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Abstract It is commonly required to detect change

points in sequences of random variables. In the most

difficult setting of this problem, change detection must

be performed sequentially with new observations being

constantly received over time. Further, the parameters

of both the pre- and post- change distributions may be

unknown. In Hawkins and Zamba (2005), the sequen-

tial generalised likelihood ratio test was introduced for

detecting changes in this context, under the assump-

tion that the observations follow a Gaussian distribu-

tion. However, we show that the asymptotic approxi-

mation used in their test statistic leads to it being con-

servative even when a large numbers of observations is

available. We propose an improved procedure which is

more efficient, in the sense of detecting changes faster,

in all situations. We also show that similar issues arise
in other parametric change detection contexts, which

we illustrate by introducing a novel monitoring proce-

dure for sequences of Exponentially distributed random

variable, which is an important topic in time-to-failure

modelling.

Keywords Change Detection · Statistical Process

Control · Sequential Analysis · Control Charts ·
Generalised Likelihood Ratio

1 Introduction

Change detection problems, where the goal is to moni-

tor for distributional shifts in a sequence of time-ordered

observations, arise in many diverse areas such as the
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segmentation of speech signals in audio processing (Andre-

Obrecht, 1988), RNA transcription analysis in biology

(Caron et al, 2012), and intrusion detection in com-

puter networks. (Tartakovsky, 2005; Levy-Leduc and

Roueff, 2009). They have been especially studied within

the field of statistical process control (SPC) where the

goal is to monitor the quality characteristics of an in-

dustrial process in order to detect and diagnose faults

(Lai, 1995; Hawkins and Olwell, 1998).

In a typical setting, a sequence of observations x1,

x2, . . . are received from the random variablesX1, X2, . . ..

A number of abrupt change points τ1, τ2, . . . divide the

sequence into segments, where the observations within

each segment are independent and identically distributed.

The sequence is hence distributed as:

Xi ∼


F0 if i ≤ τ1
F1 if τ1 < i ≤ τ2
F2 if τ2 < i ≤ τ3,
. . .

(1)

for some set of distributions {F0, F1, . . .}. The goal is

to estimate the location of the change points. Although

the assumption of independent observations between

change points may seem restrictive, this is not the case

since a statistical model can usually be fitted to the ob-

servations to model any dependence, with change de-

tection then being performed on the independent resid-

uals. An extensive discussion of this topic can be found

in Gustafsson (2000).

There are two different versions of the change de-

tection problem. In the batch version, the sequence

has a fixed length consisting of n observations. Change

detection is performed retrospectively using the whole

sequence at once (e.g. Hinkley (1970)). In the sequen-

tial version, the sequence does not necessarily have a
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fixed length. Instead, observations are received and pro-

cessed in order. The sequence is monitored for changes

and, after each observation has been received, a deci-

sion is made about whether a change has occurred based

only on the observations which have been received so

far (Lai, 1995). If no change is flagged, then the next

observation in the sequence is processed, and so on.

The rate at which observations arrive imposes computa-

tional constraints on change detection algorithms, with

a typical requirement being that algorithms should be

at worst O(n), but preferably O(1). These two settings

are known in the SPC literature as Phase I and Phase II

respectively, and Phase II change detection algorithms

are commonly referred to as control charts.

Our concern is the sequential Phase II setting. One

advantage of this setting is that it only requires a single

change point to be detected at any given time, which

avoids most of the computational complexity associated

with detecting multiple change points. We therefore re-

fer to F0 and F1 as the pre- and post-change distribu-

tions respectively, with the single change point being

denoted as τ .

In typical SPC applications it can be assumed that

the parametric forms of F0 and F1 are known, and

the Gaussian case where F0 = N(µ0, σ
2
0) and F1 =

N(µ1, σ
2
1) is of particular interest for SPC. Many ex-

isting procedures focus only on monitoring for changes

in the mean of such a sequence, however we concern

ourselves with the more general case where either the

mean and variance may undergo change. Existing ap-

proaches for this problem differ in what is assumed to

be known about the pre- and post- change means and

variances. In the utopian case where all these parame-

ters are known exactly, the minimax optimal sequential

change detection procedure is the well-known CUSUM

chart (Hawkins and Olwell, 1998). However in most

realistic settings these parameters are unknown, and

Jensen et al (2006) showed that naive attempts to esti-

mate them can lead to poor performance.

Until recently, the standard frequentist approach

when working with unknown pre-change parameters was

the self starting CUSUM chart discussed in Hawkins

and Olwell (1998), which adapts the CUSUM to sit-

uations where distributional parameters are unknown.

