
A note on a universal random variate generator
for integer-valued random variables

L. Barabesi  and L. Pratelli" #

"Dipartimento di Economia Politica, Università di Siena,
P.zza S.Francesco 17, 53100 Siena, Italy

#Accademia Navale, viale Italia 72, 57100 Livorno, Italy

Abstract. A universal generator for integer-valued square-integrable random variables is
introduced. The generator relies on a rejection technique based on a generalization of the
inversion formula for integer-valued random variables. The proposal gives rise to a simple
algorithm which may be implemented in a few code lines and which may show good
performance when the classical families of distributions - such as the Poisson and the
Binomial - are considered. In addition, the method is suitable for the computer generation of
integer-valued random variables which display closed-form characteristic functions, but do
not possess a probability function expressible in a simple analytical way. As an example of
such a framework, an application to the Poisson-Tweedie distribution is provided.
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1. Introduction. As emphasized by Johnson 2005), discrete distributions commonlyet al. (
adopted in statistics are members of the lattice distribution family. In turn, by using a
straightforward linear transformation, it is generally convenient to consider random variables
defined on the integers rather than on a lattice. Hence, the computer generation of integer-
valued random variables is obviously of central importance for simulation purposes. In such a
case, the inversion, the alias and the rejection methods usually constitute the general tools
adopted to carry out suitable algorithms. For an extensive treatment of the aforementioned
methods, see Devroye (1986, p.83-116) and Hörmann  (2004, p.43-52).et al.

One of the recent research trend for nonuniform random variate generation is focused on
the implementation of algorithms which are suitable for large families of distributions. These
algorithms are usually referred to as universal (also automatic or black-box) generators
(Devroye, 1986, p.286-356). For a monograph on the topic, where the advantages of this kind
of generators are extensively described, see Hörmann 2004). Universal generators haveet al. (
been mainly explored when absolutely continuous random variables are considered. As to
integer-valued random variables, the inversion and the alias methods may actually give rise
to universal generators. However, the inversion method generally produces quite inefficient
algorithms and the alias method is suited for random variables taking values on a finite subset
of integers. In order to achieve methods displaying bounded expected complexity, Devroye
(1987) and Hörmann (1994) propose universal algorithms based on rejection methods for
integer-valued log-concave distributions (see also Devroye, 2012). In addition, Leydold
(2001, 2003) analyzes similar techniques for the wider family of integer-valued T-concave
distributions. It should be remarked that these methods require the knowledge of the mode of
the distribution, which may be not an easy task to accomplish in some cases. Therefore, even



if the log-concave and T-concave integer-valued distribution families encompass most of the
classical distributions, a method requiring milder assumptions could be useful.

The present paper aims to introduce a universal generator for integer-valued square-
integrable random variables. The algorithm stems on a simple generalization of the inversion
formula for integer-valued random variables, which does not seem previously given in
statistical literature. This formula gives rise to a suitable inequality, which could be
immediately adopted for implementing a generator for a given specific distribution. However,
since our target is focused on the achievement of a universal generator, we suitably consider
a special case of the inequality in order to provide a rejection method - which actually
constitutes the counterpart for integer-valued random variables of the Devroye's (1981)
proposal. More precisely, we introduce a suitable dominating function which resembles the
hat function usually adopted in the ratio-of-uniforms method. The corresponding dominating
probability function is characterized by coefficients depending on the characteristic function
of the integer-valued random variable to be generated. The resulting algorithm may be easily
implemented in few code lines (with a small set-up) and may be appealing for the generation
of random variables possessing a symmetric (or nearly symmetric) unimodal probability
function. In addition, the algorithm could be very suitable when the integer-valued random
variable solely shows a closed-form characteristic function (for the equivalent problem in the
case of an absolutely continuous random variable, see Devroye, 1981, Ridout, 2009).

