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Abstract

Semiparametric accelerated failure time (AFT) models directly relate the predicted failure
times to covariates and are a useful alternative to models that work on the hazard function or
the survival function. For case-cohort data, much less development has been done with AFT
models. In addition to the missing covariates outside of the sub-cohort in controls, chal-
lenges from AFT model inferences with full cohort are retained. The regression parameter
estimator is hard to compute because the most widely used rank-based estimating equations
are not smooth. Further, its variance depends on the unspecified error distribution, and
most methods rely on computationally intensive bootstrap to estimate it. We propose fast
rank-based inference procedures for AFT models, applying recent methodological advances
to the context of case-cohort data. Parameters are estimated with an induced smoothing
approach that smooths the estimating functions and facilitates the numerical solution. Vari-
ance estimators are obtained through efficient resampling methods for nonsmooth estimating
functions that avoids full blown bootstrap. Simulation studies suggest that the recommended
procedure provides fast and valid inferences among several competing procedures. Appli-
cation to a tumor study demonstrates the utility of the proposed method in routine data
analysis.
Keywords: induced smoothing; multiplier bootstrap; resampling



1 Introduction

A case-cohort design (Prentice, 1986) is an effective and economical design which reduces
the effort and cost of a full-scale cohort study. Such design originated to allow efficient
analysis of studies where it is too expensive and time consuming to collect and analyze data
on all subjects. Cases and controls refer to subjects who have and have not, respectively,
developed the disease of interest by the end of the study period. A case-cohort design is
typically composed of two steps. First, a subset called sub-cohort is randomly selected from
the whole cohort regardless of their disease status. Second, the remaining cases in the cohort
are added to the sub-cohort. Cases and controls refer to subjects who have and have not,
respectively, developed the disease of interest by the end of the study period. Measurement
on the main risk factors are taken only on subjects in the sub-cohort and the remaining
cases outside of the sub-cohort. This leads to substantial reduction in the effort and cost of
conducting large scale cohort studies, especially when the disease of interest is rare or the
main risk factors are expensive to measure.

A semiparametric accelerated failure time (AFT) model is a log-linear model for the fail-
ure times with unspecified error distribution. It directly relates the failure time to covariates
such that the effect of a covariate is to multiply the predicted failure time by a constant. For
failure time data from case-cohort studies, most statistical methods have focused on semi-
parametric models that work on either the hazard function (Barlow, 1994; Kang and Cai,
2009; Kulich and Lin, 2000; Lin and Ying, 1993; Prentice, 1986; Self and Prentice, 1988;
Sun et al., 2004; Therneau and Li, 1999), or the survival function (Chen, 2001a,b; Kong et al.,
2004; Lu and Tsiatis, 2006). Parametric AFTmodels were considered by Kalbfleisch and Lawless
(1988). Inferences about semiparametric AFT models for case-cohort data are much less de-
veloped, with only a few recent works (Kong and Cai, 2009; Nan et al., 2006; Yu, 2011;
Yu et al., 2007).

Inferences for semiparametric AFT models have been difficult for not only case-cohort
data but also for complete data. The most important estimator is the rank-based estimator
motivated from inverting the weighted log-rank test (Prentice, 1978), with asymptotic prop-
erties rigorously studied (Tsiatis, 1990; Ying, 1993). Nevertheless, the estimator has not
been as widely used as it should be due to lack of efficient and reliable computing algorithm
to obtain both parameter estimates and their standard errors.

The parameter estimates are hard to compute because the most widely used rank-based
estimating equations are not smooth. Recent works shed light on bringing AFT models
into routine data analysis practice, including case-cohort studies. Jin et al. (2003) exploited
that the rank-based estimating equation with Gehan’s weight is the gradient of an objective
function and obtained estimates by solving it with linear programming. This approach was
adapted to case-cohort data by Kong and Cai (2009). Nevertheless, the optimization with
linear programming is still computationally very demanding, especially for larger sample
sizes. A more computing efficient approach for rank-based inference is the induced smoothing
procedure of Brown and Wang (2007). This approach is an application of the general induced
smoothing method of Brown and Wang (2005), where the discontinuous estimating equations
are replaced with a smoothed version, whose solutions are asymptotically equivalent to those
of the former. The smoothed estimating equations are differentiable, thus facilitates rapid
numerical solution.
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Direct estimation of the variance is difficult because it involves nonparametric estimation
of the unspecified error distribution. Most existing methods rely on bootstrap which is very
computing intensive. Jin et al. (2003) estimated the variance through a multiplier resampling
method, which requires a large bootstrapping sample in order to obtain a reliable variance
estimate. For case-cohort data, Kong and Cai (2009) adopted a specially designed bootstrap
procedure (Wacholder et al., 1989). The demanding computing task in linear programming is
amplified because it requires solving estimating equations for each bootstrap sample. Huang
(2002) proposed an easy-to-compute variance estimator based on the asymptotic linearity
property of the estimating equations. A decomposition matrix of the variance matrix is
estimated by solving estimating equations, but the number of the estimating equations to
solve is much smaller; it is just the dimension of the parameters. For general nonsmooth
estimating functions, Zeng and Lin (2008) proposed a resampling strategy that does not
require solving estimating equations or minimizing objective functions. Instead, it only
involves evaluations of estimating functions and simple linear regression in estimating the
slope matrix. The resulting variance estimators are computationally more efficient and stable
than those from existing resampling methods.

