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The algebra of interpolatory cubature formulæ for generic nodes
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Abstract We consider the classical problem of computing
the expected value of a real functionf of thed-variate ran-
dom variableX using cubature formulæ. We use in synergy
tools from Commutative Algebra for cubature rulæ, from el-
ementary orthogonal polynomial theory and from Probabil-
ity.

Keywords Design of experiments· Cubature formulæ·
Algebraic Statistics· Orthogonal polynomials· Evaluation
of expectations

1 Introduction

Consider the classical problem of computing the expected
value of a real functionf of the d-variate random variable
X as a linear combination of its valuesf (z) at a finite set of
pointsz∈ D ⊂ R

d. The general cubature problem is: deter-
mine classes of functionsf : Rd → R, finite set ofn nodes
D ⊂ R

d and positive weights{λz}z∈D such that

E( f (X)) =

∫

Rd
f (x)dλ (x) = ∑

z∈D

f (z)λz (1)

whereλ is the probability distribution of the random vec-
tor X. In the univariate case,d = 1, the setD is the set of
zeros of anode polynomial, e.g. then-th orthogonal poly-
nomial for λ , see e.g. [5, Sec. 1.4]. Not much is known in
the multivariate case, unless the set of nodes is product of
one-dimensional sets.
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A similar setting appears in statistical Design of Exper-
iment (DoE) where one considers a finite set oftreatments
D and the experimental outputs as function of the treatment.
The set of treatments and the set of nodes are both described
efficiently as zeros of systems of polynomial equations, i.e.
as what is called a 0-dimensional varietyin Commutative
Algebra. This framework is systematic for Algebraic Statis-
tics where tools from modern Computational Commutative
Algebra are used to address problems in statistical inference
and modelling, see e.g. [3,6,10]. In DoE the setD is called
a designand theaffine structure of the ring of real func-
tions onD is analyzed in detail because it represents the set
of real responses to treatments inD . However, in the alge-
braic setting theeuclideanstructure, such as the computa-
tion of mean values, is missing. In algebraic design of ex-
periment the computation of mean values has been obtained
by considering very special sets calledfactorial designs, e.g.
{+1,−1}d, see e.g. [4] and [10, Ch. 5]. Note that{+1,−1}
is the zero set of the polynomialx2−1.

The purpose of the present paper is to discuss how the
above comes together by considering orthogonal polynomi-
als. In particular, we consider algorithms from Commuta-
tive Algebra for the cubature problem in (1) by mixing tools
from elementary orthogonal polynomial theory and Proba-
bility. Vice versa, Formula (1) provides an interesting inter-
pretation of the RHS term as expected value.

We proceed by steps of increasing degree of general-
ity. In Section 2 we consider the univariate case and take
λ to admit an orthogonal system of polynomials. Letg(x) =
∏z∈D(x− z) and by univariate division given a polynomial
p there exist uniqueq andr such thatp= q g+ r andr has
degree smaller than the number of points inD , that is the
degree ofg. Furthermore,r can be written as∑z∈D r(z)lz(x)
where lz is the Lagrange polynomial forz∈ D . Then we
show that
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1. the expected values ofp andr coincide if and only if the
n-coefficients of the Fourier expansion ofq with respect
to the orthogonal polynomial system is zero,

2. the weightsλz in (1) are the expected values of the La-
grange polynomialslz, for z∈ D .

The case when the designD is a proper subset of the zero set
of then-th orthogonal polynomial is developed in Section 4.

In Section 3,λ is a standard Gaussian probability law
andD the zero set of then-th Hermite polynomialHn. By
applying Stein-Markov theory we give a representation of
some Hermite polynomials, including those of degree 2n−
1, as sum of an element in the polynomial ideal generated
by Hn and of a reminder. See Theorem 4 and the following
discussion, in particular Equation (8) which, unsurprisingly,
is reminiscent of other formulæ for iterated It ō integrals
e.g. [9, Eq. (6.4.17)]. The point is to describe a ring structure
of the space generated by Hermite polynomials up to a cer-
tain order. This ring structure is essentially the aliasingon
functions induced by limiting observations toD . The par-
ticular form of the recurrence relationship for Hermite poly-
nomials makes this possible and we suspect that the study
of the ring structure overD for other systems of orthogonal
polynomials will require different tools from those we use
here.

This result implies a system of equations in Theorem 5
(extended to the multidimensional case in Section 5) which
gives an implicit description of design and weights via two
polynomial equations. We envisage applicability of this in
the choice ofD for suitable classes of functions but have
not developed this here.

Section 6 contains our most general set-up: we restrict
ourselves to product probability measures onR

d but con-
sider any set ofn distinct points inRd. Then a Buchberger-
Möller type of algorithm is provided that works exclusively
over vector-space generated by orthogonal polynomials up
to a suitable degree. It gives a generating set of the vanish-
ing ideal ofD expressed in terms of orthogonal polynomi-
als. This is used to determine sufficient and necessary condi-
tions on a polynomial functionf for which (1) holds for suit-
ably defined weights. Furthermore, exploiting the Fourier
expansion of a Gröbner basis of the vanishing ideal ofD ,
some results about the exactness of the cubature formulæ
are shown. Of course it will be of interest to determine gen-
eralisations of our results to the cases whereλ is not a prod-
uct measure and still admits an orthogonal system of poly-
nomials.

1.1 Basic commutative algebra

We start with some notation on polynomials:R[x] is the ring
of polynomials with real coefficients and in thed-variables
(or indeterminate)x= (x1, . . . ,xd); for α = (α1, . . . ,αd) ad-

dimensional vector with non-negative integer entries,xα =

xα1
1 . . .xαd

d indicates a monomial;τ indicates a term-ordering
on the monomials inR[x]. If d = 1 there is only one term
ordering, this is not the case ford ≥ 2. Designs of prod-
uct form share some commonalities with the one dimension
case. Because of this, term orders are not much used in stan-
dard quadrature theory. We will see that refining the division
partial order to a proper term-order is actually relevant in
some, but not all, multivariate cases.

The total degree of the monomialsxα is ∑d
i=1 αi . The

symbolR[x]k indicates the set of polynomials of total de-
greek andR[x]≤k the vector space of all polynomials of at
most total degreek. LetD be a finite set of distinct points in
R

d, λ a probability measure overRd andX a real-valued
random vector with probability distributionλ so that the
expected value of the random variablef (X) is E( f (X)) =∫

f (x)dλ (x).
Given a term orderingτ, let f1, . . . , ft ∈R[x] form aGröb-

ner basiswith respect toτ (see [2, Ch. 2]) of the idealI (D)

of polynomials vanishing overD . For eachp ∈ R[x] there
existhi , i = 1, . . . , t and an uniquer ∈ R[x] such that

p(x) =
t

∑
i=1

hi(x) fi(x)+ r(x), (2)

and r has its largest term inτ not divisible by the largest
term of fi , i = 1, . . . , t. Note that thehi(x) ∈ R[x] are not
necessarily unique. For allp∈R[x], the polynomialr above
is referred to asreminderor normal form. It is often indi-
cated with the symbol NFτ(p,{ f1, . . . , ft}), or the shorter
version NF(p), while 〈 f1, . . . , ft 〉 indicates the polynomial
ideal generated byf1, . . . , ft . Moreover, monomials not di-
visible by the largest terms offi , i = 1, . . . , t, form a vector
basis of monomial functions for the vector spaceL (D) of
real functions onD . The polynomialsg= ∑t

i=1hi fi andr in
(2) are fundamental in the applications of Algebraic Geom-
etry to finite spaces. Various general purpose softwares, in-
cluding Maple, Mathematica, Matlab and computer algebra
softwares, like CoCoA, Macaulay, Singular, allow manipula-
tion with polynomial ideals, in particular compute reminders
and monomial bases.

The polynomialr(x) in (2) can be written uniquely as

r(x) = ∑
z∈D

p(z)lz(x) (3)

wherelz is the indicator polynomial of the pointz in D , i.e
for x∈ D it is lz(x) = 1 if x= zandlz(x) = 0 if x 6= z. Equa-
tion (3) follows from the fact that{lz : z∈ D} is aR-vector
space basis ofL (D).

The expected value of the random polynomial function
p(X) with respect ofλ is

E(p(X))=E(g(X))+E(r(X))=E(g(X))+ ∑
z∈D

p(z)E (lz(X))
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by linearity. In this paper we discuss classes of polynomials
p and design pointsD for which

E (p(X)) = ∑
z∈D

p(z)E (lz(X))

equivalentlyE (g(X)) = 0.
In one dimension, the polynomialf vanishing overD

and of degreen = |D | forms a Gröbner basis forI (D).
Here |A| indicates the number of elements of a setA. Fur-
thermore,r satisfies three main properties:

1. r is a polynomial of degree less or equal ton−1,
2. p(x) = g(x)+ r(x) = q(x) f (x)+ r(x) for a suitableq ∈

R[x] andg, f ∈ 〈 f 〉,
3. r(x) = p(x) if x is such thatf (x) = 0. Such anx is in D .

In Section 2 we consider the algebra of orthogonal polyno-
mials in one variable.

2 Orthogonal polynomials and their algebra

In this section letd= 1 andD be the zero set of a polynomial
which is orthogonal to the constant functions with respect to
λ . We next recall the basics on orthogonal polynomials we
use, see e.g. [5].

Let I be a finite or infinite interval ofR andλ a posi-
tive measure overI such that all momentsµ j =

∫
I x j dλ (x),

j = 0,1, . . ., exist and are finite. In particular, each polyno-
mial function is square integrable onI and theL2(λ ) scalar
product is defined by

〈 f ,g〉λ =

∫

I
f (x)g(x)dλ (x)

We consider onlyλ whose related inner product is defi-
nite positive, i.e.|| f || =

√
〈 f , f 〉λ > 0 if f 6= 0. In this case

there is a unique infinite sequence of monic orthogonal poly-
nomials with respect toλ and we denote them as

π0(x) = 1, π1(x) = x+ · · · , π2(x) = x2+ · · · , . . .

