. That is, n independent but are not

identically distributed random inter-birth times of the

fractional linear birth process are given. This also in-

sinuates that only a single datum is obtained from each

of the n different Mittag-Leffler distributions. This ob-

servation and the Mittag-Leffler’s seemingly complex

structure pose a computational challenge on how to

estimate the model parameters more efficiently espe-

cially for small population sizes. Recall the structural

representation of the Mittag-Leffler distributed random

inter-birth time Ti
d
= E1/νSν (see Cahoy and Polito

2012), where E
d
= exp(λi) is independent of Sν which is

a one-sided α+-stable distributed random variable. Ap-

plying the logarithmic transformation and taking the

expectation on both sides, it can be easily shown that

the mean and variance (see details in Cahoy et al.

2010) of the log-transformed i-th random sojourn time

T
′

i = ln (Ti) of the fYp are

µT ′i
=
− ln (λi)

ν
− γ, (3.1)

and

σ2
T
′
i

= π2

(
1

3ν2
− 1

6

)
, (3.2)

respectively, where γ ≈ 0.5772156649 is the Euler -

Mascheroni’s constant. The first two moments above

therefore suggest that the following simple linear re-

gression model can be fitted/formulated:

T
′

i = a0 + a1 ln i+ εi, i = 1, . . . , n, (3.3)

where

a0 =
− ln(λ)

ν
− γ, a1 =

−1

ν
, (3.4)

and εi
iid
= N

(
µε = 0, σ2

ε = σ2
T
′
i

)
. The trick used here

was to factor out the non-identical means of the log-

transformed random inter-birth or sojourn times, which

are linear functions of the logarithm of the known fixed

i. Thus, this leads to studying the widely used simple

linear regression model (see Montgomery et al. 2006).

3.1.1 Point estimation

Inverting the least squares (LS) estimators

â1 =

∑n
j=1 T

′

j

(
ln j − ln i

)
∑n
j=1

(
ln j − ln i

)2 (3.5)

and â0 = T
′
i − â1 · ln i gives the LS-based point estima-

tors of ν and λ as

ν̂ls =
−1

â1
(3.6)

and

λ̂ls = exp
(
(â0 + γ)

/
â1
)
, (3.7)

respectively, where ln i =
n∑
j=1

ln j/n, and T ′ =
n∑
j=1

T
′

j/n.

Equating σ2
ε or σ2

T
′
i

in (3.1) with its unbiased estimator

σ̂2
u =

n∑
j=1

ε̂2j/(n− 2), (3.8)

we get the residual-based point estimators

ν̂res =
1√

3
(
σ̂2
u

/
π2 + 1

6

) (see Cahoy et al. 2010)
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(3.9)

and

λ̂res = exp (−ν̂res (â0 + γ)) (3.10)

of the model parameters ν and λ, correspondingly where

ε̂i = T
′

i − T̂
′
i , and T̂

′
i = â0 + â1 ln i. Note that the

residual-based estimators exploit the residuals to esti-

mate ν rather than the negative inverse of the LS esti-

mate of the slope a1.

3.1.2 Interval estimation

We now develop interval estimators using the large-

sample properties of the least squares estimators b̂0 and

b̂1 above. The following result shows the joint asymp-

totic behavior of the proposed point estimators of ν and

λ for the fYp.

Theorem 3.1 Let 0 < ν ≤ 1 and λ > 0. Then

√
n

(
ν̂ls − ν
λ̂ls − λ

)
d−→ N

[
0, nσ2

εC
]

where “
d−→” denotes convergence in distribution,

C =

 C1 C12

C21 C2

 ,

C1 = ν4s−1,

C12 = C21 = λν3
((

ln i+ ln(λ)
)
/s
)
,

C2 = (νλ)
2
(

1/n+
(

ln i
2

+2 ln(λ)ln i+ (ln(λ))2
)
/s
)
,

and s =
n∑
j=1

(
ln j − ln i

)2
.