The present paper has been motivated by the practical implementation of a random variate
generator for the Poisson-Tweedie distribution. This distribution family is very flexible and
encompasses as special cases many commonly-used distributions such as the Poisson, the
Negative Binomial, the Poisson Inverse Gaussian, the Discrete Stable, the Poisson-Pascal and
the Neyman Type A (see El-Shaarawi  2009, Johnson 2005). Moreover, theet al. et al., ,
Poisson-Tweedie distribution is very useful for modeling overdispersed count data in
biological and environmental studies (Hougaard 1997, El-Shaarawi  2009).et al. et al., ,
Regrettably, the probability function of the Poisson-Tweedie random variable is not known in
a simple form and its computation is implemented by means of recurrence formulas (El-
Shaarawi  2009). Accordingly, the suggested algorithm seems to be very suitable whenet al.,
simulation studies involving the Poisson-Tweedie distribution are carried out.

The outline of the paper is as follows. In Section 2, the main results are introduced and the
suggested algorithm is presented. Section 4 shows some illustrative applications of the
proposal to the Poisson and Binomial distributions. In Section 4, the random variate
generation for the Poisson-Tweedie distribution is considered. Finally, in Section 5 the
conclusions are drawn and some suggestions for the future research are given.

2. The proposed method. Let  be an integer-valued random variable (r.v.) with probability\
function (p.f.) given by  and characteristic function (c.f.) given by: ÐBÑ œ TÐ\ œ BÑ\

9\
3>\Ð>Ñ œ Ò/ Ó 3E , where - as usual - the symbol  represents the imaginary unit. First, we
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Result 1. Let  be an integer-valued r.v. with p.f. . Moreover, let  be a measurable\ : 1\

function defined on , such that . If  and , it holds™ ™EÒl1Ð\ÑlÓ  ∞ B − 1ÐBÑ Á !

: ÐBÑ œ / Ò1Ð\Ñ/ Ó >
"

# 1ÐBÑ
\



3>B 3>\

1


1

1

E d  .

Proof. The expectation  exists, since from the assumptions it follows thatEÒ1Ð\Ñ/ Ó3>\
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It should be noticed that Result 1 actually provides a generalization of the well-known
inversion formula (see e.g. Feller, 1971, p.511)
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which is achieved by applying Result 1 with . In turn, from Result 1, it easily follows1 ´ "
the inequality
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where the last identity is obtained by noticing that .l Ò1Ð\Ñ/ Ól œ l Ò1Ð\Ñ/ ÓlE E3>\ 3>\

Inequality (2) could be immediately adopted in order to implement a rejection algorithm by
choosing  as the p.f. of an  integer-valued r.v. However, since the aim of the1ÐBÑ" ad hoc
present paper is to provide an easy-to-implement universal generator, rather than a generator
for a specific r.v., suitable selections for  are carried out in the spirit of the algorithm given1
by Devroye (1981) for absolutely continuous r.v.'s.

If , inequality (2) reduces to1 ´ "
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Moreover, let us consider the function , in such a way that (1) gives rise to1ÐBÑ œ ÐB 7Ñ#
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Hence, by assuming that , let us introduce the integer-valued r.v. . Since7 − ] œ \ 7™
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the previous inequalities respectively reduce to
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Thus, it finally follows the inequality
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It is worth remarking that, since the integration of bounded functions is carried out over a
finite range, no numerical problems should be encountered in the practical computation of the
constants  and .- 57

Inequality (3) cannot be immediately adopted for implementing a hybrid rejection method
giving rise to a ratio-of-uniforms algorithm (similarly to the method given by Devroye, 1981,
for absolutely continuous r.v.'s), since this inequality does not provide a dominating p.f. when
truncation (or rounding) is applied. For more details on the hybrid rejection method, see
Devroye (1986, p.115). Hence, in order to carry out a suitable rejection method in this case, it
is convenient to consider the absolutely continuous r.v.  with probability density functionZ
(p.d.f.) given by
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where  and , while  represents the usual indicator function. Hence,  is aα 5− Ð!ß "Ñ  ! M 0Z
mixture of two simple p.d.f.'s and the random generation of the r.v.  is straightforward.Z
Actually,  is the generalization of the p.d.f. usually adopted for implementing the ratio-of-0Z
uniforms method, which is achieved for . Indeed, if α œ "Î# Y Y" # and  represent two
independent r.v.'s uniformly distributed on  and  respectively, it turns out thatÒ!ß "Ó Ò  "ß "Ó
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Moreover, if  and  in such a way that , for  the p.f. of the7 − 4 − œ 4  "Î# D −™  5 ™
integer-valued r.v. Round  is given by^ œ ÐZ Ñ
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Accordingly, the following result provides the key inequality for the generation of the
integer-valued r.v.  by means of the proposed rejection method.\

Result 2. Let  be an integer-valued r.v. with p.f. . If , for  it holds\ : Ò\ Ó  ∞ B −\
#E ™
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Proof. First, let us assume that  Hence, it holdslB  7l Ÿ Þ57
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and the required inequality follows from (3). 