Furthermore we haveπk ∈ R[x]k; π0, . . . ,πk form a real
vector space basis ofR[x]≤k; πk is orthogonal to all poly-
nomials of total degree smaller thank; for p ∈ R[x] and
n ∈ Z≥0 there exists uniquecn(p) ∈ R, calledn-th Fourier
coefficient ofp, such thatp(x) = ∑+∞

n=0cn(p)πn(x) and only
a finite number ofcn(p) are not zero.

Since the inner product satisfies theshift property, i.e.

〈xp(x),q(x)〉λ = 〈p(x),xq(x)〉λ for p,q∈ R[x]

then the corresponding orthogonal polynomial system sat-
isfies athree-term recurrencerelationship. More precisely,
all orthogonal polynomial systems on the real line satisfy
a three-term recurrence relationships. Conversely, Favard’s
theorem holds [11].

Theorem 1 (Favard’s theorem)Letγn,αn,βn be sequences
of real numbers and for n≥ 0 let

πn+1(x) = (γnx−αn)πn(x)−βnπn−1(x)

be defined recurrently withπ0(x)= 1, π−1(x)= 0. Theπn(x),
n= 0,1, . . . form a system of orthogonal polynomials if and
only if γn 6= 0, αn 6= 0 and αnγnγn−1 > 0 for all n ≥ 0. If
γn = 1 for all n then the system is of monic orthogonal poly-
nomials.

In the monic case,

αk =
〈xπk,πk〉
〈πk,πk〉

and βk =
〈πk,πk〉

〈πk−1,πk−1〉
hold true and therefore the norm ofπn is computed from the
β ’s as‖πn‖2 = βnβn−1 . . .β0.

For orthonormal polynomials̃πk= πk/‖πk‖ the Christoffel-
Darboux formulæ hold

n−1

∑
k=0

π̃k(x)π̃k(t) =
√

βn
π̃n(x)π̃n−1(t)− π̃n−1(x)π̃n(t)

x− t

n−1

∑
k=0

π̃k(t)
2 =

√
βn
(
π̃ ′

n(t)π̃n−1(t)− π̃ ′
n−1(t)π̃n(t)

)
(4)

Example 1Inner products of the Sobolev type, namely〈u,v〉S=
〈u,v〉λ0

+ 〈u′,v′〉λ1
· · ·+ 〈u(s),v(s)〉λs where λi are positive

measures possibly having different support, do not satisfy
the shift condition. Neither do the complex Hermitian inner
products.

Theorem 2 Let D = {x∈ R : πn(x) = 0} be the zero set of
the n-th orthogonal polynomial with respect to the distribu-
tion λ of the real random variable X. Consider the division
of p∈ R[x] by πn giving p(x) = q(x)πn(x)+ r(x) as above.
Then there exist weightsλz, z∈ D , such that the expected
value of p(X) is

E(p(X)) = cn(q)‖πn‖2
λ + ∑

z∈D

p(z)λz

whereλz=E (lz(X)) and cn(q) is the n-th Fourier coefficient
of the polynomial q.

Remark 1This theorem is a version of a well known result,
see e.g. [5, Sec. 1.4]. We include the proof to underline a
particular form of the error in the quadrature formula, to be
used again in Theorem 3 and in Section 6. Applying Theo-
rem 2 top= 1 we have that 1= ∑z∈D λz.

Proof The setD containsn distinct points. For a univari-
ate polynomialp, we can write uniquelyp(x) = q(x)πn(x)+
r(x) with deg(r)< n and deg(q) =max{deg(p)−n,0}. Fur-
thermore, the indicator functions in the expressionr(x) =
∑z∈D p(z)lz(x) are the Lagrange polynomials forD : namely

lz(x) = ∏
w∈D :w6=z

x−w
z−w

, z∈ D .



4 C Fassino et al.

Hence we have

E (p(X)) = E (q(X)πn(X))+ ∑
z∈D

p(z)E (lz(X))

=
+∞

∑
k=0

ck(q)E (πk(X)πn(X))+ ∑
z∈D

p(z)λz

= cn(q)‖πn‖2
λ + ∑

z∈D

p(z)λz

asE (πk(X)πn(X)) = δk,n with δk,n = 1 if k= n and 0 other-
wise. ⊓⊔

A particular case of Theorem 2 occurs ifp has degree
less than 2n. In this caseq has degree at mostn− 1 and
cn(q) = 0. This shows that the quadrature rule withn nodes
given by the zeros ofπn and weights{λz}z∈D is a Gaussian
quadrature rule and it is exact for all polynomial functions
of degree smaller or equal to 2n−1. For notes on quadrature
rules see for example [5, Ch. 1].

Example 2 (Identification)For f polynomial of degreeN ≤
2n− 1 we can writef (x) = ∑N

k=0ck( f )πk(x). The constant
term is given by

c0( f ) = E( f (X)) = ∑
z∈D

f (z)λz

and for alli such thatN+ i ≤ 2n−1

||πi ||2λ ci( f ) = E( f (X)πi(X)) = ∑
z∈D

f (z)πi(z)λz

In particular, if degf = n− 1 then all coefficients in the
Fourier expansion off can be computed with an evaluation
onD .

In general for a polynomial of degreeN possibly larger
than 2n− 1, Theorem 2 gives the Fourier expansion of its
reminder byπn, indeed

∑
z∈D

f (z)πi(z)λz = ∑
z∈D

NF( f πi)(z)λz

= E(NF( f (X)πi(X))) = ||πi ||2λ ci(NF( f ))

Theorem 3 below generalises Theorem 2 to a generic
finite set ofn distinct points inR, sayD . As above, the in-

dicator function ofz∈ D is lz(x) = ∏w∈D :w6=z
x−w
z−w

. Let

g(x) = ∏z∈D(x− z) be the unique monic polynomial van-
ishing overD and of degreen. Write a polynomialp∈ R[x]
uniquely asp(x) = q(x)g(x)+ r(x) and consider the Fourier
expansions ofq andg: q(x) = ∑+∞

k=0ck(q)πk(x) andg(x) =
∑n

k=0ck(g)πk(x).

Theorem 3 With the above notation,

Eλ (p(X)) =
+∞

∑
k=0

ck(q)ck(g)‖πk‖2
λ + ∑

z∈D

p(z)λz.

Proof From

p(x) = q(x)g(x)+ r(x)

=
+∞

∑
k=0

ck(q)πk(x)
n

∑
j=0

c j(g)π j(x)+ ∑
z∈D

p(z)lz

we have

E(p(X)) =
+∞

∑
k=0

n

∑
j=0

ck(q)c j(g)E (πk(X)π j(X))+ ∑
z∈D

p(z)λz

=
n

∑
k=0

ck(q)ck(g)||πk||2λ + ∑
z∈D

p(z)λz

and this proves the theorem. ⊓⊔

The condition in Theorem 3 is linear in the Fourier co-
efficients ofq, which is found easily fromf by polynomial
division. The first|D | Fourier coefficients ofq appearing in
the conditions of the theorem are determined by solving the
system of linear equations

M [ck(q)]k=0,...,|D |−1 = [q(z)]k=0,...,|D |−1 (5)

whereM = [πk(z)]z∈D ,k=0,...,|D |−1 is the design/evaluation
matrix for the first|D | orthogonal polynomials.

Theorem 3 can be used in two ways at least. Ifp is
known, the condition in the theorem can be checked to ver-
ify if the expected value ofp can be determined by Gaussian
quadrature rule with nodesD and weights

λz = E

(

∏
w∈D :w6=z

X−w
z−w

)
=

∑n−1
0 α(z,k)E

(
Xk
)

∑n−1
0 α(z,k)zk

for z∈ D , whereα(z,k) is thek-th symmetric function of
the polynomialπn(x)/(x− z). The Fourier coefficients ofg
can be computed analogously to those ofq adapting Equa-
tion (5).

If p is an unknown polynomial andp(x) = ∑α pαxα

for a finite number of non-zero, unknown, real coefficients
pα , Theorem 3 characterizes all the polynomials for which
the Gaussian quadrature rule is exact, namelyEλ (p(X)) =

∑z∈D p(z)λz. Furthermore, the characterization is a linear
expression in the unknownpα . This is because in Equa-
tion (5) theq(z) are linear combinations of the coefficients
of p.

In Section 3 we shall specialise our study to Hermite
polynomials, while in Section 5 we shall generalise The-
orem 3 to higher dimension. To conclude this section, we
discuss the remainderr vs the orthogonal projection.

Remark 2Let p(x)∈R[x] and writep(x) =q(x)πn(x)+r(x)
wherer has degree less thann. Then
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1. q is the unique polynomial such thatp−qπn is orthog-
onal to all πm with m≥ n. This is a rephrasing of the
characteristic property of the remainder:r belongs to
R[x]≤n−1 if, and only if, r is orthogonal to allπm with
m≥ n. Should it exist two suchq’s, then (q1 − q2)πn

would be in the same space, hence null.
2. If deg(p) = n, thenr is the orthogonal projection ofp

on R[x]≤n−1. In fact, q is the leading coefficient ofp,
thereforep− r is a multiple ofπn and indeed orthogonal
to R[x]≤n−1.

3. If deg(p) = N ≥ n, then the orthogonal projection ofp
onR[x]≤n−1 differs from r, unless the projection ofqπn

is zero.

Example 3Substituting the Fourier expansions ofq and p
in the division above, form≥ n we find that them-th coeffi-
cient in the Fourier expansion ofp can be written as

E (p(X)πm(X)) = E (q(X)πn(X)πm(X))

+∞

∑
k=0

ck(p)E (πk(X)πm(X)) =
+∞

∑
j=0

c j(q)E (π j(X)πn(X)πm(X))

cm(p)||πm||2 =
+∞

∑
j=0

c j(q)E (π j(X)πn(X)πm(X))

For Hermite polynomials it can be simplified by e.g. using
the product formula in Theorem 4 of Section 3.

3 Hermite polynomials

There is another way to look at the algebra of orthogonal
polynomials that we discuss here in the case of Hermite
polynomials. The reference measureλ is the normal dis-
tribution anddλ (x) = w(x)dx, with w(x) = e−x2/2/

√
2π,

x∈ R.