However, this CUSUM chart suffers from requiring knowl-

edge of the post-change parameters, which is gener-

ally unavailable. To alleviate this, Hawkins and Zamba

(2005) (subsequently referred to as HZ) recently pro-

posed a new approach to sequential change detection

for Gaussian based on a repeated series of generalised

likelihood ratio tests. Their approach was shown to per-

form favourably compared to the self starting CUSUM,

and can thus be considered the current state-of-the-art

for frequentist sequential Gaussian monitoring.

In this paper, we present a new change detection

algorithm which improves on their proposal. The test

statistic used in HZ relies on maximising over a collec-

tion of likelihood ratio statistics, which are each marginally

assumed to be approximately χ2
2 distributed. However

this approximation only holds asymptotically. Due of

the peculiarities of the sequential change detection set-

ting, this asymptotic result is never achieved even when

the number of available observations is very large. This

results in their procedure being somewhat conservative,

which reduces its ability to detect changes quickly. This

is undesirable, since changes must be detected as fast

as possible in typical SPC application. We introduce a

different statistic which avoids this problem, and results

in quicker detection of every type of change.

We also discuss how the framework introduced by

HZ can be used for parametric monitoring in more gen-

eral situations where the distributional form of F0 and

F1 may be non-Gaussian. In this setting the same prob-

lem relating to the failure of asymptotic assumptions

also arises, and performance can again be improved if

a suitable correction is made. We illustrate this phe-

nomena by introducing a novel statistic for detecting

changes in sequences of Exponentially distributed ran-

dom variables. Control charts for the Exponential dis-

tribution are of interest to SPC due to their use in moni-

toring the time between failures generated by high yield

processes (Khool and Xie, 2009; Liua et al, 2007; Chan

et al, 2000), and our proposal extends this work by not

requiring prior knowledge of either the pre- or post-

change distributional parameter.

The remainder of the paper proceeds as follows:

in Section 2 we summarise the sequential change de-

tection framework of HZ. Then, in Section 3 we dis-

cuss some limitations of their approach which results

in slower change detections. Based on this, we formu-

late a new test statistic which corrects these issues. Sec-

tion 4 introduces a new statistic for detecting changes

in sequences of Exponential random variable. Finally

Section 5 compares the performance of the test statis-

tics with and without finite sample corrections, across

a range of change detection scenarios and also includes

a comparison to recently proposed Bayesian methods

for sequential change detection.

2 Change Detection

The procedure described in HZ extends the standard

Phase I generalised likelihood ratio test of Hinkley (1970)

to sequential monitoring. First consider the (non se-

quential) Phase I setting where there is a fixed size
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sample of n Gaussian observations x1, . . . , xn contain-

ing at most one change point. To test whether a change

point occurs at some particular location τ = k, the

observations are divided into two samples {x1, . . . , xk}
and {xk+1, . . . , xn}, and a likelihood ratio test is used

to assess whether these samples have equal means and

variance. In this case the null hypothesis is:

H0 : Xi ∼ N(µ0, σ
2
0) ∀i.

while the alternative hypothesis that there is a single

change point at k is:

H1 : Xi ∼
{
N(µ0, σ

2
0) if i ≤ k

N(µ1, σ
2
1) if i > k.

In both cases, the parameters µ0, σ2
0 , µ1 and σ2

1 are

unknown and must be estimated. Writing L0 and L1

for the respective likelihoods under the null and alter-

native hypothesis, and letting Dk,n = −2 log(L0/L1),

the standard likelihood ratio test statistic in this situ-

ation can be written as:

Dk,n = k log
S0,n

S0,k
+ (n− k) log

S0,n

Sk,n
, (2)

where:

Sr,s =

s∑
i=r+1

(xi−x̄r,s)2/(s−r), x̄r,s =

s∑
i=r+1

xi/(s−r),

and we note that Sr,s is the (biased) maximum likeli-

hood estimate of the variance. Under the null hypothe-

sis, observations from both samples are identically dis-

tributed and Dk,n has an asymptotic chi-square dis-

tributed with two degrees of freedom. This allows crit-

ical values to be computed, with the null hypothesis

being rejected if Dk,n exceeds a given value.

Of course, in practice it will not be known which

value of k to use as the change point location in the

above test. Therefore, it is usual to treat k as a nui-

sance parameter and estimate it via maximum likeli-

hood. This leads to the following generalised likelihood

ratio test statistic, which tests whether a change occurs

at any point in the sequence:

Dn = max
k

Dk,n, 2 ≤ k ≤ t− 2. (3)

It is concluded that the sequence contains a change

point if Dn > hn for some appropriately chosen thresh-

old ht. The estimate of the change point is then the

value of k for which Dk,n is maximal.