In this article, we propose a fast rank-based inference procedure for semiparametric AFT
models in the context of case-cohort studies. The parameters are estimated with an induced
smoothing approach. Variance estimators are obtained through an efficient resampling meth-
ods for nonsmooth estimating functions that avoids full blown bootstrap. Of course, the
methods also apply to full cohort data.

The rest of this article is organized as follows. Point estimation procedures based on
smoothed estimating equations for case-cohort data when the sub-cohort is a simple random
sample from the full cohort are proposed in Section 2. Four variance estimation procedures,
one based on full multiplier bootstrap and three based on possibly multiplier bootstrap-
aided sandwich variance estimator, are proposed in Section 3. A large scale simulation study
is reported in Section 4, comparing the performances of the variance estimator and their
timings. The methods are applied to a tumor study with both case-cohort data and full
cohort data in Section 5. A discussion concludes in Section 6.

2 Point Estimation

Let {Ti, Ci, Xi}, i = 1, . . . , n, be n independent copies of {T, C,X}, where Ti and Ci are log-
transformed failure time and log-transformed censoring time, Xi is a p× 1 covariate vector,
and given X , C and T are assumed to be independent. A semiparametric AFT model has
the form

Ti = X⊤

i β + ǫi, i = 1, . . . , n,

where β is an unknown p × 1 vector of regression parameters, ǫi’s are independent and
identically distributed random variables with an unspecified distribution. It is also assumed
that ǫi’s are independent of Xi.

In a full cohort study, due to censoring, the observed data are (Yi,∆i, Xi), i = 1, . . . , n,
where Yi = min(Ti, Ci), ∆i = I[Ti < Ci], and I[·] is the indicator function. A rank based
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estimating equation with Gehan’s weight is

Un(β) =

n
∑

i=1

n
∑

j=1

∆i(Xi −Xj)I[ej(β) ≥ ei(β)] = 0, (1)

where ei(β) = Yi − X⊤

i β. The root of (1) is consistent to the true parameter β0, and
is asymptotically normal (Tsiatis, 1990). Despite these nice properties, even for the most
promising method to date that solves it via linear programming (Jin et al., 2003), the com-
puting burden increases drastically when bootstrapping is used to estimate the variance of
the estimator.

For a case-cohort study, the covariate vector Xi’s are not completely available for each
individual. Measurement of some covariates is taken only on the subjects in the sub-cohort
and cases outside the sub-cohort, and, thus, estimating function (1) cannot be evaluated.
Using the observed data naively in (1) would lead to misleading results because the case-
cohort sample is biased — it includes all cases but only a fraction of controls. It is possible,
however, to adjust the biases by incorporating a weight that depends on the selection scheme
of case-cohort samples. Suppose we select a sub-cohort of size ñ by simple random sampling
without replacement from the whole cohort. Let ξi be the sub-cohort indicator; ξi = 1 if
the ith observation is in the sub-cohort and ξi = 0 otherwise. Let p = limn→∞ pn, where
pn = ñ/n is the sub-cohort inclusion probability. Under these assumptions, the desired
case-cohort weight is hi = ∆i + (1−∆i)ξi/pn. The weight-adjusted estimating equation (1)
becomes

U c
n(β) =

n
∑

i=1

n
∑

j=1

hj∆i(Xi −Xj)I[ej(β) ≥ ei(β)] = 0. (2)

The solution to (2), β̂n, remains to be consistent and asymptotically normal (Kong and Cai,
2009).

For full cohort data, a computationally more efficient approach for rank-based inference
with Gehan’s weight is the induced smoothing procedure of Brown and Wang (2007). Such
smoothing method leads to continuously differentiable estimating equations that can be
solved with standard numerical methods. Let Z be a p-dimensional standard normal random
vector. The estimating function Un(β) in (1) is replaced with E[Un(β + n−1/2Z)], where the
expectation is taken with respect to Z. This lead to

Ũn(β) =
n

∑

i=1

n
∑

j=1

∆i(Xi −Xj)Φ

[

ej(β)− ei(β)

r2ij

]

= 0, (3)

where r2ij = n−1(Xi − Xj)
⊤(Xi − Xj) and Φ(·) denotes the standard normal cumulative

distribution function. The solution to (3) is consistent to β0 and has the same asymptotic
distribution as the solution to (1) (Johnson and Strawderman, 2009).

For case-cohort data, we propose a smoothed version of (2) by adapting the idea of
Brown and Wang (2007). Specifically, we replace U c

n(β) with E[U c
n(β + n−1/2Z)] to obtain

the induced smooth version of (2),

Ũ c
n(β) = E[U c

n(β + n−1/2Z)] =

n
∑

i=1

n
∑

j=1

hj∆i(Xi −Xj)Φ

[

ej(β)− ei(β)

r2ij

]

. (4)
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The solution β̃n to (4) is a consistent estimator to β0 and is asymptotically normal. Further-
more, the asymptotic distribution of β̃n is also the same as that of β̂n. These arguments can
be justified similarly as those in Johnson and Strawderman (2009).