3.1 Stein-Markov operators for standard normal
distribution

For a real valued, differentiable functionf , define

δ f (x) = x f(x)− d
dx

f (x) =−ex2/2 d
dx

(
f (x)e−x2/2

)
,

dn =
dn

dxn , and considerZ ∼ λ . The following identity holds

E (φ(Z) δ nψ(Z)) = E (dnφ(Z) ψ(Z)) (6)

if φ ,ψ are such that limx→±∞ φ(x)ψ(x)e−x2/2 = 0 and are
square integrable, see [7, Ch. V Lemma 1.3.2 and Propo-
sition 2.2.3]). Polynomials satisfy these conditions andδ
is also called the Stein-Markov operator for the standard
normal distribution. It is a shift-equivariant linear operator
onR[x], namelyδ f (x+a) = (x+a) f (x+a)− f ′(x+a) =

(δ f )(x+a) holds fora∈R and the constant one is mapped
into x.

Then-th Hermite polynomial can be defined asHn(x) =
δ n1. Direct computation usingδ proves the following well-
known facts:

1. The first Hermite polynomials are

H0 = 1

H1(x) = x

H2(x) = x2−1

H3(x) = x3−3x

H4(x) = x4−6x2+3

H5(x) = x5−10x3+15x

2. Hn(x) = (−1)nex2/2dn(e−x2/2) (Rodrigues’ formula)
3. dδ − δd is the identity operator. From this the relation-

shipsdHn = nHn−1, dmHn =
n!
m!

Hn−m for m≤ n and the

three-term recurrence relationship

Hn+1 = xHn−nHn−1 (7)

are deduced.
4. Hermite polynomials are orthogonal with respect to the

standard normal distributionλ . Indeed from Equation (6)
we haveE(Hn(Z)Hm(Z)) = n!δn,m whereδn,m = 0 if
n 6= m andδn,m = 1 if n= m.

We already mentioned that{Hn(x) : n≤ d} spansR[x]≤d

and thatHn is orthogonal to any polynomial of degree dif-
ferent fromn. The ring structure of the space generated by
the Hermite polynomials is described in Theorem 4.

Theorem 4 The Fourier expansion of the product HkHn is

HkHn = Hn+k+
n∧k

∑
i=1

(
n
i

)(
k
i

)
i!Hn+k−2i

Proof Note that〈φ ,ψ〉 = E(φ(Z)ψ(Z)) is a scalar product
on the obvious space and letn ≤ k with Z ∼ N (0,1) and
ψ ,φ square integrable functions for which identity (6) holds.
Then

〈HkHn,ψ〉= 〈δ n1,Hkψ〉

= 〈1,dn(Hkψ)〉=
n

∑
i=0

〈1,
(

n
i

)
diHk dn−iψ〉

= 〈1,Hkd
nψ〉+

n

∑
i=1

〈1,
(

n
i

)
diHk dn−iψ〉

= 〈Hn+k,ψ〉+
n

∑
i=1

(
n
i

)
k(k−1) . . .(k− i +1)〈Hn+k−2i,ψ〉

= 〈Hn+k,ψ〉+ 〈
n

∑
i=1

(
n
i

)(
k
i

)
i!Hn+k−2i,ψ〉

⊓⊔
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Example 4 (Aliasing)As an application of Theorem 4, ob-
serve that the three-term recurrence relation for Hermite poly-
nomials, Equation (7)

Hn+1 = xHn−nHn−1

evaluated on the zeros ofHn(x), sayDn, becomesHn+1(x)≡
−nHn−1(x) where≡ indicates that equality holds forx∈Dn.
In general letHn+k ≡ ∑n−1

j=0 hn+k
j H j be the Fourier expan-

sion of the normal form ofHn+k atDn, where we simplified
the notation for the Fourier coefficients. Substitution in the
product formula in Theorem 4 gives the formula to write
hn+k

j in terms of Fourier coefficients of lower order Hermite
polynomials:

NF(Hn+k) ≡−∑n∧k
i=1

(n
i

)(k
i

)
i!NF(Hn+k−2i) (8)

≡−∑n∧k
i=1

(n
i

)(k
i

)
i! ∑n−1

j=0 hn+k−2i
j H j

Equating coefficients gives a closed formula

hn+k
j =−

n∧k

∑
i=1

(
n
i

)(
k
i

)
i!hn+k−2i

j

In Table 1 the normal form ofHk+n with respect toHn is
written in terms of Hermite polynomials of degree smaller
thann. For example,Hn+3(x) =−n(n−1)(n−2)Hn−3(x)+
3nHn−1(x) for those values ofx such thatHn(x) = 0.

k Hn+k ≡
1 −nHn−1
2 −n(n−1)Hn−2
3 −n(n−1)(n−2)Hn−3+3nHn−1
4 −n(n−1)(n−2)(n−3)Hn−4 +8n(n−1)Hn−2

5 − n!
(n−5)! Hn−5+5nHn−1+15n(n−1)(n−2)Hn−3

6 − n!
(n−6)! Hn−6+24n(n−1)(n−2)(n−3)Hn−4

+10n(n−1)(2n−5)Hn−2

Table 1 Aliasing ofHn+k, k= 1, . . .,6 overD = {Hn(x) = 0}

Example 5Observe that iff has degreen+1 equivalently
k= 1 then

f =
n−1

∑
i=0

ci( f )Hi + cn( f )Hn+ cn+1( f )Hn+1

≡
n−2

∑
i=0

ci( f )Hi +(cn−1( f )−ncn+1( f ))Hn−1

and all coefficients up to degreen−2 are “clean”.

We give another proof of Theorem 2 for Hermite poly-
nomials.

Corollary 1 Let Dn = {x : Hn(x) = 0} and p∈ R[x]. Let
p(x) = q(x)Hn(x)+ r(x) with the degree of r smaller than n
and let Z∼ N (0,1). Then

E(p(Z)) = ∑
z∈Dn

p(z)λz if and only ifE (dnq(Z)) = 0

with λz = E (lz(Z)) and lz(x) = ∏w∈D :w6=z
x−w
z−w

, z∈ Dn.

Proof From Equation (6) we have

E(q(Z)Hn(Z)) = E(q(Z)δ n1) = E (dnq(Z))

Now by the same steps followed in the proof of Theorem 2
we conclude that

E(p(Z)) = E (dnq(Z))+ ∑
z∈Dn

p(z)λz

⊓⊔

3.2 Algebraic characterisation of the weights

Theorem 5 gives two polynomial equations whose zeros are
the design points and the weights. This is a particular case
of Formula (1.17) in [12]. We provide the proof to highlight
the algebraic nature of the result and of its proof.

Theorem 5 LetD = {x : Hn(x) = 0}.

1. There exists only one polynomialλ of degree n−1 such
thatλ (x) = λx for all x ∈ D ,

2. furthermoreλx =
(n−1)!

n H−2
n−1(x). Equivalently

3. the polynomialλ satisfies




Hn(x) = 0

λ (x)H2
n−1(x) =

(n−1)!
n

Proof 1. The univariate polynomialλ is the interpolation
polynomial of the valuesλz’s at then distinct points in
Dn and hence it exists, unique of degreen−1.

2. Observe that for Hermite polynomialsαn = 0, βn = n,
H̃n(x) = Hn(x)/

√
n! andH̃ ′

n(x) =
√

nH̃n−1(x). Substitu-
tion in the Christoffel-Darboux formulæ and evaluation
atDn = {x1, . . . ,xn} give

n−1

∑
k=0

H̃k(xi)H̃k(x j) = 0 if i 6= j

n−1

∑
k=0

H̃k(xi)
2 = nH̃n−1(xi)

2

(9)

In matrix form Equations (9) becomes

HnH
t
n = n diag(H̃n−1(xi)

2 : i = 1, . . . ,n)
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whereHn is the square matrixHn=
[
H̃ j(xi)

]
i=1,...,n; j=0,...,n−1

and diag indicates a diagonal matrix. Observe thatHn is
invertible and

H
−1
n =H

t
nn−1diag(H̃−2

n−1(xi) : i = 1, . . . ,n)

Now, let f be a polynomial of degree at mostn−1, that
is a typical remainder by division forHn, then f (x) =
∑n−1

j=0 c j H̃ j(x). Write f = Hnc where f = [ f (xi)]i=1,...,n

andc= [c j ] j . Furthermore note that

c=H
−1
n f =H

t
nn−1diag(H̃−2

n−1(xi) : i = 1, . . . ,n) f

=H
t
nn−1diag(H̃−2

n−1(xi) f (xi) : i = 1, . . . ,n)

c j =
1
n

n

∑
i=1

H̃ j(xi) f (xi)H̃
−2
n−1(xi) (10)

Apply this to thek-th Lagrange polynomial,f (x)= lk(x),
whose Fourier expansion isf (x) =∑n−1

j=0 ck jH̃ j(x). Using
lk(xi) = δik in Equation (10), obtain

ck j =
1
n

H̃ j(xk)H̃
−2
n−1(xk) (11)

The expected value oflk(Z) is

λk = E(lk(Z)) =
n−1

∑
j=0

ck j E

(
H̃ j(x)

)
= ck0

Substitution in Equation (11) forj = 0 gives

λk =
1
n

H̃−2
n−1(xk) =

(n−1)!
n

H−2
n−1(xk)

This holds for allk= 1, . . . ,n.
3. The system of equations is a rewriting of the previous

parts of the theorem because the first equationHn(x) = 0
states that only values ofx∈Dn are to be considered and
the second equation is what we have just proven.