Proof Recall the large-sample normality of the least

squares estimators â0 and â1, i.e.,

√
n

(
â0 − a0
â1 − a1

)
d−→ N [0,Σ]

where the covariance matrix Σ is defined as

Σ = nσ2
ε


(

1/n+ ln i
2/
s
)
−ln i/s

−ln i/s s−1

 .

Recall the multivariate delta method (Ferguson 1996):

If
√
n
(
β̂n − β

)
−→ N [0,Σ] then

√
n
(
g(β̂n)− g(β)

) d→ N
[
0, ġ(β)TΣġ(β)

]
.

Hence, using the delta method above, β̂n = (â0, â1)T,

g(β̂n) = (ν̂ls, λ̂ls)
T, g(β) = (ν, λ)T, and the Jacobian

matrix

ġ(β) =

 0 exp ((a0 + γ)/a1) /a1

1/a21 − exp ((a0 + γ)/a1) (a0 + γ) /a21

 ,

we obtain the final expression of the covariance matrix

by simply substituting back a0 = − ln(λ)/ν−γ and a1 =

−1/ν. �

Corollary 3.1 Approximate (1 − α)100% confidence

intervals for ν and λ can be deduced as

ν̂ls ± zα/2σ̂εν̂
2
ls

√
s−1, (3.11)

and

λ̂ls ± zα/2σ̂εν̂lsλ̂ls

(
1/n

+
(

ln i
2

+ 2 ln(λ̂ls)ln i+ (ln(λ̂ls))
2
)/

s
)1/2

, (3.12)

respectively, where zα/2 is the (1 − α/2)th quantile of

the standard normal distribution and 0 < α < 1.

We now propose another interval estimators which

utilize the residual-based estimate of ν, and a bootstrap

technique. It can be inferred from Cahoy et al. (2010)

that a residual-based (1 − α)100% confidence interval

for ν can be

ν̂res ± zα/2

√
ν̂2res (32− 20ν̂2res − ν̂4res)

40n
, (3.13)

where zα/2 is defined above. A residual-based (1−α)100%

interval estimate for λ can also be

λ̂res ± zα/2

[e−2ν̂res(â0+γ)( ν̂2
res(32−20ν̂

2
res−ν̂

4
res)

40

n

+ ν̂2resσ̂
2
u

(
1/n+ ln i

2
/s
))]1/2

. (3.14)

Since the small-sample performance of ν̂res and the

residual-based interval estimator in (3.13) have been

shown to perform well already (see, e.g., Cahoy et al.

2010), we apply a non-parametric percentile bootstrap

technique to λ̂res using the fixed-regressor approach

to obtain a small-sample interval estimator of λ. This

well-known procedure is slightly modified by first di-

viding each residual ε̂ by
√

1− hi, where hi is the ith

leverage or the ith diagonal entry in the hat matrix

before sampling from the transformed residuals. Note

that the division of
√

1− hi is simply for correction

as the true variance of the residual ε̂i is Var ε̂i =
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σ2
ε(1 − hi) (see Montgomery et al. 2006). Hence, the

bootstrap counterpart of λ̂res is calculated as λ̂∗res =

exp (−ν̂∗res (â∗0 + γ)) where ν̂∗res used the bootstrapped

transformed or weighted residuals. A clear advantage of

the asymptotic-based procedures over the re-sampling-

based ones is that they are faster to calculate especially

for large sample sizes.

3.2 Estimation for the fractional linear and the

fractional sublinear death processes

Assuming that a sample trajectory of n0 deaths cor-

responding to n0 random inter-death times T νk ’s of a

fractional death process is observed. Following the pro-

cedure for the fractional linear birth process in the pre-

ceding subsection, we can estimate the parameters ν

and µ by regressing ln (T νk ) with ln(n0−k). That is, we

fit the following simple linear regression model:

ln (T νk ) = b0 + b1 ln(n0 − k) + εk, (3.15)

where k = 0, . . . , n0−1, b0 = − ln(µ)/ν−γ, b1 is given in

(3.4) of subsection 3.1, and εk
iid
= N

(
µε = 0, σ2

ln(T νk )

)
.