3 Variance Estimation

The asymptotic variance of β̃n is even harder to estimate for case-cohort data than for full
cohort data because of the extra complexity caused by the data structure. The terms in the
summation in Ũn(β) are not independent since the sub-cohort is drawn from the full cohort
without replacement. We propose four variance estimators; one is fully resampling based
while the other three use resampling to a component of the sandwich variance estimator.

3.1 Multiplier Bootstrap

The multiplier bootstrap estimator of Jin et al. (2003) is adapted to case-cohort data by
inserting proper case-cohort weights, hi’s, in the multiplier bootstrap estimating equations.
Let ηi, i = 1, . . . , n, be independent and identically distributed positive random variables
with E(ηi) = Var(ηi) = 1. Define

Ũ c∗
n (β) =

n
∑

i=1

n
∑

j=1

ηiηjhj∆i(Xi −Xj)Φ

[

ej(β)− ei(β)

r2ij

]

. (5)

For a realization of (η1, . . . , ηn), the solution to (5) provides one draw of β̃n from its asymp-
totic distribution. By repeating this process a large number B times, the variance matrix of
β̃n can be estimated directly by the sampling variance matrix of the bootstrap sample of β̃n.

Since the asymptotic variance of β̂n is the same as that of β̃n, the covariance matrix
of β̃n can also be estimated by (2) through multiplier bootstrap. This is, however, not
recommended because it would need to solve a large number B nonsmooth estimating equa-
tions. As will be seen in our simulation study, even with the computationally more efficient
smoothing estimating equations, the multiplier bootstrap approach can still be very time
consuming, especially for larger sample sizes or more covariates.

3.2 Sandwich Estimator

To improve the computational efficiency, we consider alternative variance estimation proce-
dures based on the sandwich form that avoid solving estimating equations repetitively. The
asymptotic variances of β̂n and β̃n are the same, both having a sandwich form. Under some
regularity conditions (Zeng and Lin, 2008), uniformly in a neighborhood of β0, equation (2)
can be expressed as

n−1/2U c
n(β) = n−1/2

n
∑

i=1

hiSi(β0) + An1/2(β − β0) + op(1 + n1/2‖β − β0‖),

where Si(β0) is a zero-mean random vector, and A is asymptotic slope matrix of n−1/2Ũ c
n(β0).

The analytical details of Si(β0) for case-cohort data is presented in the Appendix. The
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asymptotic variance matrix of
√
n(β̃n − β0) is nΣ = nA−1V (A−1)⊤, where V is the variance

of n−1/2
∑n

i=1 hiSi(β0). Estimation of Σ involves estimating V and A by estimator Vn and

An, respectively. The variance estimator then has the sandwich form Σ̂n = A−1
n Vn(A

−1
n )⊤.

3.2.1 Estimation of V

Matrix V can be estimated either through a closed-form estimator or through bootstrapping
the estimating equations. For case-cohort data, due to the correlated feature of ξi’s in hi’s, V
is different from its full cohort counterpart. There are two sources of variations contributing
to V : variation due to the sampling of a full cohort (V1) and variation due to the sampling
of a sub-cohort within the full cohort (V2). In particular, we have

V = V1 +
1− p

p
V2 = E

[

Si(β0)Si(β0)
⊤
]

+
1− p

p
Var [(1−∆i)Si(β0)] ,

where V2 vanishes if full cohort data are available.

Closed-form With explicit expressions for Si(β)’s in the Appendix, a closed-form estima-
tor of V is

Vn = V1n +
1− pn
pn

V2n

where

V1n = n−1

n
∑

i=1

hiŜi(β̂n)Ŝ
⊤

i (β̂n),

and

V2n = n−1
n

∑

i=1

hi(1−∆i)Ŝi(β̂n)Ŝ
⊤

i (β̂n)−
{

n−1
n

∑

i=1

hi(1−∆i)Ŝi(β̂n)

}{

n−1
n

∑

i=1

hi(1−∆i)Ŝi(β̂n)

}⊤

,

and Ŝi(β̂n) is obtained by replacing unknown quantities in Si(β) with their sample counter-
parts.

Multiplier Bootstrap When Ŝi(β̂n) have complicated expressions, it is more convenient
and perhaps more accurate to estimate V via bootstrap (Zeng and Lin, 2008). Because
U c
n and Ũ c

n have the same asymptotic distribution, we apply the multiplier bootstrap ap-
proach to Ũ c

n. Evaluation of (5) at β̂n with each realization of (η1, . . . , ηn) provides one
bootstrap replicate of Ũ c∗

n (β̂n). With B replicates, we estimate V by the sample variance
of the bootstrap sample of Ũ c∗

n (β̂n). The bootstrap here is much less demanding than the
full multiplier bootstrap above, because it only involves evaluations of estimating equations
instead of solving them to obtain each bootstrap replicate.