⊓⊔

Item 2 in Theorem 5 states that the weights are strictly
positive. Theorem 2 applied to the constant polynomialp(x)=
1 shows that they sum to one. In other words, the mapping
that associatesz to λz, z∈ Dn, is a discrete probability den-
sity. Theorem 2 states that the expected value of the polyno-
mial functions ofZ ∼N (0,1) for whichcn(q) = 0, is equal
to the expected value of a discrete random variablesX given
by Pn (X = xk) = E (lk(Z)) = λk, k= 1, . . . ,n

E (p(Z)) =
n

∑
k=1

p(xk)λk = En (p(X))

Example 6Forn= 3 the polynomialλ in Theorem 5 can be
determined by-hand. For larger values ofn an algorithm is

provided in Section 3.3. The polynomial system to be con-
sidered is

0= H3(x) = x3−3x

2/3= λ (x)H2
2 = (θ0+θ1x+θ2x2)(x2−1)2

whereλ (x) = θ0+θ1x+θ2x2. The degree ofλ (x)H2
2 is re-

duced to 2 by usingx3 = 3x

2/3= λ (x)H2
2 = θ0+θ14x+(θ0+4θ2)x

2 (12)

Coefficients in Equation (12) are equated to giveλ (x) = 2
3 −

x2

6 .

In some situations, e.g. the design of an experimental
plan or of a Gaussian quadrature rule, the exact computa-
tion of the weights might not be necessary andλ (x) is all
we need. When the explicit values of the weights are re-
quired, the computation has to be done outside a symbolic
computation setting as we need to solve, e.g.,H3(x) = 0 to
getD3 = {−

√
3,0,

√
3} and evaluateλ (x) to find λ−

√
3 =

λ (−
√

3) = 1
6 = λ√

3 andλ0 = λ (0) = 2
3.

Example 7Let a positive integerN be given and letk andn
be positive integers such thatkn< 2N then

E

(
Hn(Z)

k
)
= ∑

z∈DN

(n−1)!
n

Hn(z)k

H2
N−1(z)

by Theorem 5. The issue is then the evaluation ofHN−1 and
Hn at the zeros ofHN, for which the recurrence relationship
can be used when the values are not tabulated.

3.3 Code for the weighing polynomial

The polynomialλ (x) in Theorem 5 is called theweighing
polynomial. Table 2 gives a code written in the specialised
software for symbolic computation called CoCoA [1] to com-
pute the Fourier expansion ofλ (x) based on Theorem 5.

Line 1 specifies the number of nodesN. Line 2 estab-
lishes that the working environment is a polynomial ring
whose variables are the first(N− 1)-Hermite polynomials
plus an extra variablewwhich encodes the weighing polyno-
mial; here it is convenient to work with a elimination term-
ordering ofw, calledElim(w), so that the variablew will
appear as least as possible. Lines 3, 4, 5 construct Hermite
polynomials up-to-orderN by using the recurrence relation-
ships (7). Specifically they provide the expansion ofH j over
Hk with k < j for k = 0, . . . ,N−1. Line 6 states thatHN =

H1HN−1−(N−1)HN−2= 0, ‘giving’ the nodes of the quadra-
ture. Line 7 is the polynomial in the second equation in the
system in Item 3 of Theorem 5 and ‘gives’ the weights.
There areN equations which are collected in an ideal whose
Gröbner basis is computed in Line 8. In our application it is
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interesting that the Gröbner bases contains a polynomial in
whichw appears alone as a term of degree one. This element
of the Gröbner basis relates explicitly to the desired weigh-
ing polynomialw to the first(n−1)-Hermite polynomials.

L1 N:=4;

L2 Use R::=Q[w,h[1..(N-1)]], Elim(w);

L3 Eqs:=[h[2]-h[1]*h[1]+1];

L4 For I:=3 To N-1 Do

L5 Append(Eqs,h[I]-h[1]*h[I-1]+(I-1)*h[I-2]) EndFor;

L6 Append(Eqs,h[1]*h[N-1]-(N-1)*h[N-2]);

L7 Append(Eqs,N*w*h[N-1]^2-Fact(N-1));

L8 J:=Ideal(Eqs); GB_J:=GBasis(J); Last(GB_J);

L9 3w + 1/4h[2] - 5/4

Table 2 Computation of the Fourier expansion of the weighing poly-
nomial using Theorem 5

Line 9 in Table 2 gives the polynomial obtained forN = 4,
as set in Line 1, namely

λ (x) =
(
−1

4
H2(x)+

5
4

)
1
3
=

6− x2

12

The nodes are±
√

3±
√

6 and the values of the weights are
3±

√
6

12 , showing that both nodes and weights are algebraic
numbers but not rational numbers. On a Mac OS X with an
Intel Core 2 Duo processor (at 2.4 GHz) using CoCoA (re-
lease 4.7) the result is obtained forN = 10 in Cpu time =
0.08, User time = 0; forN = 20 in Cpu time = 38.40, User
time = 38; forN= 25 in Cpu time = 141.28, User time = 142
and forN = 30 in Cpu time = 5132.71, User time = 5186.
Observe that this computations can be done once for all and
the results stored. Observe furthermore that in Line 8 the
CoCoA commandsGB J:=GBasis(J); Last(GB J); could
be substituted byNF(w,J) . This does not improve on com-
putational cost as NF requires the computation of a Gröbner
basis and a reduction. As a minor point we observe that the
symbol w would not appear in Line 9.

4 Fractional design

In this section we return to the case of general orthogo-
nal polynomials,{πn}n, and positive measure,dλ . We as-
sume that the nodes are a proper subsetF of Dn = {x∈R :
πn(x) = 0} with m points, 0< m< n. We work within two
different settings, in one the ambient designDn is consid-
ered while in the other one it is not.

Consider the indicator function ofF as subset ofDn,
namely 1F (x) = 1 if x ∈ F and 0 if x ∈ Dn \F . It can
be represented by a polynomial of degreen because it is
a function defined overDn [2, 10]. Let p be a polynomial
of degree at mostn− 1 so that the productp(x)1F (x) is a

polynomial of degree at most 2n−1. Then from Theorem 2
we have

E((p1F )(X)) = ∑
z∈F

p(z)λz = En (p(Y)1F (Y))

= En (p(Y)|Y ∈ F )Pn(Y ∈ F )

whereX is a random variable with probability lawλ andY
is a discrete random variable taking valuez∈F with proba-
bility Pn(Y = z) = λz. The first equality follows from the fact
that p(x)1F (x) is zero forx ∈ D \F and the last equality
from the definition of conditional expectation.

Another approach is to consider the polynomial whose
zeros are the elements ofF , sayωF (x) = ∏

z∈F

(x− z). Now

consider the Lagrange polynomials forF , namelylFz (x) =

∏
w6=z
w∈F

x−w
z−w

for z∈ F .

Lemma 1 Let F ⊂ Dn. The Lagrange polynomial for z∈
F is the remainder of the Lagrange polynomial for z∈ Dn

with respect toωF (x), namely

lFz (x) = NF(lz(x),〈ωF (x)〉)

Proof There exists unique NF(lz)(x), polynomial of degree
small thanm, such that

lz(x) = q(x)ωF (x)+NF(lz)(x)

Furthermore, fora∈ F we havelz(a) = NF(lz)(a) = δz,a =

lFz (a). The two polynomialslFa (x) and NF(lz)(x) have de-
gree smaller thanm and coincide onm points, by interpola-
tion they must be equal. ⊓⊔

For a polynomialpof degreeN, write p(x)= q(x)ωF (x)+
r(x) with f (z) = r(z) if z∈ F andr(x) = ∑z∈F p(z)lFz (x).
Let q(x) = ∑N−m

j=0 b jπ j(x) andωF (x) = ∑m
i=0ciπi(x) asωF

has degreem. Then

E(p(X)) = E

(
N−m

∑
j=0

b jπ j(X)
m

∑
i=0

ciπi(X)

)
+E(r(X)) =

b0c0||π0||2λ +b1c1||π1||2λ + · · ·
+b(N−m)∧mc(N−m)∧m||π(N−m)∧m||2λ + ∑

z∈F

p(z)λ F
z

whereλ F
z = E(NF(lz(X),〈ωF (X)〉), z∈ F .

Note that the error of the Gaussian quadrature rule,

b0c0||π0||2λ +b1c1||π1||2λ + · · ·+
b(N−m)∧mc(N−m)∧m||π(N−m)∧m||2λ

is linear in the Fourier coefficientsb j , and also in the Fourier
coefficientsc j of the node polynomial. This is generalised in
Section 5. If the fractionF coincides with the ambient de-
signDn and hence containsn points and ifp is a polynomial
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of degree at most 2n−1, then we obtain the well known re-
sult of zero error because(N−n)∧n≤ n−1 and the only
non-zero Fourier coefficient of the node polynomialπn is of
ordern. In general one should try to determine pairs ofF

and sets of polynomials for which the absolute value of the
errors is minimal.

5 Higher dimension: zero set of orthogonal polynomials
as design support

In this section we return to the higher dimensional set-up of
Section 1.1 but we restrict ourselves to consider the prod-
uct measureλ d = ×d

i=1λ and X1, . . . ,Xd independent ran-
dom variables each one of which is distributed according
to the probability lawλ . As design we take a product grid
of zeros of orthogonal polynomials with respect toλ , more
precisely our design points or interpolation nodes are

Dn1,...,nd ={
x∈ R

d : πn1(x1) = πn2(x2) = . . .= πnd(xd) = 0
}

whereπnk is the orthogonal polynomial with respect toλ of
degreenk.

The Lagrange polynomial of the pointy= (y1, . . . ,yd) ∈
Dn1,...,nd is defined asly(x1, . . . ,xd) = ∏d

k=1 lnk
yk (xk), the apex

nk indicates thatlnk
yk (xk) is the univariate Lagrange polyno-

mial for yk ∈ {xk : πnk(xk) = 0}= Dnk ⊂ R.
The Span

(
ly : y∈ Dn1,...,nd

)
is equal to the linear space

generated by the monomials whose exponents lie on the in-
teger grid{0, . . . ,n1−1}× . . .×{0, . . . ,nd −1}. Any poly-
nomial f ∈ R[x] can be written as

f (x1, . . . ,xd) =
d

∑
k=1

qk(x1, . . . ,xd)πnk(xk)+ r(x1, . . . ,xd)

wherer is unique, its degree in the variablexk is smaller than
nk, for k= 1, . . . ,d, and belongs to that Span.