Following the methodology in the preceding subsection,

we can straightforwardly obtain the corresponding LS-

based point estimates of ν and µ from (3.6) and (3.7)

as

ν̂ls =
−1

b̂1
(3.16)

and

µ̂ls = exp
((
b̂0 + γ

)/
b̂1

)
, (3.17)

respectively, where ln(n0 − k) =
n0−1∑
j=0

ln(n0−j)
n0

, ln (T ν) =

n0−1∑
j=0

ln(T νj )
n0

, b̂0 = ln (T ν)− b̂1 · ln(n0 − k), and

b̂1 =

∑n0−1
j=0 ln

(
T νj
) (

ln(n0 − j)− ln(n0 − k)
)

∑n0−1
j=0

(
ln(n0 − j)− ln(n0 − k)

)2 . (3.18)

Furthermore, the LS-based interval estimates for ν and

µ directly follow from (3.11) and (3.12) of Corollary 3.1

in subsection 3.1.2, correspondingly. Hence, the approx-

imate (1−α)100% for ν and µ can be explicitly written

as

ν̂ls ± zα/2σ̂εν̂2ls

√√√√√n0−1∑
j=0

(
ln(n0 − j)− ln(n0 − k)

)2−1,

and

λ̂ls ± zα/2σ̂εν̂lsλ̂ls

(
1/n

+
(

ln(n0 − k)
2

+ 2 ln(λ̂ls)ln(n0 − k) + (ln(λ̂ls))
2
)/

s
)1/2

,

correspondingly. On the other hand, the residual-based

point and interval estimators of ν and µ immediately

follow from subsection 3.1 as well, where â0 is replaced

by b̂0 in (3.10), ε̂k = ln (T νk ) − ̂ln (T νk ), and ̂ln (T νk ) =

b̂0 + b̂1 ln(n0 − k).

A similar approach can be done to obtain estimates

for the fractional sublinear death process. That is, we

regress ln (Tνk) with ln(k+ 1), k = 0, 1, . . . , n0− 1, or fit

the model

ln (Tνk) = c0 + c1 ln(k + 1) + εk, (3.19)

and follow the procedures used for fractional Yule and

the fractional linear death processes. In general, we sim-

ply replace λ, ln i, ln i by µ, ln(n0 − k) or ln(k+ 1), and

ln(n0 − k) or ln(k + 1), accordingly in the methods of

subsection 3.1 to obtain the parameter estimators for

the fractional linear death and the fractional sublinear

death processes.

3.3 Some Extensions

Assume that a fractional birth or death process exists

with rates θj , j = 1, 2, . . . , n, where the jth inter-event

time Xj is Mittag-Leffler distributed with parameter

θj . Then the mean of X
′

j = ln (Xj) is

µX′j
=
− ln (θj)

ν
− γ. (3.20)

Based on the above mean formulation, we use the model

X
′

j = d0 + d1 · q(j) + εj (3.21)

to estimate more forms of the parameters or rates under

the two cases below.

Case 1: When ln(θj) = m(θ)+q(j) for some appropriate

known functions m(θ) and q(j) of the parameter θ and

j ∈ N, correspondingly.

In this case, the general form of the regression model

that could be used for estimation is

X
′

j = −
(
γ +

m(θ)

ν

)
− 1

ν
· q(j) + εj . (3.22)

Clearly, d0 = −(γ+m(θ)/ν), d1 = −1/ν, and q(j) is the

regressor variable. Using ν̂res or −1/d̂1 and inverting

the least squares estimate b̂0, we can compute m̂(θ) and
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θ̂ sequentially. Note that the explicitness of θ̂ depends

on the form of m.

Example 1 : When θj is linear, i.e., θj = θj then

ln(θj) = ln(θ) + ln(j), where m(θ) = ln(θ) and q(j) =

ln(j), respectively. Note that this parametrization cor-

responds to the fractional Yule, the fractional linear

death, and the fractional sublinear death processes.

Example 2 : If θj = eθ+j then ln(θj) = θ + j, where

m(θ) = θ and q(j) = j, correspondingly. This suggests

that d0 = −(γ + θ/ν).