3.2.2 Estimation of A

With V estimated by Vn, we next propose three approaches to estimate the slope matrix
A. Depending whether Vn is based on closed-form or multiplier bootstrap, we will have two
versions of estimator of Σ for each approach of slope matrix estimation.
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Induced Smoothing With Ũ c
n, the smoothed version of U c

n, the slope matrix A can be
estimated directly by

An =
1

n

∂

∂β⊤
Ũ c
n(β̂n).

The close-form expression of An can be evaluated easily. The variance estimator then has
the sandwich form Σ̂n = A−1

n Vn(A
−1
n )⊤.

Smoothed Huang’s (2002) Approach Huang (2002) avoided the difficulty in estimating
the slope matrix of nonsmooth estimating equations by exploiting the asymptotic linearity of
the estimating equations. Nevertheless, this approach still requires solving p nonsmooth esti-
mating equations, whose convergence may be a problem. We adapt Huang’s approach by re-
placing the p nonsmooth estimating equations with their smoothed versions. Let Vn = L⊤

nLn

be the Cholesky decomposition of Vn. Let qnj be the solution to the following estimating
equations for γ, j = 1, . . . , p,

n−1Ũ c
n(γ) = n−1/2lj,

where lj is the jth column of Ln. The solutions can be obtained with from general purpose
nonlinear equation solvers; in our implementation we used R packages nleqslv (Hasselman,
2012) and BB (Varadhan and Gilbert, 2009). Let Qn be the matrix whose jth column is
qnj − β̂n. Then Q⊤

nQn is an estimate of Σ.
With the adaptation to smooth estimating equations, this approach has an advantage

compared to the induced smoothing approach in that the closed-form derivative matrix is
not required, and, hence, can be applied to more general nonsmooth estimating equations.

Zeng and Lin’s (2008) Approach Zeng and Lin (2008) proposed to estimate the slope
matrix by regressing the perturbed estimating functions on the perturbations. Let Zb, b =
1, . . . , B, be B realizations of a p-dimensional standard normal random vector. For case-
cohort data, let U c

nj be the jth component of U c
n. We estimate the jth row of A, j =

1, . . . , p, by Anj, the least squares estimate of the regression coefficients when regressing

n−1/2Unj(β̂n + n−1/2Zb) on Zb, i = 1, . . . , n. The variance estimator also has the sandwich

form Σ̂n = A−1
n Vn(A

−1
n )⊤.

This approach differs from the induced smoothing approach in that the slope matrix A
is estimated via a resampling procedure that involves p least squares regressions, instead of
taking the derivatives of a smooth function. It can be viewed as an empirical version of the
induced smoothing approach.

4 Simulation

We conducted an extensive simulation study to assess the performance of the our point and
variance estimators. Failure time T was generated from AFT model

log(T ) = 2 +X1 +X2 +X3 + ǫ,

where X1 was Bernoulli with rate 0.5, X2 and X3 were uncorrelated standard normal vari-
ables. Censoring time C was generated from unif(0, τ) where τ was tuned to achieve desired
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censoring rate Cp. The distribution of ǫ had three types: standard normal, standard logistic,
or standard Gumbel, abbreviated by N, L, and G, respectively. The censoring rate Cp had
two levels, 90% and 97%, representing a mildly rare disease and a very rare disease, respec-
tively. For the mildly rare disease, the full cohort size was set to be 1500 and the case-cohort
size was set to m̄ = 300 on average. For the very rare disease, the full cohort sizes were set to
be 1500 and 3000, each with case-cohort sizes averaged at m̄ ∈ {150, 300}. The sub-cohort
sampling proportion pn was set to yield the desired average case-cohort size given censoring
rate and full cohort size. For each viable combination, we generated 1000 datasets.

Given a dataset, point estimates of regression coefficients were obtained from both non-
smooth and smoothed estimating equations. The estimator from the nonsmooth version
was obtained using linear programming (Jin et al., 2003), denoted by LP. The estimator
from the induced smoothing approach with estimating equations (4) was obtained using R
package nleqslv (Hasselman, 2012), denoted by IS. The two estimators are expected to be
asymptotically the same, but with the IS estimator obtained much faster. Eight variance
estimates were computed for the point estimate. The first two were full multiplier bootstrap
estimates, denoted by MB, one based on the LP approach and the other based on the IS
approach. The rest six were sandwich estimates constructed by combinations of three ap-
proaches to estimate A and two approaches to estimate V . We use abbreviations IS, SH,
and ZL to denote the induced smoothing, smoothed Huang’s, and Zeng and Lin’s approach
for A, respectively. We use abbreviations CF and MB to denote the closed-form estimate
approach and the multiplier bootstrap approach for V , respectively.

Results for the mildly rare disease case with censoring percentage Cp = 90%, full cohort
size 1500, and average case-cohort size m̄ = 300 are summarized in Table 1. Both the
LP and the IS estimators appear to be virtually unbiased. In fact, they agreed with each
other closely on a 45 degree line (not shown). Consequently, their empirical standard errors
agreed with each other, and their bootstrap based standard errors agreed with each other.
The bootstrap standard errors and the empirical standard errors match closely, suggesting
that the bootstrap variance estimators provide good estimation of the empirical variantion.
The other six standard errors based on sandwich variance estimators agreed quite well with
the empirical standard errors too. The associated 95% confidence intervals based on all eight
standard errors had empirical coverage percentages reasonably close to the nominal level.
These observations were invariant to the error distributions.