The coefficients of the Fourier expansion ofqk with re-
spect to the variablexk are functions ofx1, . . . ,xd but not of
xk. Let x−k denote the(d−1)-dimensional vector obtained
from (x1, . . . ,xd) removing thek-th component and write

f (x1, . . . ,xd) =

d

∑
k=1

(
+∞

∑
j=0

c j(qk)(x−k)π j(xk)

)
πnk(xk)+ r(x1, . . . ,xd)

Only a finite number ofc j(qk)(x−k) are not zero.
From the independence ofX1, . . . ,Xn, the expected value

of the Lagrange polynomially is

Eλ d (ly(X1, . . . ,Xd)) =
d

∏
k=1

Eλ
(
lnk
yk
(Xk)

)
=

d

∏
k=1

λ nk
k

whereλ nk
k =E

(
lnk
yk (Xk)

)
is the expected value of a univariate

random Lagrange polynomial as in the previous sections.

Theorem 6 It holds

Eλ d ( f (X1, . . . ,Xd)) =

d

∑
k=1

Eλ d−1(ck(qk)(X−k))||πk||2λ+

∑
(x1,...,xn)∈Dn1...nd

f (x1, . . . ,xd)λ n1
x1

. . .λ nd
xd

Proof The proof is very similar to that of Theorem 2 and
we do it ford = 2 only. In a simpler notation the design is
then×m grid given byDnm= {(x,y) : πn(x) = 0= πm(y)}
andX andY are independent random variables distributed
according toλ . The polynomialf is decomposed as

f (x,y) =

q1(x,y)πn(x)+q2(x,y)πn(y)+ ∑
(a,b)∈Dn,m

f (a,b) lna(x)l
m
b (y) =

+∞

∑
j=0

c j(q1)(y)π j(x) πn(x)+
+∞

∑
j=0

c j(q2)(x)π j(y) πn(y)+

∑
(a,b)∈Dn,m

f (a,b) lna(x)l
m
b (y)

Taking expectation, using independence ofX andY and or-
thogonality of theπi , we have

Eλ 2 ( f (X,Y)) =

Eλ (cn(q1)(Y)) ||πn||2λ +Eλ (cm(q2)(X)) ||πm||2λ+
∑

(a,b)∈Dn,m

f (a,b)λ n
a λ m

b

⊓⊔
Note in the proof above that a sufficient condition for

Eλ (cn(q1)(Y)) being zero is thatf has degree inx smaller
then 2n− 1, similarly for Eλ (cm(q2)(X)). We retrieve the
well-known results that if for eachi the degree inxi of f is
smaller than 2ni −1, then

Eλ d ( f (X1, . . . ,Xd))= ∑
(x1,...,xn)∈Dn1...nd

f (x1, . . . ,xd)λ n1
x1
. . .λ nd

xd

In the Gaussian set-up, by Theorem 5 applied to each
variable, weights and nodes satisfy the polynomial system




Hn1(x1) = 0

λ1(x1)Hn1−1(x1)
2 =

(n1−1)!
n1

...
Hnd(xd) = 0

λd(xd)Hnd−1(xd)
2 =

(nd −1)!
nd

(13)

For the grid set-up of this section and for the Gaussian
case, in analogy to Example 4 some Fourier coefficients of
polynomials of low enough degree can be determined ex-
actly from the values of the polynomials on the grid points
as shown in Example 8 below.
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1(0,0)∈F (x,y) =
2
3

H0−
1
3

H2(y)

1(
√

3,
√

3)∈F
(x,y) =

1
12

H0+
1
12

√
3H1(x)+

1
12

√
3H1(y)+

1
12

H1(x)H1(y)+
1
12

H2(y)

1(
√

3,−
√

3)∈F
(x,y) =

1
12

H0−
1
12

√
3H1(x)+

1
12

√
3H1(y)−

1
12

H1(x)H1(y)+
1
12

H2(y)

1(−
√

3,
√

3)∈F
(x,y) =

1
12

H0+
1
12

√
3H1(x)−

1
12

√
3H1(y)−

1
12

H1(x)H1(y)+
1
12

H2(y)

1(−
√

3,−
√

3)∈F
(x,y) =

1
12

H0−
1
12

√
3H1(x)−

1
12

√
3H1(y)+

1
12

H1(x)H1(y)+
1
12

H2(y)

Table 3 Indicator functions for Example 9

Example 8Consider a square grid of sizen, Dnn, and a poly-
nomial f of degrees inx and iny smaller thann, the Hermite
polynomials and the standard normal distribution. Then we
can write

f (x,y) =
n−1

∑
i, j=0

ci j Hi(x)H j (y)

As both the degree inx of f Hk and the degree iny of f Hh

are smaller than 2n−1, we have

E ( f (Z1,Z2)Hk(X1)Hh(X2)) = chk||Hk(X1)||2||Hh(X2)||2

ckh =
1

k!h! ∑
(x,y)∈Dnn

f (x,y)Hk(x)Hh(y)λxλy

Note if f is the indicator function of a fractionF ⊂ Dnn

then

ckh =
1

k!h! ∑
(x,y)∈F

Hk(x)Hh(y)λxλy with 0≤ h,k< n

Example 9 deals with a general design and introduces
the more general theory of Section 6.

Example 9Let F be the zero set of





g1 = x2− y2 = H2(x)−H2(y) = 0

g2 = y3−3y= H3(y) = 0

g3 = xy2−3x= H1(x)(H2(y)−2H0) = 0

namelyF is given by the five points(0,0), (±
√

3,±
√

3).
Write a polynomialf ∈R[x,y] as f =∑qigi+r wherer(x,y)=
f (x,y) for (x,y) ∈ F and

r ∈ Span(H0,H1(x),H1(y),H1(x)H1(y),H2(y)) =

Span
(
1,x,y,xy,y2) .

If, furthermore,f is such that

q1(x,y) = a0+a1H1(x)+a2H1(y)+a3H1(x)H1(y)

q2 = θ1(x)+θ2(x)H1(y)+θ3(x)H2(y)

q3 = a4+a5H1(y)

with ai ,θ j ∈R for i = 0, . . . ,5 and j = 1, . . . ,3, then

E(gi(Z1,Z2)qi(Z1,Z2)) = 0, i = 1,2,3

for Z1 andZ2 independent normally distributed random vari-
ables. Writer as a linear combination of the indicator func-
tions of the points inF , i.e.

r(x,y) = ∑
(a,b)∈F

f (a,b)1(a,b)∈F (x,y)

Each indicator function 1(a,b)∈F belongs to

Span(H0,H1(x),H1(y),H1(x)H1(y),H2(y))

and are shown in Table 3. Their expected values are given
by theH0-coefficients. Furthermore, by linearity

E( f (Z1,Z2)) = E(r(Z1,Z2)) =

∑
(a,b)∈F

f (a,b)E(1(a,b)∈F (Z1,Z2))

and we can conclude

E( f (Z1,Z2)) = E(r(Z1,Z2)) = 2
f (0,0)

3
+

f (
√

3,
√

3)+ f (
√

3,−
√

3)+ f (−
√

3,
√

3)+ f (−
√

3,−
√

3)
12

The key points in Example 9 are

1. determine the class of polynomial functions for which
E(gi(Z1,Z2)qi(Z1,Z2)) = 0 and

2. determine theH0-coefficients of the indicator functions
of the points inF .

In Section 6 we give algorithms to do this for any fraction
F .
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6 Higher dimension: general design support

In the previous sections we considered particular designs
whose sample points were zeros of orthogonal polynomi-
als. In the Gaussian case we exploited the ring structure of
the set of functions defined over the design in order to ob-
tain recurrence formula and to write Fourier coefficients of
higher order Hermite polynomials in terms of those of lower
order Hermite polynomials (Example 4). Also we deduced
a system of polynomial equations whose solution gives the
weights of a quadrature formula. The mathematical tools
that allowed this are Equation (6) and the particular struc-
ture it implies for Hermite polynomials on the recurrence
relation for general, orthogonal polynomials

πk+1(x) = (γkx−αk)πk(x)−βkπk−1(x) x∈ R (14)

with γk,αk 6= 0 andαkγkγk−1 > 0 (cf. Theorem 1).
In this section we switch focus and consider a generic

set of points inRd as a design, or nodes for a cubature for-
mula, and a generic set of orthogonal polynomials. We gain
something and lose something. The essential computations
are linear: such is the computation of a Gröbner basis for a
finite set of distinct points [8]; the Buchberger Möller type
of algorithm in Table 4 is based on finding solutions of linear
systems of equations; in Section 6.1 we give a characterisa-
tion of polynomials with the same expected values which is
a linear expression of some Fourier coefficients and a square
free polynomial of degree two in a larger set of Fourier co-
efficients (see Equation 18).

Given a set of points and a term-ordering the algorithm
in Table 4 returns the reduced Gröbner basis of the design
ideal expressed as linear combination of orthogonal poly-
nomial of low enough degree. It does so directly; that is, it
computes the Gröbner basis by working only in the space of
orthogonal polynomials.

We lose the equivalent of Theorem 4 for Hermite poly-
nomials, in particular we do not know yet how to impose
a ring structure on Span(π0, . . . ,πn) for generic orthogonal
polynomialsπ and we miss a general formula to write the
productπkπn as linear combination ofπi with i = 0, . . . ,n∧
k,n+ k, which is fundamental for the aliasing structure dis-
cussed for Hermite polynomials.

For multivariate cubature formulæ we refer e.g. to [13]
and [14] which, together with [8], are basic references for
this section. For clarity we repeat some basics and nota-
tion. Let λ be a one-dimensional probability measure and
{πn}n∈Z≥0 be its associated orthogonal polynomial system.
To a multi-indexα = (α1, . . . ,αd) ∈ Z

d
≥0 we associate the

monomialxα = xα1
1 · · ·xαd

d and the product of polynomials
πα(x) = πα1(x1) . . .παd(xd). Note that{πα}α is a system of
orthogonal polynomials for the product measureλ d. Theo-
rem 7 describes the one-to-one correspondence between the
xα ’s and theπα(x)’s.