Case 2: When ln(θj) = m(θ) ·q(j) for some appropriate

known functions m(θ) and q(j) of the parameter θ and

j ∈ N, correspondingly.

The general form of the regression model in this case

is

X
′

j = −γ − m(θ)

ν
· q(j) + εj . (3.23)

Apparently, d0 = −γ, d1 = −m(θ)/ν, and q(j) is the

predictor variable. Using ν̂res and inverting the least

squares estimate d̂1, we can calculate m̂(θ) and θ̂ suc-

cessively.

Example 1 : If θj = θj then ln(θj) = ln(θ) · j, where

m(θ) = ln(θ) and q(j) = j, correspondingly. This indi-

cates that d1 = − ln(θ)/ν.

Example 2 : When θj = eθ·j then ln(θj) = θ·j, where

m(θ) = θ and q(j) = j, respectively. This shows that

d1 = −θ/ν.

4 Method testing and application

4.1 Empirical test

For the sake of reproducibility, we now test our proce-

dures using the fYp as a particular example as simi-

lar approach can be carried out for both the fractional

linear death and the fractional sublinear death pro-

cesses. In point estimation testing, we evaluated the

finite-sample properties (unbiasedness and homogene-

ity) by computing the average and the median absolute

deviation (MAD) of the estimates using 1000 simula-

tions for sample sizes n = 100, 500, and 1000. These

values are shown in Table 4.1 below. The relative fluc-

tuation (RF=100%×MAD/mean) of ν̂ls decreases from

19.23% (corresponds to ν = 0.1, n = 100) to as little

as 4.41% (with ν = 0.95 and n = 1000). On the other

hand, the residual-based ν̂res’s RF ranges from 4.41%

(with ν = 0.95 and n = 1000) to 1.89% (corresponds

to ν = 0.95, n = 1000). While λ̂ls’s RF improves from

33.94% (corresponds to λ = 0.5, n = 100) to 30.48%

(with λ = 5 and n = 1000), λ̂res’s RF decays faster

from 55% (λ = 1, n = 100) to 25.29% (λ = 5 and

n = 1000). In general, the relative fluctuations of the

residual-based estimators tend to decay faster than the

LS-based estimates. They are also less bias than the

LS-based estimators especially for n ≤ 100. Nonethe-

less, both the residual- and LS-based point estimators

are asymptotically unbiased as expected.

Table 4.2 below shows the averaged lower and upper

95% confidence bounds using the formulae in Section

3. These bounds used 1000 simulation runs for each of

the sample sizes n = 15, 30, 100, and 500. Note that the

residual-based interval estimator λ̂∗res utilized 500 boot-

strap samples and σ̂2
ε = π2

(
1/(3ν̂2res)− 1/6

)
is used to

estimate the error variance in our LS-based procedures.

Observe that some of the interval estimates for sample

sizes n = 15, and n = 30 are omitted as they are unre-

liable due to the multiple error warnings that showed

up during the computation process. Moreover, the con-

vergence of the coverage probabilities to their true lev-

els for the LS-based method is made faster by using

the error variance estimate σ̂2
ε = π2

(
1/(3ν̂2ls)− 1/6

)
.

From Table 4.2, it is apparent that the residual-based

interval estimates of ν are narrower and are better cen-

tered around the true parameter values than the least-

squares’ even when the sample size is as large as 500. In

addition, our simulations showed that the asymptotic

or non-bootstrapped residual-based interval estimator

of λ gives more sensible results than the LS-based pro-

cedure for small samples. Nevertheless, the LS-based

interval estimates for λ are more accurately centered

than the bootstrapped residual-based estimates espe-

cially for large samples.

The corresponding coverage probabilities and the

widths of the interval estimates above with a confi-

dence level of 95% are displayed in Table 4.3. When

the sample size n = 15, the residual-based interval esti-

mators have minimum coverage of 90.1% and 91.1% for

ν = 0.95 and λ = 0.1, respectively. When n = 500, the

bootstrap interval estimator of λ has coverage probabil-

ities which are closer to the true confidence level than

the LS-based procedure for large values of λ. However,

the LS-based estimator of λ has a better coverage than

the bootstrapped residual-based interval estimator for

small λ values. The residual-based interval estimator for

λ seemed to have slower convergence than the LS-based

method. Furthermore, the residual-based estimator of

ν outperformed the LS-based method as its coverage
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Table 4.1 Mean point estimates of and dispersions from the true parameters ν and λ.