Table 2 summarizes the results for the very rare disease case with censoring rate 97% and
full cohort size 3000. The results for full cohort size 1500 were similar and not reported. The
two point estimates, their empirical standard errors, and their average bootstrap standard
errors still agree with each other. The bootstrap standard errors for case-cohort size 150,
however, are underestimating the true variation, and as a result, the 95% confidence intervals
had coverage percentage smaller than the nominal level. Not surprisingly, the six sandwich
variance estimators performed no better than the two multiplier bootstrap variance esti-
mators. When the case-cohort size was increased to 300, all variance estimators performed
reasonably well in estimating the true variation and the coverage percentage was reasonably
close to the nominal level. Among all the sandwich variance estimators, the IS-MB and ZL-
MB approaches seem to provide confidence intervals with the best coverage percentage. The
SH-MB approach is slight inferior, which might be explained by the fact that this approach
has two layers of approximation — one from asymptotic linear approximation and the other
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Table 1: Summary of simulation results based on 1000 replications for full cohort size 1500 and censoring rate 90%. The
bootstrapping size is 500 for each replication. PE is average of point estimates; ESE is the empirical standard deviation of the
parameter estimates; ASE is the average of the standard error of the estimator; CP is the coverage percentage of 95% confidence
interval.

Error β PE ESE ASE CP(%)

LP IS LP IS MB IS SH ZL MB IS SH ZL

LP IS CF MB CF MB CF MB LP IS CF MB CF MB CF MB

N β1 0.997 1.000 0.170 0.170 0.161 0.161 0.161 0.163 0.155 0.157 0.161 0.163 93.4 93.8 94.0 94.2 93.0 93.5 94.0 94.5
β2 1.004 1.009 0.090 0.090 0.089 0.089 0.089 0.090 0.086 0.087 0.089 0.090 93.9 93.8 94.0 94.3 93.0 93.5 94.0 94.1
β3 1.000 1.004 0.093 0.093 0.089 0.088 0.089 0.090 0.102 0.103 0.089 0.090 93.8 94.0 94.1 94.3 96.6 96.7 94.0 94.6

L β1 0.998 1.000 0.284 0.284 0.274 0.274 0.273 0.275 0.269 0.271 0.273 0.275 94.4 94.5 94.6 94.9 93.9 94.2 94.4 94.7
β2 1.008 1.011 0.150 0.150 0.149 0.149 0.148 0.149 0.148 0.149 0.148 0.149 94.9 94.9 94.6 94.6 94.1 94.8 94.7 94.9
β3 1.012 1.015 0.151 0.151 0.149 0.149 0.149 0.150 0.159 0.160 0.149 0.150 94.2 94.4 94.0 94.0 95.9 96.1 93.8 94.6

G β1 0.999 1.003 0.148 0.148 0.142 0.143 0.143 0.145 0.137 0.139 0.143 0.145 94.7 94.9 94.4 94.5 93.1 93.2 94.4 94.7
β2 0.999 1.004 0.082 0.082 0.079 0.079 0.079 0.080 0.075 0.077 0.079 0.080 93.2 93.6 93.6 94.1 91.9 92.3 93.6 94.2
β3 1.001 1.006 0.082 0.082 0.079 0.079 0.079 0.081 0.093 0.094 0.079 0.081 93.3 92.7 93.3 93.6 97.3 97.2 93.2 94.2
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Table 2: Summary of simulation results based on 1000 replications for full cohort size 3000 and and censoring rate 97%. The
bootstrapping size is 500 for each replication. PE is average of point estimates; ESE is the empiricalstandard deviation of the
parameter estimates; ASE is the average of the standard error of the estimator; CP is the coverage percentage of 95% confidence
interval.

Error β PE ESE ASE CP(%)

LP IS LP IS MB IS SH ZL MB IS SH ZL

LP IS CF MB CF MB CF MB LP IS CF MB CF MB CF MB

case cohort size = 150:
N β1 1.009 1.021 0.315 0.317 0.281 0.281 0.280 0.304 0.268 0.293 0.280 0.304 91.5 91.6 90.5 93.6 89.3 92.4 90.6 92.8

β2 1.014 1.029 0.172 0.172 0.151 0.150 0.149 0.160 0.145 0.157 0.149 0.161 91.9 92.1 90.8 93.5 89.3 91.0 90.8 93.1
β3 1.015 1.030 0.180 0.180 0.151 0.149 0.148 0.160 0.178 0.189 0.148 0.160 88.4 88.5 88.8 91.1 92.6 94.8 88.9 91.1

L β1 1.031 1.036 0.466 0.467 0.472 0.473 0.463 0.479 0.452 0.469 0.463 0.479 94.7 95.0 94.1 95.0 93.9 93.9 94.1 94.9
β2 1.032 1.039 0.254 0.254 0.256 0.256 0.250 0.257 0.252 0.261 0.250 0.258 95.0 95.0 94.5 95.1 95.1 95.5 94.4 95.3
β3 1.032 1.039 0.271 0.271 0.255 0.255 0.250 0.258 0.276 0.284 0.250 0.258 94.0 94.2 93.0 94.1 95.6 95.9 92.7 94.3