Theorem 7 1. For d= 1 and k∈ Z≥0, in the notation of
Equation (14) we have that

xk =
k

∑
j=0

c j(x
k)π j(x)

where c0(x0) = 1, c−1(x0) = c1(x0) = 0, and, for k=
1,2, . . . and j= 0, . . . ,k−1

c−1(x
k) = ck+1(x

k) = 0

c j(x
k) =

c j−1(xk−1)

γ j−1
+

c j(xk−1)α j

γ j
+

c j+1(xk−1)β j+1

γ j+1

ck(x
k) =

1
γ0 . . .γk−1

2. For d> 1, the monomial xα is a linear combination of
πβ , with β ≤ α component wise, and vice versa. In for-
mulæ

πα = ∑
β≤α

aβ xβ and xα = ∑
β≤α

bβ πβ (15)

whereβ ≤ α holds component wise.

Proof The proof of Item 1 is by induction and that of Item 2
follows by rearranging the coefficients in the product. They
are given in Appendix 8. ⊓⊔

Example 10If π j is the j-th Hermite polynomial, then Item 1
of Theorem 7 gives the well known result

c j(x
k) = 0 if k+ j is odd

c j(x
k) =

(
k
j

)
(k− j −1)!! if k+ j is even

Direct application of Theorem 7 is cumbersome and we
need only to characterise the polynomial functions for which
the cubature formula is exact. So we proceed by another
way. The finite set of distinct pointsD ⊂ R

d is associated
to its vanishing polynomial ideal

I (D) = { f ∈ R[x] : f (z) = 0 for all z∈ D}

LetLTσ ( f ) or LT( f ) denote the largest term in a polynomial
f with respect to a term-orderingσ . Let [ f (z)]z∈D be the
evaluation vector of the polynomialf atD and for a finite set
of polynomialsG⊂ R[x] let [g(z)]z∈D ,g∈G be the evaluation
matrix whose columns are the evaluation vectors atD of
the polynomials inG. In DoE often this matrix is called the
X-matrix ofD andG.

As mentioned at the end of Section 1.1, the spaceL (D)

of real valued functions defined overD is a linear space and
particularly important vector space bases can be constructed
as follows. LetLT(I (D)) = 〈LTσ ( f ) : f ∈ I (D)〉. If G is
theσ -reduced Gröbner basis ofI (D), thenLT(I (D)) =

〈LTσ ( f ) : f ∈ G〉. Now we can define two interesting vector
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space bases ofL (D). LetL= {α ∈Z
d
≥0 : xα 6∈ LT(I (D))}

and define

B = {xα : α ∈ L} and OB = {πα : α ∈ L}

Example 11For d = 2 andL = {(0,0),(1,0),(0,1),(2,0)}
we haveB = {1,x,y,x2} andOB= {1,π1(x),π1(y),π2(x)},
sinceπ0(x) = π0(y) = 1.

The setsL, B andOB depend onσ . It is well known
that if t ∈ B and r divides t, then r ∈ B; it follows that
if α ∈ L andβ ≤ α component wise then alsoβ belongs
to L andπβ to OB. Note thatσ induces a total ordering
also on the orthogonal polynomials:πα <σ πβ if and only if
xα <σ xβ ; analogouslyα <σ β if and only if xα <σ xβ for
eachα,β ∈ Z

d
≥0. Here we used the same symbol to indicate

related orderings over theα ’s, thexα ’s and theπα ’s. Further,
givenα ≤ β componentwise, sincexα dividesxβ and since
1≤σ xβ−α , we havexα ≤σ xβ , that isα ≤σ β .

Now, given a term-orderingσ , anyg∈Gcan be uniquely
written as its leading term,xα = LT(g), and tail which is a
linear combination of terms inB precedingLT(g) in σ , that
is g= xα +∑β∈L,β<αα aβ xβ with aβ ∈ R.

Theorem 8 provides an alternative to the classical method
of rewriting a polynomialf in terms of orthogonal polyno-
mials. It does so by applying Theorem 7 and by substituting
each monomial inf . Theorem 8 gives linear rules to write
the elements ofG and the remainder of a polynomial divided
by G as linear combinations of orthogonal polynomials of
low enough order. The proof is in Appendix 8.

Theorem 8

1. Span(B) = Span(OB);
2. Let G be the reducedσ -Gröbner basis ofI (D). Each

g∈ G with LT(g) = xα is uniquely written as

g= πα − ∑
β∈L,β<σ α

bβ πβ

where b= [bβ ]β∈L,β<σ α solves the linear system
[
πβ (z)

]
z∈D ,β∈L,β<σ α b= [πα(z)]z∈D ;

in words the coefficient matrix is the evaluation matrix
overD of the orthogonal polynomialsπβ with xβ in tail
of g and the vector of constant terms is the evaluation
vector ofπα .

3. Let p∈ R[x] be a polynomial and[p(z)]z∈D its evalua-
tion vector. The polynomial p∗ defined as

p∗ = ∑
β∈L

aβ πβ (16)

where a= [aβ ]β∈L solves the linear system
[
πβ (z)

]
z∈D ,β∈L

a= [p(z)]z∈D

is the unique polynomial belonging toSpan(OB) such
that p∗(z) = p(z) for all z∈ D .

Theorem 8 provides a pseudo-algorithm to compute a
Gröbner basis forI (D) and the interpolating polynomial at
D in terms of orthogonal polynomials of low order directly
fromD andOB. Table 4 gives the algorithm which is a vari-
ation of the Buchberger-Möller algorithm [8]. It starts with
a finite set of distinct pointsD and a term-orderingσ and
it returnsL and the expressionsg = πα −∑β∈L,β<σ α bβ πβ
for g in the reducedσ -Gröbner basis ofI (D). It does so
by performing linear operations. If the real vector[p(z)]z∈D

is assigned, then the expressionp∗ = ∑β∈L aβ πβ can now
be found using Item 3 in Theorem 8. This permits to rewrite
every polynomialp ∈ R[x] as a linear combination of or-
thogonal polynomials.

The algorithm in Table 4 returns theσ -reduced Gröbner
basis as linear combination of orthogonal polynomials. It
performs operations only with orthogonal polynomials and
in particular it does not involve at any step thexα mono-
mials. This is computationally faster than first computing a
classical Gröbner basis in thexα and next substituting the
πα . Furthermore working with only one vector space basis,
and not switching between thexα and theπα , is conceptu-
ally appealing.

Input: a setD of distinct points inRd, a term-orderingσ and any
vector norm|| · ||.

Output: the reducedσ -Gröbner basisG of I (D) as linear combina-
tion of orthogonal polynomials and the setL.

Step 1 LetL = {0∈ Zd
≥0}, OB = [1], G= [ ] andM = [x1, . . .,xd].

Step 2 IfM = [ ] stop; else setxα = minσ (M) and deletexα from M.
Step 3 Solve in b the overdetermined linear system[

πβ (z)
]

z∈D ,β∈L
b= [πα(z)]z∈D

and compute the residual

ρ = [πα(z)]z∈D
−
[
πβ (z)

]
z∈D ,β∈L

b

Step 4

1. If ‖ρ‖ > 0, then includeα in L, and include inM those ele-
ments of{x1xα , . . . ,xdxα} which are not multiples of an ele-
ment inM or of LT(g), g∈ G. Return to Step 2.

2. If ‖ρ‖= 0, then include inG the polynomial

g= πα − ∑
β∈L

bβ πβ

where the valuesbβ , β ∈ L, are the components of the so-
lutions b of the linear system in Step 3. Delete fromM all
multiples ofxα .

Table 4 Buchberger-Möller algorithm using orthogonal polynomials

Summarising: given a functionf , a finite set of distinct
pointsD ⊂R

d and a term-orderingσ , a probability product
measureλ d overRd, its system of product orthogonal poly-
nomials, and a random vector with probability distribution
λ d, then the expected value off with respect toλ d can be
approximated by
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1. computingL with the algorithm in Table 4 and
2. determining, by solving the linear system

[
πβ (z)

]
z∈D ,β∈L

a= [ f (z)]z∈D
,

the unique polynomialp∗ such thatp∗(z) = f (z) for all
z∈ D . The polynomialp∗ is expressed as linear combi-
nation of orthogonal polynomials.

3. The coefficienta0 of π0 is the required approximation.

Recall thatp∗(x) = ∑z∈D f (z)lz(x) is a linear combination
of the indicator functions of the points inD (Lagrange poly-
nomials) and hencea0 = ∑z∈D f (z)E (lz(X)). In particular,
E (lz(X)) = λz, z ∈ D , can be computed by applying the
above tof = lz. Notice however that asλ d is a product mea-
sure, theλz can be obtained from the one-dimensional ones
as noticed before Theorem 6. It would be interesting to gen-
eralise this section to non-product measures.

Here an algorithm has been provided to approximate the
expected value of polynomials. Next the set of polynomials
whose expected value coincides with the value of the cuba-
ture formula is characterised. In Section 6.1 we provide a
characterisation of the full set via linear relationships that
Fourier coefficients of suitable polynomials have to satisfy,
while in Section 6.2 a possibly proper subset has been char-
acterised via a simple condition on the total degree of the
polynomials.

6.1 Characterisation of polynomial functions with zero
expectation

In this section we characterise the set of polynomials whose
expected value coincides with the value of the cubature for-
mula. As mentioned in Section 1.1 givenD ∈R

d, its vanish-
ing idealI (D), a term-orderingσ and the Gröbner basisG
of I (D) with respect toσ , then any polynomialf ∈ R[x]
can be written as

f (x) = ∑
g∈G

qg(x)g(x)+ rσ (x)

whererσ (x) is unique in Span(B) such thatrσ (z) = f (z)
for all z∈ D and can be written asrσ (x) = ∑z∈D f (z)lz(x),
where thelz’s are the product Lagrange polynomials in Sec-
tion 5. Theorem 8 states how to writerσ overOB.

If f ∈R[x] is such thatEλ ( f (X)) =Eλ (rσ (X)) then we
haveEλ ( f (X)− rσ (X)) = 0, wheref − rσ ∈I (D). Hence
to study the set

Eσ = { f ∈ R[x] : Eλ ( f (X)) = Eλ (rσ (X))}

is equivalent to characterize the set

E0 = {p∈ I (D) : Eλ (p(X)) = 0}

We do this in two ways. First we study the Fourier expansion
of the elements ofE0, next we present some results about the
degree of the elements belonging toEσ .