(ν, λ) Estimator
n = 100 n = 500 n = 1000

Mean MAD Mean MAD Mean MAD

(0.1, 1)

ν̂ls 0.104 0.020 0.101 0.008 0.100 0.006
ν̂res 0.103 0.008 0.100 0.004 0.100 0.003

λ̂ls 3.190 0.665 1.151 0.407 1.077 0.318

λ̂res 1.318 0.725 1.091 0.408 1.051 0.322

(0.25, 0.1)

ν̂ls 0.261 0.048 0.252 0.021 0.251 0.014
ν̂res 0.252 0.022 0.251 0.010 0.250 0.007

λ̂ls 0.119 0.031 0.106 0.025 0.103 0.021

λ̂res 0.131 0.071 0.109 0.044 0.106 0.033

(0.5, 0.5)

ν̂ls 0.521 0.100 0.505 0.040 0.501 0.028
ν̂res 0.506 0.041 0.501 0.018 0.500 0.014

λ̂ls 0.825 0.280 0.565 0.190 0.532 0.142

λ̂res 0.640 0.350 0.555 0.216 0.528 0.164

(0.75, 0.25)

ν̂ls 0.774 0.121 0.755 0.052 0.751 0.036
ν̂res 0.755 0.056 0.752 0.023 0.750 0.016

λ̂ls 0.313 0.093 0.266 0.069 0.259 0.056

λ̂res 0.300 0.146 0.268 0.094 0.260 0.072

(0.95, 5)

ν̂ls 0.969 0.131 0.953 0.058 0.952 0.042
ν̂res 0.955 0.055 0.950 0.024 0.950 0.018

λ̂ls 11.251 3.492 5.836 2.104 5.397 1.645

λ̂res 5.978 2.544 5.375 1.635 5.206 1.317

Table 4.2 Average 95% confidence intervals for different values of ν and λ.

(ν, λ) Estimator n = 15 n = 30 n = 100 n = 500

(0.1, 1)

ν̂ls (0.063 , 0.142) (0.084 , 0.117)
ν̂res (0.060 , 0.158) (0.071 , 0.137) (0.083 , 0.118) (0.092 , 0.108)

λ̂ls (-35.8067 , 58.864) (0.108 , 2.228)

λ̂res (-0.362 , 2.885) (0.183 , 2.038)

λ̂∗res (0.214 , 53.963) (0.243 , 16.667) (0.297 , 5.560) (0.464 , 2.652)

(0.25, 0.1)

ν̂ls (0.162 , 0.359) (0.211 , 0.292)
ν̂res (0.151 , 0.389) (0.211 , 0.298) (0.209 , 0.296) (0.231 , 0.269)

λ̂ls (0.034 , 0.201) (0.052 , 0.159)

λ̂res (-0.031 , 0.291) (0.018 , 0.202)

λ̂∗res (0.015 , 2.183) (0.020 , 1.271) (0.028 , 0.551) (0.044 , 0.265)

(0.5, 0.5)

ν̂ls (0.336 , 0.704) (0.427 , 0.580)
ν̂res (0.319 , 0.749) (0.366 , 0.664) (0.424 , 0.586) (0.464 , 0.536)

λ̂ls (-0.261 , 1.881) (0.151 , 0.968)

λ̂res (-0.103 , 1.389) (0.121 , 0.978)

λ̂∗res (0.099 , 9.154) (0.113 , 5.261) (0.164 , 2.542) (0.241 , 1.246)

(0.75, 0.25)

ν̂ls (0.534 , 1.019) (0.648 , 0.855)
ν̂res (0.527 , 1.057) (0.573 , 0.953) (0.648 , 0.857) (0.704 , 0.798)