G β1 0.995 1.007 0.291 0.293 0.234 0.235 0.238 0.262 0.229 0.253 0.238 0.262 86.6 87.0 85.6 88.4 83.8 87.9 85.4 88.6
β2 1.015 1.030 0.152 0.153 0.129 0.128 0.128 0.139 0.123 0.134 0.128 0.139 90.0 90.5 88.4 91.4 85.9 89.0 88.5 91.8
β3 1.013 1.028 0.149 0.149 0.129 0.128 0.128 0.139 0.152 0.162 0.128 0.139 92.2 91.5 89.7 92.8 93.7 96.1 89.7 92.9

case cohort size = 300:
N β1 1.002 1.008 0.228 0.229 0.214 0.215 0.215 0.221 0.205 0.210 0.215 0.221 92.9 93.8 92.8 93.8 91.3 92.1 92.8 93.9

β2 1.005 1.012 0.130 0.130 0.118 0.118 0.119 0.122 0.111 0.114 0.119 0.122 92.8 93.6 93.3 94.6 91.2 92.7 93.4 94.0
β3 0.998 1.005 0.129 0.129 0.118 0.118 0.118 0.122 0.144 0.148 0.118 0.122 92.1 92.6 92.6 93.3 97.0 97.0 93.0 92.9

L β1 1.048 1.050 0.394 0.395 0.373 0.373 0.368 0.373 0.362 0.366 0.369 0.373 93.7 93.8 93.2 93.5 92.7 92.9 93.2 93.9
β2 1.031 1.035 0.221 0.222 0.205 0.205 0.204 0.207 0.204 0.207 0.204 0.207 92.1 92.9 92.6 93.0 92.9 92.9 92.6 92.8
β3 1.026 1.029 0.210 0.210 0.202 0.202 0.202 0.204 0.219 0.221 0.202 0.204 93.8 93.6 93.2 93.6 94.5 95.1 93.1 93.3

G β1 1.010 1.016 0.188 0.189 0.179 0.179 0.181 0.186 0.171 0.177 0.181 0.187 93.2 92.9 93.4 94.4 91.2 92.7 93.2 94.3
β2 1.007 1.015 0.107 0.108 0.099 0.098 0.099 0.102 0.092 0.095 0.099 0.102 91.9 92.6 92.4 93.3 90.1 91.4 92.3 93.0
β3 1.009 1.017 0.109 0.109 0.100 0.099 0.100 0.103 0.124 0.127 0.100 0.103 92.4 92.0 92.4 93.4 96.6 97.1 92.2 93.4
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Table 3: Summary of timing results in seconds with both point estimation and variance
estimation from the simulation study.

Cp m̄ Error PE Variance

LP IS MB IS SH ZL

LP IS CF MB CF MB CF MB

Full cohort size = 1500
90% 300 N 7.2 1.6 2007.5 561.3 2.9 10.9 2.9 11.4 2.1 11.6

L 6.5 1.5 1708.0 499.9 2.8 10.2 2.9 10.8 2.2 10.9
G 6.9 1.6 1899.7 544.6 2.8 10.4 2.8 10.9 2.0 11.1

Full cohort size = 3000
97% 150 N 0.8 0.6 183.4 150.2 0.4 2.8 0.5 3.0 0.6 3.0

L 0.7 0.4 143.7 118.2 0.3 2.5 0.5 2.6 0.6 2.7
G 1.1 0.7 262.3 191.6 0.5 3.5 0.7 3.7 0.7 3.7

300 N 3.6 0.9 629.6 301.7 2.1 5.5 2.2 5.8 1.3 5.8
L 3.3 0.7 544.9 237.1 2.0 4.8 2.1 5.1 1.3 5.2
G 4.1 1.2 816.8 367.8 2.2 6.5 2.3 6.8 1.4 6.9

from induced smoothing.
Of more interest is Table 3, which summarizes the timing results in seconds averaged from

1000 replicates for both point estimation and variance estimation on a 2GHz linux machine.
For point estimation with full cohort size 1500 and censoring percentage Cp = 0.90%, the IS
approach was up to 4.5 times as fast as the LP approach (with normal error distribution).
The multipler bootstrap variance estimation with the IS approach was up to 3.6 times as
fast as the LP approach (again with normal error). Nevertheless, the multiplier bootstrap
IS approach still needed about 9 minutes on average to obtain a variance estimator. All
sandwich variance estimators are strikingly much faster, especially with the closed-form ap-
proach: ZL-CF approach took about 2 seconds on average; the IS-CF and SH-CF approaches
took about 3 seconds on average. For each sandwich variance estimator, the version with
CF estimation of V is over 5 times faster than the version with MB estimation of V . Using
the LP approach as benchmark, the IS-CF and SH-CF estimators is 695 times faster and the
ZL-CF estimators 1003 times faster. Since the performance of all variance estimators are
similar for this setting, the IS-CF, SH-CF and ZL-CF approaches are obviously preferred for
this setup with a mildly rare event.