The elements ofE0 are characterized in Theorem 9. Note
that if f ∈ R[x] is such thatf = p+ rσ with p ∈ E0 and
rσ ∈ Span(B) then by linearity and independence

Eλ ( f ) = ∑
(z1,...,zn)∈D

f (z1, . . . ,zn)λ n1
z1
· · ·λ nd

zd

Theorem 9 Let λ be a product probability measure with
product orthogonal polynomialsπα(x), α ∈ Z

d
≥0 and let X

be a random vector with distributionλ d. Let D ⊂ R
d be a

set of distinct points,σ a term-ordering, G theσ -reduced
Gröbner basis ofI (D) whose elements as linear combina-
tions of orthogonal polynomials. Thus for g∈ G and xα =

LT(g) we write

g= πα − ∑
α>σ β∈L

cβ (g)πβ

whereα >σ β ∈ L stands forα >σ β andβ ∈ L.
Let p= ∑g∈Gqgg ∈ I (D) for suitable qg ∈ R[x], and

consider the Fourier expansion of each qg , g∈ G,

qg = ∑
β∈Zd

≥0

cβ (qg)πβ (17)

ThenEλ (p(X)) = 0 if and only if

∑
g∈G

‖πα‖2
λ cα(qg)− ∑

g∈G
∑

α>σ β∈L

‖πβ‖2
λ cβ (qg)cβ (g) = 0 (18)

Proof The key observation is thatEλ (πm πn) = 0 if n 6= m
and then linearity ofEλ is used. The proof can be found in
Appendix 8. ⊓⊔

Importantly, only terms of low enough Fourier order in Equa-
tion (17) matter for the computation of the expectation.

Example 12ConsiderZ1 andZ2 two independent standard
normal random variables and hence the Hermite polynomi-
als. Consider also the five point design

D = {(−6,−1),(−5,0),(−2,1),(3,2),(10,3)}

and theσ=DegLex term-ordering over the monomials in
R[x,y]. The algorithm in Table 4 givesG= {g1,g2,g3}where

g1 = H2(y)−H1(x)+2H1(y)−4

g2 = H2(x)H1(y)−9H2(x)+47H1(x)H1(y)−123H1(x)

+271H1(y)−399

g3 = H3(x)−47H2(x)+300H1(x)H1(y)−845H1(x)

+2040H1(y)−2987

andL = {(0,0),(1,0),(0,1),(1,1),(0,2)}, that is

OB = {1,H1(y),H1(x),H1(x)H1(y),H2(x)}
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c(1)0 =−34 c(1)(1,0) = 0 c(1)(0,1) =−2 c(1)(0,0) =−8

c(2)0 = 0 c(2)(2,0) = 0 c(2)(1,1) = 1 c(2)(1,0) =−2 c(2)(0,1) = 1 c(2)(0,0) = 2

c(3)0 = 10 c(3)(2,0) = 2 c(3)(1,1) = 0 c(3)(1,0) =−5 c(3)(0,1) = 1 c(3)(0,0) = 5863/2987

Table 5 A solution for (18)

By Theorem 9 for the purpose of computing its expectation
a polynomialp= q1g1+q2g2+q3g3 ∈ I (D) can be sim-
plified to have the form

p=
(

c(1)0 H2(y)+ c(1)
(1,0)H1(x)+ c(1)

(0,1)H1(y)+ c(1)
(0,0)

)
g1+

(
c(2)0 H2(x)H1(y)+ c(2)

(2,0)H2(x)+ c(2)
(1,1)H1(x)H1(y)+

c(2)
(1,0)H1(x)+ c(2)

(0,1)H1(y)+ c(2)
(0,0)

)
g2+

(
c(3)0 H3(x)+

c(3)
(2,0)H2(x)+ c(3)

(1,1)H1(x)H1(y)+ c(3)
(1,0)H1(x)+

c(3)
(0,1)H1(y)+ c(3)

(0,0)

)
g3

and furthermore by Equation (18)

c(1)0 2!−c(1)
(1,0)+2c(1)

(0,1)−4c(1)
(0,0)+c(2)0 2!−9c(2)

(2,0)2!+47c(2)
(1,1)

−123c(2)
(1,0)+271c(2)

(0,1)−399c(2)
(0,0)+ c(3)0 3!−47c(3)

(2,0)2!

+300c(3)
(1,1)−845c(3)

(1,0)+2040c(3)
(0,1)−2987c(3)

(0,0) = 0

In practice, fori = 1,2,3, put coefficients ofgi andqi in two
vectors, multiply them component wise and sum the result.
There are infinite polynomials that satisfy the above equa-
tions, one such polynomial is given in Table 5. The above
equation involves only a finite number of Fourier coeffi-
cients, namelycβ (qg)’s is relevant for the equation if and

only if β ∈ L andxβ is smaller inσ than the leading terms
of g ∈ G. Hence if toqg we add a polynomial of the form
∑β>α or β 6∈L cβ Hβ we still obtain a zero mean polynomial.
That is, we can modifyqg by adding high enough terms
without changing the mean value.

For example by addingH4(x) to q1 andH4(y) to q2 we
obtain the following zero mean polynomial

p(Z1,Z2) =

Z2
1Z5

2 +10Z6
1 +Z4

1Z2
2 −9Z2

1Z4
2 +47Z1Z

5
2 −469Z5

1+

3002Z4
1Z2+Z3

1Z2
2 −6Z2

1Z3
2 −123Z1Z

4
2 +270Z5

2−
8614Z4

1 +20990Z3
1Z2+96Z2

1Z2
2 −282Z1Z

3
2 −424Z4

2

−87898560/2987Z3
1−6700Z2

1Z2+1389Z1Z
2
2 −1690Z3

2+

71785814
2987

Z2
1 −

218275468
2987

Z1Z2+4845Z2
2+

307862660
2987

Z1−
5937584

2987
Z2−

5931425
2987

6.2 On exactness of cubature formulæ

Here we adopt another viewpoint and characterise the set
Eσ . Instead of studying the Fourier expansion of its polyno-
mials, we focus our attention on their degree. Given a degree
compatible term orderingσ , we show how to compute the
maximum degrees such thatR[x]≤s is in Eσ , that is the de-
gree of the cubature formula with nodesD . Our strategy is
based on the definition ofs-orthogonal polynomials [14].

Definition 1 A polynomial g ∈ R[x] is s-orthogonal ifs∈
Z>0 is the maximum integer such that

f g∈ R[x]≤s implies Eλ ( f (X)g(X)) = 0

Furthermore, a setG of polynomials iss-orthogonal if each
g∈ G is s(g)-orthogonal ands= ming∈Gs(g).

Theorem 10 reformulates and summarizes two theorems
about the degree of a cubature formula presented in [13]
and [14] (where H-bases are considered).

Theorem 10 Given a setD and a degree compatible term
orderingσ the following conditions are equivalent.

1. R[x]≤s ⊂ Eσ ;
2. Eλ ( f (X)) = 0 for all f ∈ I (D)∩R[x]≤s;
3. theσ -Gröbner basis G ofI (D) is s-orthogonal.

Proof 1⇒ 2. Let f ∈ I (D)∩R[x]≤s. Since by hypothesis
R[x]≤s ⊂ Eσ , then f ∈ Eσ that isEλ ( f (X)) = Eλ (rσ (X)).
Since f ∈ I(D), we haverσ (x)≡ 0 and soEλ ( f (X)) = 0.
2⇒ 3. For eachg∈ G let f be such thatf g∈ R[x]≤s. Since
f g ∈ I (D)∩R[x]≤s thenEλ ( f (X)g(X)) = 0 and sog is
s-orthogonal.
3⇒ 1. Forp∈ R[x]≤s, we have that

p= ∑
g∈G

gqg+ rσ

where eachgqg is such thatLTσ (gqg)≤LTσ (p) and so, since
σ is degree compatible, deg(gqg) ≤ deg(p) ≤ s. It follows
that, sinceG is s-orthogonal,Eλ (gqg) = 0. By linearity we
obtainEλ (p(X)) = Eλ (rσ (X)), that isp∈ Eσ . ⊓⊔

Remark 3The maximum integers such thatEλ ( f (X)) = 0
for each f ∈ I (D)∩R[x]≤s is the degree of the cubature
formula with nodesD and with respect toσ .



Algebra of Cubature 15

Theorem 10 shows that the maximum integerssuch that
all polynomials of total degreesare inEσ coincides with the
maximumssuch thatG is s-orthogonal. Hence we focus our
attention on thes-orthogonality of the elements ofG.

Theorem 11 Each polynomial g∈R[x] is s-orthogonal with
deg(g)−1≤ s< 2deg(g).

Proof Since f g∈R[x]≤(deg(g)−1) if and only if f is the iden-
tically zero polynomial, thenf g ∈ R[x]≤(deg(g)−1) implies
Eλ ( f (X)g(X)) = 0, that isg is alwayss-orthogonal with
s≥ deg(g)−1. Moreover,s< 2deg(g); in fact, g2 belongs
toR[x]≤2deg(g) and, from the orthogonality of the polynomi-
alsπα , we have

Eλ (g(X)g(X)) = ∑
α
(cα(g))

2‖πα‖2

As g is not identically zero, thenEλ (g(X)g(X)) 6= 0 and so
g cannot be 2deg(g)-orthogonal. ⊓⊔

The following theorem shows how to detect thes-ortho-
gonality of a polynomial analysing its Fourier coefficients.

Theorem 12 Let g= ∑α cα(g)πα the Fourier expansion of
a polynomial g∈R[x].

1. If c0(g) 6= 0, the polynomial g is(deg(g)−1)-orthogonal.
2. If c0(g) = 0, the polynomial g is s-orthogonal where s is

such that cα(g) = 0 for all α s.t.∑d
i=1αi ≤ s−deg(g).

Proof 1. Let f be a constant polynomial,f ≡ 1. We have
that f g∈ R[x]≤deg(g) implies

Eλ ( f (X)g(X)) = Eλ (g(X)) = c0(g) 6= 0

and sog is not deg(g)-orthogonal. From Theorem 11 we
conclude thatg is (deg(g)−1)-orthogonal.