λ̂ls (0.062 , 0.543) (0.117 , 0.409)

λ̂res (-0.008 , 0.618) (0.076 , 0.453)

λ̂∗res (0.054 , 3.070) (0.067 , 2.206) (0.087 , 1.055) (0.127 , 0.573)

(0.95, 5)

ν̂ls (0.700 , 1.219) (0.839 , 1.067)
ν̂res (0.719 , 1.221) (0.779 , 1.150) (0.848 , 1.059 (0.904 , 0.999)

λ̂ls (-2.5731 , 17.648) (0.963 , 10.334)

λ̂res (0.285 , 10.951) (1.976 , 8.557)

λ̂∗res (1.573 , 49.872) (1.602 , 30.456) (2.006 , 16.841) (2.714 , 10.067)
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probabilities are closer to 95%, and has narrower in-

tervals. Overall, the coverage probabilities and interval

widths still provide good merits for our estimators even

when the sample size is as small as n = 15.

Collectively, Tables 4.1–4.3 strongly indicate that

the proposed point and interval estimators performed

well in our computational tests. We emphasize that

the point estimates could also be regarded as reason-

able starting values for better iterative estimation algo-

rithms.

5 Application

We now apply our proposed methods to a real dataset.

In particular, we estimate the parameters of the frac-

tional Yule model using the branching times for plethod-

ontid salamander dataset from Highton and Larson

(1979) (see also Nee et al. 1994a; Nee 2001). The 25

data points are the times measured from each node to

the present of a phylogenetic tree, and can be down-

loaded from the package laser of the R software. The

summary statistics of the inter-branching times of the

plethodontid dataset are given in Table 5.1 below.

The point and the 95% confidence interval estimates

are given in Table 5.2. The LS-based point estimate

(0.749) of the fractional parameter ν seemed to sug-

gest that the plethodontid salamandar branching pro-

cess is not a standard Yule process while the residual-

based point estimate (1.119) appeared to suggest other-

wise. Moreover, both the LS- and residual-based inter-

val estimates of ν indicated that ν could be strictly less

than one, which implies that a non-standard Yule pro-

cess could model the plethodontid salamandar dataset

with a confidence level of 95%. The residual-based point

estimate (0.011) of λ is more conservative than the

bootstrap- and LS-based estimate (0.049). A similar

observation can be gleaned from the 95% interval es-

timates, i.e., the residual-based 95% interval estimate

is narrower than the bootstrap- and LS-based interval

estimates.

We also tested the residuals for normality using the

Shapiro-Wilk, Anderson-Darling, Cramer-von Mises, Lil-

liefors, Pearson chi-square, and the Shapiro-Francia tests,

which gave the p-values 0.811, 0.651, 0.619, 0.609, 0.849,

and 0.461, correspondingly. Hence, these p-values in-

dicated good fit of the fractional Yule process to the

plethodontid salamandar data.

6 Concluding remarks

We have proposed closed-form expressions of the es-

timators of the parameters ν and λ for the fractional

linear birth or Yule, the fractional linear death, and

the fractional sublinear death processes. The estimators

were derived by taking advantage of the known struc-

tural form of the logarithm of the random inter-event

times and the well-studied least squares regression pro-

cedure. The explicit formulas led to computationally

simple and fast parameter estimation procedures. The

inter-death time distributions and variances of the frac-

tional linear and sublinear death processes were also

obtained. These statistical properties were necessary

for generating sample trajectories and for our estima-

tion procedures to be applicable in these processes. It

has also been shown that the proposed procedure can

be easily extended to certain models that have differ-

ent model parameterizations than the linear ones. The

proposed methods were used to model a real physical

process. Generally, the extensive computational tests

showed favorable results for the proposed estimators.

We cite some extensions which would be worth pur-

suing in the future. For instance, improving the small-

sample performance of the least squares-based estima-

tors and developing other estimators using the likeli-

hood approach or a re-sampling technique would be

valuable pursuits. The application of these methods in

practice, and the characterization of the appropriate

functions m(θ) and q(j) would also be of interest.
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