On the basis of Result 2, a simple  rejection algorithm may be easily implemented for the
random generation of the integer-valued r.v. . More precisely, \ by setting
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the following algorithm may be considered.

 compute 7ß -ß 5 ß ß7 5 α7 7

 repeat 
  generate  uniformly on Y ßY Ò!ß "Ó" $

  generate  uniformly on Y Ò  "ß "Ó#

  if Y " α7 set Y ³ "ÎY# #

  set \ ³ Ð7Round 57Y Ñ#
 until : Ð\Ñ  2Ð\à7ß -ß 5 ß ÑY\ 7 $57

 return \

In the previous algorithm, when solely 9\ \ is known in a closed form,  is computed by:
means of the inversion formula (1). In this case, even if the algorithm may result less efficient
in terms of computation timing, no numerical drawbacks should occur when an appropriate
software is adopted, since the numerical integration of a bounded function is carried out over
a finite range. In addition, it is worth noting that the expected complexity - i.e. the expected
number of iterations in the algorithm - is given by  (see the inequality provided in ResultE7

2). Obviously, given the morphology of :^ , the algorithm should be particularly efficient for
random generation of a r.v.  displaying a symmetric unimodal p.f.\

For the sake of simplicity, the algorithm is given in its very basic version, even if it could
be suitably improved by means of an appropriate handling of the function  and by means of2
some squeezing pre-tests. Moreover, from the definition of , it should be apparent that the57

value of  is nearly equal to  and hence the method may be actually considered as theα "Î#
counterpart for integer-valued r.v.'s of the Devroye's (1981) technique tailored for absolutely
continuous r.v.'s. Finally, it should be remarked that the algorithm could be very appealing
for the generation of a sum of iid r.v.'s, since - as is well known - the c.f. of the sum displays
a manageable form.

The final remark obviously deals with the appropriate selection of . To this aim, a7
natural choice of  is given by the value which minimizes the expected complexity 7 E7.
However, the minimization step may be time-consuming at the set-up stage and hence
alternative selections could be considered. Owing to the choice of , the expected57

complexity should be nearly equivalent to  % -5 7 in practice. Hence, since  does not-
depend on , optimal selection of  should be given by Round . In7 7 7 œ Ð 5 Ña sub- ‡

7argmin
any case, it should be remarked that this choice is optimal for achieving the tightness of
inequality (3). Alternatively, since
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the selection Round  might be considered in order to obtain an even simpler set-7 œ Ð Ò\ÓÑ‡‡ E
up stage. Indeed,  is easily computed by taking into account that .7 Ò\Ó œ  3 Ð!Ñ‡‡ w

\E 9

3. Application to the Poisson and Binomial distributions. In order to assess the efficiency
of the proposed algorithm, some classical families of integer-valued r.v.'s are considered.
First, let us assume that  be a Poisson r.v. with parameter , in such a way that -\ − Ð!ß∞Ñ-
as is well known - the corresponding c.f. is given by

9\
Ð/ "ÑÐ>Ñ œ /-

3>

 .

Even if there exists very efficient algorithms for the random generation of Poisson r.v.'s
(see Devroye, 1986), Ahrens and Dieter (1991) and Stadlober (1990) advocate for thee.g. 
ratio-of-uniforms method as a simple and effective technique to be adopted in this setting
(see also Hörmann, 1994). Their proposal, specifically tailored for the Poisson distribution, is
rather similar in its concept to the universal method presented in the previous section and
hence a performance comparison of the two methods may be worthwhile. In this case, the
values of  for Round  have been computed for variousE 7 œ 7 œ Ð Ñ7

‡ ‡‡ and 7 œ 7 -
choices of . For all the considered values of , it was found that In turn, the- - 7 œ‡ 7‡‡. 
expected complexity (say ) of the algorithm proposed by Ahrens and Dieter (1991), andEAD

optimized as suggested by Stadlober (1990), has been computed for the same values of .-
The corresponding results are reported in Table I.