2. Lets< 2deg(g) and letf be a polynomial such thatf g∈
R[x]≤s. Since deg( f )≤ s−deg(g) the Fourier expansion
of f is such thatf =∑|α |≤s−deg(g)cα( f )πα . From the or-
thogonality of the polynomialsπα and froms−deg(g)<
deg(g) we have

Eλ ( f (X)g(X)) = ∑
|α |≤s−deg(g)

cα( f )cα (g)‖πα‖2

The generality off implies thatEλ ( f (X)g(X)) = 0 only
if cα(g) = 0 for eachα such that|α| ≤ s−deg(g).

⊓⊔

Corollary 2 Given a finite set of distinct pointsD ∈R
d and

a degree compatible term orderingσ on R[x], let G be the
reducedσ -Gröbner basis ofI (D). Then the maximum in-
teger sc such thatR[x]≤sc is in Eσ is

sc = min
g∈G

s(g)

where s(g) is such that the Fourier expansion of each g∈ G
is given by

g= ∑
α

cα(g)πα

with cα(g) = 0 forall α such that∑d
i=1 αi ≤ s(g)−deg(g).

Proof By Theorem 10 the thesis follows ifG issc-orthogonal.
But this is true since, from Theorem 12, we have that each
g∈ G is s(g)-orthogonal. ⊓⊔

Example 13Given the set of points

D = {(−1,0), (−1,−2), (1,−1+
√

3), (1,−1−
√

3), (2,1)}

and the degree compatible term orderingσ=DegLex, then
by e.g. the algorithm in Table 4 the reducedσ -Gröbner basis
G of I (D) can be written as

G=





g1 = H2(y)−H1(x)+2H1(y)
g2 = H2(x)H1(y)−H2(x)
g3 = H3(x)−2H2(x)+2H1(x)

Since for eachg∈ G, s(g) is such thatcα(g) = 0 for eachα
s.t.∑d

i=1 αi ≤ s(g)−deg(g), we have thats(g1) = 2, s(g2) =

4 ands(g3) = 3. It follows that G is sc-orthogonal, with
sc = min{s(g1),s(g2),s(g3)} = 2 and so, from Corollary 2
it follows that the maximum integerssuch thatR[x]≤s⊂ Eσ
is 2.

Example 14For D of Example 12 andσ=DegLex, the re-
ducedσ -Gröbner basisG = {g1,g2,g3} of I (D) is such
thats(g1) = 1,s(g2)= 2 ands(g3)= 3 sincec0(g) 6= 0 for all
g∈ G. It follows thatG is 1-orthogonal and so the cubature
formula w.r.t.σ andD is exact for all the polynomials with
degree 0 and 1. Nevertheless let us remark that the cubature
formula is exact for a much larger class of polynomials as
shown in Theorem 9 and in Example 12.

7 Conclusion

In this paper we mixed tools from Computational Commuta-
tive Algebra, orthogonal polynomial theory and Probability
to address the recurrent statistical problem of estimationof
mean values of polynomial functions. Our work shares great
similarity with applications of computational algebra to de-
sign and analysis of experiments, which inspired us with a
non-classical viewpoint to cubature formulae.

We obtained two main results. In the Gaussian case we
obtained a system of polynomial equations whose solution
gives the weights of a quadrature formula (Theorem 13). For
a finite product measure which admits an orthogonal sys-
tem of polynomials, we characterise the set of polynomials
with the same mean value. This depends substantially from
Equation (18) and it is in terms of Fourier coefficients of
particular polynomials obtained by adapting Gröbner basis
theory.
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8 Appendix: proofs

Theorem 7:

Proof 1. The proof is by induction on the monomial de-
gree k. From the three terms recurrence formulaπ j+1 =

(γ jx−α j)π j −β jπ j−1 we have

xπ j =
π j+1

γ j
+

α j

γ j
π j +

β j

γ j
π j−1

For k = 0 we havex0 = π0(x) = c0(x0)π0. For k = 1 from
the three terms recurrence formula we have

x= xπ0 =
π1

γ0
+

α0

γ0
π0 = c1(x)π1+ c0(x)π0

In the inductive step the thesis holds fork and we prove it
for k+1. From the three terms recurrence formula we have

xk+1 =xxk =
k

∑
j=0

c j(x
k)xπ j

=
k

∑
j=0

c j(x
k)

(
π j+1

γ j
+

α j

γ j
π j +

β j

γ j
π j−1

)

=
k+1

∑
j=1

c j−1(xk)

γ j−1
π j +

k

∑
j=0

c j(x
k)

α j

γ j
π j +

k−1

∑
j=0

c j+1(x
k)

β j+1

γ j+1
π j

=
k−1

∑
j=1

(
c j−1(xk)

γ j−1
+ c j(x

k)
α j

γ j
+ c j+1(x

k)
β j+1

γ j+1

)
π j

+
ck−1(xk)

γk−1
πk+

ck(xk)

γk
πk+1

+
c0(xk)α0

γ0
π0+

ck(xk)αk

γk
πk+

c1(xk)β1

γ1
π0

=
k−1

∑
j=1

c j(x
k+1)π j + ck+1(x

k+1)πk+1

+

(
ck−1(xk)

γk−1
+

ck(xk)αk

γk

)
πk

+

(
c0(xk)α0

γ0
+

c1(xk)β1

γ1

)
π0

This concludes the proof of the first part of the theorem.
To prove the second part we apply what we just proved

and unfold the multiplication. Givenxα = xα1
1 · · ·xαd

d , the
polynomialπα = πα1(x1) · · ·παd(xd) is the product ofd uni-
variate polynomialsπα j each of degreeα j in x j , j = 1, . . . ,d.
Clearly if α j = 0 thenπα j = 1 andx j does not dividexα .
Furthermore we have

πα =
d

∏
j=1

α j

∑
k=0

d( j)
k xk

j

We deduce thatπα is a linear combination ofxα and of the
power products which dividexα , that is of power products

xβ with β ≤ α component wise. Vice versa, applying the
first part of the theorem we have

xα =
d

∏
k=1

xαk
k =

d

∏
k=1

[
αk

∑
jk=0

c jk(x
αk
k )π jk(xk)

]

and commuting product with sum shows thatxα is a linear
combination of products ofπβi

(xi) whereβ = (β1, . . . ,βd) is
such thatβ ≤ α component wise, that isxβ dividesxα . ⊓⊔

Theorem 8:

Proof Recall thatB andOB are defined in terms of a com-
mon setL of d-dimensional vectors with non-negative inte-
ger entries satisfying the property of ‘factor-closeness’, that
is if (α1, . . . ,αd) ∈ L and if βi ≤ αi for all i = 1, . . . ,d then
(β1, . . . ,βd) ∈ L.

1. If xα ∈B for someα, then from Theorem 7xα =∑β≤α bβ πβ
follows. Sinceβ ≤ α thenβ ∈ L and so eachπβ ∈ OB:
we have thatxα belongs to Span(OB). The vice versa
is proved analogously.

2. The matrix[πβ (z)]z∈D ,β∈L is a square matrix sinceL has
as many elements asD and has full rank. The linear in-
dependence of the columns of this matrix follows from
the fact that each linear combination of its columns cor-
responds to a polynomial in Span(OB) which coincides
with Span(B).
Any polynomialg∈ G can be written as

g= xα − ∑
α>σ β∈L

cβ xβ

wherexα = LT(g) is a multiple by somex j of an element
of B. By Theorem 7 we have

g= ∑
γ≤α

a(g)γ πγ − ∑
α>σ β∈L

cβ ∑
γ≤β

d(g)
γ πγ

The polynomialπα appears only in the first sum with the
coefficient 1. For the other terms in the first sum observe
that asγ < α thenγ ∈ L and alsoγ <σ α. Analogously,
for the second sum considerγ ≤ β <α; sinceβ ∈ L then
γ ∈ L and sinceγ <α thenγ <σ α. And so, with obvious
notation,

g= πα − ∑
α>σ β∈L

bβ πβ

Sinceg(z) = 0 for z∈ D , then the vectorb = [bβ ]β of
the coefficients in the identity above solves the linear
system[πβ (z)]z∈D ,α>σ β∈Lb= [πα(z)]z∈D . Furthermore,
since[πβ (z)]z∈D ,α>σ β∈L is a full rank matrix, thenb is
the unique solution of such a system.

3. Let p∗ = ∑β∈L aβ πβ be the polynomial whose coeffi-
cients are the solution of the linear system

[πβ (z)]z∈D ,β∈L a= [p(z)]z∈D .
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Such a polynomial obviously interpolates the valuesp(z),
z∈ D , and, since the columns of[πβ (z)]z∈D ,β∈L are the
evaluation vectors of the elements ofOB at D , it be-
longs to Span(OB). We conclude thatp∗ is the unique
polynomial belonging to Span(OB) which interpolates
the valuesp(z), z∈ D .

⊓⊔

Theorem 9:

Proof As G is a basis ofI (D), then for everyp∈ I (D)

andg∈G there existqg ∈R[x] such thatp=∑g∈Gqgg. Since
by linearity

Eλ

(

∑
g∈G

qgg

)
= ∑

g∈G

Eλ (qgg)

the thesis follows once we show that, for eachg ∈ G and
xα = LT(g)

Eλ (qgg) = ‖πα‖2
λ cα(qg)− ∑

α>σ β∈L

cβ (qg)cβ (g)‖πβ‖2
λ

holds. From Equation (17) we have

qgg= ∑
β

cβ (qg)πβ g

and we substitute the Fourier expansion ofg given in Theo-
rem 8

g= πα − ∑
α>σ β∈L

cβ (g)πβ

In computing the expectation we use the fact thatEλ (πhπk)=
0 for differenth andk. Then the expectation ofcβ (qg)πβ g
vanishes ifβ >σ α or β <σ α, β /∈ L, the expectation of
cα(qg)παg gives‖πα‖2

λ cα(qg) and, if α >σ β ∈ L, the ex-
pectation ofcβ (qg)πβ g gives−cβ (qg)cβ (g)‖πβ‖2

λ . ⊓⊔
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