The timing results for full cohort size 3000 and censoring percentage Cp = 0.97% follow
a similar pattern. Compare to case Cp = 0.90%, time for point estimation is shorter because
the number of cases decreases in the case Cp = 0.97% even when the average case-cohort size
were both at 300. Sandwich variance estimators with CF estimation of V is up to 8 times
faster than with those with MB estimation of V , at the expense of slightly worse performance
in coverage percentage. The IS-MB and ZL-MB approaches yield the most reliable variance
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estimates but IS-MB is slightly faster than faster than ZL-MB. As the average case-cohort
size doubles, the computing time of the sandwich variance estimates with MB estimation
for V appear to double accordingly, in contrast to those with CF estimation for V , which
do not necessarily double linearly. In summary, based on the performance and speed, our
recommended variance estimator is the IS-MB estimator.

5 National Wilm’s Tumor Study

We demonstrate the performance of our proposed methods with an application to the cohort
study conducted by the National Wilm’s Tumor Study Group (NWTSG) (D’Angio et al.,
1989; Green et al., 1998). Wilm’s tumor is a rare kidney cancer in young children. The
interest of the study was to assess the relationship between the tumor histology and the
outcome, time to tumor relapse. Tumor histology can be classified into two categories,
favorable or unfavorable, depending on the cell type. The central histological diagnosis was
made by an individual pathologist at the central pathology center, which was believed to
be more accurate than a local diagnosis yet more expensive to measure and required more
efforts to obtain. Although in the full version of the data, the central histology measurement
was available for all the cohort members, it was only available for a case-cohort sample
in the case-cohort version. We take advantage of the full version in this example. Other
covariates that were available for all cohort members were patient age, disease stage and
study group. According to the staging system employed by NWTSG, four stages (I – IV) of
Wilms’ tumors, with Stage IV as the latest stage, indicated the spread of the tumor. Each
subject came from one of the two study groups, NWTSG-3 and NWTSG-4. The case-cohort
version of the data was analyzed with Cox models (Breslow et al., 2009; Kulich and Lin,
2004) and additive hazards models (Kulich and Lin, 2000), respectively.

There were a total of 4028 subjects in the full cohort. Among them, 571 were cases who
experienced the relapse of tumor — a censoring rate of about 86%. We considered an AFT
model for the time to relapse with the following covariates: central histology measurement
(1 = favorable, 0 = unfavorable), age (measure in year) at diagnosis, three tumor stages
indicators (Stage I as reference) and a study group indicator (NWTSG-3 as reference). The
case-cohort version of the data had 668 patients selected as sub-cohort sample and the total
case-cohort sample size was 1154. To take advantage of availability of full cohort data, we
drew 1000 new sub-cohort samples with size 668 and formed a case-cohort by including the
remaining cases for each replicate. We then averaged these estimates and estimated standard
errors from the 1000 replicates of the case-cohort analysis.

The results of the average from 1000 replicates of case-cohort analyses are summarized in
Table 4. Due to its poor timing performance, the LP approach was not considered. Since the
MB standard error is considered to reflect the true variation quite well from the simulation
study, we are interested in how close the various sandwich standard errors to the MB stan-
dard error. For all three sandwich estimators, the CF versions systematically underestimate
noticeably, although the underestimation is less severe in the IS and ZL approach than in
the SH approach. The MB versions of the sandwich estimates appear to agree with the
MB standard error closely, and again the agreement appears to be better for the IS and ZL
approach than for the SH approach. In particular, the SH standard error for the age effect is
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Table 4: National Wilm’s tumor study and timing results in seconds.

PE SE

Effects IS MB IS SH ZL

IS CF MB CF MB CF MB

Case-Cohort Analysis:
(time) (8.5) (3682.2) (7.7) (13.9) (9.5) (15.7) (9.4) (15.0)
histol −3.428 0.465 0.409 0.458 0.372 0.423 0.410 0.458
age −0.190 0.079 0.074 0.080 0.221 0.243 0.074 0.080

stage2 −1.283 0.613 0.590 0.621 0.516 0.544 0.590 0.622
stage3 −1.401 0.612 0.579 0.616 0.572 0.602 0.580 0.616
stage4 −2.092 0.717 0.665 0.712 0.717 0.763 0.666 0.712
study −0.128 0.475 0.455 0.484 0.451 0.482 0.455 0.484

Full-Cohort Analysis:
(time) (266.0) (126927.7) (309.9) (453.0) (341.3) (486.1) (321.1) (494.0)
histol −2.749 0.202 0.148 0.213 0.138 0.214 0.148 0.196
age −0.127 0.037 0.029 0.039 0.081 0.092 0.029 0.039

stage2 −1.335 0.280 0.233 0.285 0.200 0.280 0.234 0.271
stage3 −1.341 0.286 0.239 0.297 0.211 0.288 0.240 0.299
stage4 −2.203 0.319 0.245 0.321 0.219 0.300 0.247 0.334
study −0.106 0.226 0.175 0.229 0.162 0.224 0.176 0.219
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about three times as much as that from other approaches. The standard errors from IS-MB
and ZL-MB are almost identical, both very close to the time consuming MB standard error.
Based on the IS-MB standard errors, the coefficients of central histological diagnosis, age,
and all three stage indicators were found to be significantly different from zero with p-values
0.000, 0.009, 0.019, 0.011 and 0.002, respectively. No significant difference was found be-
tween the two study groups. In terms of timing, the MB-IS standard error took over a hour
whereas the MB-based sandwich estimates only took 14–15 seconds on average.