Table I. Expected complexities  and  for the considered algorithms (Poisson distribution).E E7‡ AD
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As it can be assessed from Table I, the two algorithms produce quite similar performance,
even if the Ahrens and Dieter (1991) method is expressly implemented for the Poisson
distribution. In addition, the expected complexity of the proposed algorithm converges very
fast to the limit. Indeed, if the ratio-of-uniforms algorithm proposed by Devroye (1981) is
considered for random generation from the Normal distribution, the expected complexity is
given by e .Ð&"#ÎÐ ÑÑ ¶ "Þ&(1$ "Î%

In the second study, a Binomial r.v.  with parameters  and  is assumed.\ 8 − : − Ð!ß "Ñ
Obviously, the corresponding c.f. is given by
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In turn, the values of  for Round  have been computed forE 7 œ 7 œ Ð8:Ñ7
‡ ‡‡ and 7 œ 7

various choices of  and . For all the considered values of , it was found that 8 : 7- 7 œ‡ ‡‡.
Moreover, the expected complexity (say ) of the ratio-of-uniforms algorithm proposed byES

Stadlober (1989, 1990), an easy ratio-of-uniforms algorithm for the random generation of



Binomial r.v.'s (see also Johnson 2005, p.126), has been computed for the sameet al., 
parameter values and the results are reported in Table II.

Table II. Expected complexities  and  for the considered algorithms (Binomial distribution).E E7‡ S
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By inspecting Table II, it is at once apparent that the same comments introduced for the
Poisson distribution study also apply to the Binomial distribution case. In addition, similar
patterns have been assessed for the Hypergeometric distribution in comparison with the ratio-
of-uniforms approach proposed by Stadlober (1990), even if the results are not reported.
Finally, it should be emphasized that the proposed universal algorithm often performs better
than the ad hoc ratio-of-uniforms algorithms as shown in Tables I and II, since its
implementation is based on a slight different background. Indeed, the dominating p.f. is
achieved by means of the rounding of a r.v., rather than a truncation of a r.v. (as in the case of
the proposals by Ahrens and Dieter, 1991, and by Stadlober, 1990). This issue gives rise to a
“more centered” dominating p.f., which in turn may provide a smaller expected complexity.

4. Application to the Poisson-Tweedie distribution. An integer-valued r.v.  with the\
Poisson-Tweedie distribution displays the c.f.

9\
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where  (see Johnson Ð+ß ,ß -Ñ − ÖÐ ∞ß !Ó ‚ Ð!ß∞Ñ ‚ Ò!ß "Ñ× ∪ ÖÐ!ß "Ó ‚ Ð!ß∞Ñ ‚ Ò!ß "Ó× et
al., 2005, p.480). It should be remarked that the parameterization suggested by El-Shaarawi
et al. (2009) is adopted in the definition of .9\

The generation of a random variate from the Poisson-Tweedie distribution is not difficult
when , since in this case  may be rewritten as+ − Ð ∞ß !Ñ 9\
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represents the c.f. of a Negative Binomial r.v.  with parameters  and  (we] Ð  +Ñ Ð"  -Ñ
readopt the symbol  with a slight abuse in notation). Hence, the r.v.  may be represented] \
as a compound Poisson r.v. and, since the sum of Negative Binomial r.v.'s is in turn aiid 
Negative Binomial r.v., the random generation of the r.v.  is straightforward. Obviously,\
the generation is even more immediate for , since in this case the Poisson-Tweedie+ œ !
distribution reduces to a Negative Binomial distribution. In contrast, when , the c.f.+ − Ð!ß "Ó
9\  may be reformulated as

9\
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where, in this case, the r.v.  represents a down-weighted Sibuya r.v. with c.f.]

9]
+ 3> +(>Ñ œ Ð"  -Ñ  "  Ð"  -/ Ñ

(see also Zhu and Joe, 2009). Thus, the r.v.  may be again represented as a compound\
Poisson r.v., even if the sum of down-weighted Sibuya r.v.'s cannot be easily managed.iid 
Therefore, in this case the representation is not useful for achieving a suitable generator.