For comparison purpose, we also analyzed the full cohort data with the same approaches
and reported the results in Table 4. Point estimates are close to these in case-cohort anal-
ysis, with their standard errors taken into consideration. All the standard errors decrease
compared to the case-cohort analyses, which is expected as full information became avail-
able for all covariates. The best sandwich variance estimators are still IS-MB and ZL-MB,
both closely approximates the full blown MB standard error. With full cohort size 4028
and censoring rate 86%, the IS point estimates took 4 and a half minutes, the MB variance
estimation took 35.36 hours, while IS-MB only took 7 and a half minutes.

6 Discussion

In AFT modeling of case-cohort data, both point estimation and variance estimation are
challenging with the nonsmooth estimating equations. Resampling methods are commonly
used to estimate the variance, which are time consuming even with a computationally effi-
cient point estimator such as our induced smoothing approach with rank-based estimating
equations. We have proposed six sandwich variance estimators and compared their per-
formances with the bootstrap variance estimator in numerical studies. The IS-MB and
ZL-MB approaches were found to provide good approximation to the true variation and are
computationally very efficient. All the methods are implemented in an R package aftgee
(Chiou et al., 2012). The package had the potential to bring AFT modeling of case-cohort
data into routine analysis.

The IS approach was built on Gehan’s weight for rank-based estimating equations, in
which case closed-form expectations of the perturbed estimating equations are available.
Alternative weights such as the logrank weight are possible, though the computation is less
straightforward than that for Gehan’s weight. Incorporating a general, possibly optimized
weight in the IS approach merits further investigation for both full cohort and case-cohort
data. The estimates from Gehan’s weight always serve as a good initial value in numerical
equations solving.

Some extensions of the proposed methods are worth considering. Auxiliary covariates
are often available for the entire cohort, which can be used to construct strata for subcohort
members selection. The resulting estimators from the stratified case-cohort design has been
shown to be more efficient than their traditional case-cohort counterpart for the Cox model
(Kulich and Lin, 2004) and the additive hazards model (Kulich and Lin, 2000). An extension
of the proposed methods with the AFT model to a stratified case-cohort design may lead
to efficiency improvement too. When more than one diseases are considered in a case-
cohort design, a multivariate extension will be needed, and a possible dependence among the
multivariate failure times needs to be taken into account. For the Cox model, Kang and Cai
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(2009) used a marginal approach. A similar approach can be considered for the AFT model.

A Analytical Details

We give the analytical form of Si(β)’s here. Define the general rank based weighted estimat-
ing function (Jin et al., 2003)

Un(β) =

n
∑

i=1

∆iϕn,i(β)

[

Xi −
W

(1)
n,i (β)

W
(0)
n,i (β)

]

,

where ϕn,i(β) is an nonnegative weight function and

W
(k)
n,i (β) =

1

n

n
∑

j=1

Xk
j I[ej(β) ≥ ei(β)], k = 0, 1.

Equation (1) can be obtained by setting ϕn,i(β) = W
(0)
n,i (β). On the other hand, the general

rank based weighted estimating function for case-cohort samples has the following form:

U c
n(β) =

n
∑

i=1

∆iϕn,i(β)

[

Xi −
Ŵ

(1)
n,i (β)

Ŵ
(0)
n,i (β)

]

,

where

Ŵ
(k)
n,i (β) =

1

n

n
∑

j=1

hjX
k
j I[ej(β) ≥ ei(β)], k = 0, 1.

Similarly, equation (2) can be obtained by setting ϕn,i(β) = Ŵ
(0)
n,i (β).

With these settings, an explicit form of Si(β0) is

Si(β0) =

∫

∞

−∞

w(0)(β0)

[

Xi −
w(1)(β0)

w(0)(β0)

]

dMi(t)

=∆iw
(0)(β0)

[

Xi −
w(1)(β0)

w(0)(β0)

]

−
∫ ei(β)

−∞

w(0)(β0)

[

Xi −
w(1)(β0)

w(0)(β0)

]

λ(t) dt,

where
w(k)(β) = lim

n→∞

Ŵ
(k)
n,i (β), for k = 0, 1,

Mi(t) = Ni(β; t)−
∫ t

0

I(ei(β) ≥ u)λ(u) du,

Ni(β; t) = ∆iI(ei(β) ≤ t) and λ(u) is the common hazard function of ǫi.
The unknown quantities in Si(β0) include β0, w

(0), w(1) and λ(t). With the explicit form
of Si(β0), Ŝi(β̂) is obtained by replacing these unknown quantities by their sample estimators.
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