It is worth noting that the Poisson-Tweedie distribution may be also seen as a mixture
Poisson distribution, with a mixturing absolutely continuous Tweedie r.v. (see Aalen, 1992,
Hougaard 1997). This stochastic representation permits for an alternative randomet al., 
variate generation for the Poisson-Tweedie distribution. However, while it is straightforward
to generate an absolutely continuous Tweedie random variate when  - since it+ − Ð ∞ß !Ó
solely involves a Gamma random variate - the task is not trivial when  - since in+ − Ð!ß "Ó
this case it requires an exponentially-tilted Stable random variate, which is quite difficult to
generate (Devroye, 2009). Incidentally, it should be also remarked that, when , it+ − Ð!ß "Ó
holds
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where, with the usual slight abuse in notation, in this case the r.v.  represents a Discrete]
Stable r.v. with parameters  and  and  is the corresponding p.f. (for more details on+ ,Î+ :]
the Discrete Stable r.v., see Hence, from the definition of c.f. ite.g. et al. Marcheselli , 2008). 
readily follows that

: ÐBÑ œ / - : ÐBÑ\ ]
Ð,Î+ÑÐ"-Ñ B+

 .

Thus, the r.v.  may be actually considered as an exponentially-tilted Discrete Stable r.v.,\
i.e. the integer-valued counterpart of an exponentially-tilted Stable r.v. However, this
stochastic representation does not lead to a finite-time algorithm, except than for the special
case ,  when the Poisson-Tweedie distribution reduces to the Discrete Stable- œ " i.e.
distribution and random variate generation may be accomplished by means of the proposal by
Devroye (1993).

On the basis of the previous discussion, it is apparent that random variate generation for
the Poisson-Tweedie distribution may be challenging when  and . + − Ð!ß "Ó - Á " In this case,
the suggested universal algorithm could be suitable, also by taking into account that the p.f.
of the r.v.  is unimodal for this parameter range (see Hougaard , 1997). Since\ et al.
EÒ\ Ó  ∞ - Á " E 7 œ 7 œ Ð,-ÎÐ"  -Ñ Ñ# "+

7 if , the values of  for Round‡ ‡‡ and 7 œ 7
have been computed for various choices of ,  and  and the results are reported in Table III.+ , -
For some parameter choices it occurred that  and hence the expected complexities7 Á‡ 7‡‡

E7‡  and E7‡‡  were both reported in Table III. From an analysis of Table III, it is apparent



that the algorithm performs reasonably well, even if it is suitable to adopt the selection 7‡,
which in some cases may markedly lessen the expected complexity.

Table III. Expected complexities  and  (in parenthesis)E E7 7‡ ‡‡

for the proposed algorithm (Poisson–Tweedie distribution).
- !Þ" !Þ$ !Þ& !Þ( !Þ*
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5. Conclusions and future directions. When the random generation of a square-integrable
integer-valued random variable is required, the considered universal method may be suitable.
Indeed, the suggested algorithm may be easily implemented in a few code lines with a rather
small set-up. In addition, the algorithm shows a good performance in terms of expected
complexity for the classical distributions, such as the Poisson, the Binomial and the
Hypergeometric distributions. Moreover, the method is potentially useful for the generation
of an integer-valued random variable solely displaying closed-form characteristic function - a
feature of many important distribution families, see Johnson 2005).et al. (

As to the future research, it could be interesting to explore the use of inequality (3) for
implementing more specialized rejection algorithms, giving rise to fast generators for specific
distributions. Actually, the present paper aims to provide a universal generator - with a
structure similar to the proposal by Devroye (1981) in the absolutely continuous case - and
hence the issue should be explored in a more detail. Moreover, the suggested method could
be generalized by adopting the two-parameter choice of type , where ,1ÐBÑ œ ÐB 7Ñ  !# #
in inequality (3). Actually, we have opted for the selection  in order to achieve a very# œ #
easy-to-implement method. However, the two-parameter choice should lead to a more
efficient algorithm when  is properly selected. In addition, random variate generation for#
heavy-tailed distributions could be handled in this case and the assumption of square-
integrability on the underlying random variable removed.
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