This procedure assumes that the sample x1, . . . , xn
has a fixed length. However in many applications, such

as those commonly encountered in Phase II SPC, this

is not the case and new observations are received over

time. In this case monitoring for a change must be per-

formed sequentially,]with a decision about whether a

change has occurred being taken after every observa-

tion. The above framework can be extended to this

situation by processing the observations sequentially,

starting with the first. For each observation xt, the

statistic Dt is computed using only this observations

and the previous ones, i.e. x1, . . . , xt. If Dt > ht then a

change is flagged, otherwise the next observation xt+1

is processed, and Dt+1 is computed, and so on. This

procedure is hence a sequence of generalised likelihood

ratio tests, and allows sequences containing multiple

change points to be processed without a high compu-

tational burden, assuming that previous observations

are discarded and the procedure is restarted whenever

a change is detected.

In order for this procedure to be feasible, it must

be possible to compute the Dt statistics without incur-

ring too great a computational cost. As discussed in

Hawkins and Zamba (2005), the likelihood ratio statis-

tics Dk,t can be written in terms of the sufficient statis-

tics for estimating the mean and variance of a Gaussian

distribution, and these admit a simple recursively up-

datable form. Therefore, computing Dk+1,t given Dk,t

can be performed very fast. One problem which can

arise is that the number of likelihood ratio tests per-

formed when each observation is processed grows lin-

early over time, since the calculation of Dt requires the

computation of D2,t, D3,t,. . ., Dt−2,t. This means that

the algorithm will have a quadratic O(n2) time com-

plexity. However, a windowing procedure can be used to

drastically reduce the number of statistics which must

be computed, giving an O(n) algorithm. Crucially, this

windowing procedure need not lead to any drop in per-

formance, since older observations can be incorporated

into fixed size summery statistics rather than being dis-

carded. This is described in more detail in Hawkins and

Zamba (2005).

The other key issue is determining the sequence of

thresholds {ht} in a way which takes into account that

multiple highly correlated tests are being performed.

The procedure used by HZ is to choose this sequence

so that the probability of incurring a false positive is

constant over time, i.e. assuming that no change has

occurred, choose the thresholds so that:

P (Dt > ht|Dt−1 ≤ ht−1,Dt−2 ≤ ht−2,
. . . , D1 ≤ h1) = γ, ∀t.

(4)

In SPC, it is common to design change detection algo-

rithms such that, assuming there has been no change,

there is a hard bound on the expected number of obser-

vations until a false positive is signaled. The expected
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number of observations before a signal is known as

the Average Run Length (ARL0) and in this case it

is clear that the ARL0 is equal to 1/γ. However, the

analytic form of the marginal distribution of Dt is only

known asymptotically, and the conditional distribution

in Equation 4 is more complex and does not have a

known form, even asymptotically. Therefore, a Monte

Carlo procedure can instead be used to generate the

thresholds. By simulating several million sequences of

independent N(0, 1) random variables, the thresholds

corresponding to various choices of γ can be determined

empirically. Although this procedure is computationally

expensive, it need only be carried out a single time.

As the null distribution of Dk,t is independent of the

unknown mean and variance of the observations, the

computed thresholds will give the required ARL0 for

any Gaussian sequence, and can hence be stored ahead

of time in a lookup table, so that no extra computa-

tional cost is added when processing the sequence. We

discuss this procedure further in the following section,

after first describing our new test statistic.

3 Finite Sample Correction

A limitation of the above HZ procedure is that, while

the likelihood ratio test statistics Dk,t in Equation 2

are each asymptotically χ2
2 distributed under the null

hypothesis as the size of both samples grows, their dis-

tribution will differ from this in a finite sample setting.

This is problematic since Dt is defined by maximising

over Dk,t, which means that if some values of Dk,t have

a higher mean and/or variance than others, they will

tend to dominate the maximisation. This can lead to

the thresholds ht being artificially high, which reduces

the power of the test and, in a sequential context, in-

creases the length of time taken to detect change points.

To reduce the impact of this, HZ make use of a Bartlett

correction in order to increase the rate at which the Dk,t

statistics converge to χ2
2. Bartlett corrections are mo-

tivated by the well known result that dividing a like-

lihood ratio test statistic by its expected value under

the null hypothesis gives a transformed statistic which

converges to χ2
2 at a faster rate. In HZ, an approximate

correction is used where the test statistic is divided by

a constant Ck,t, leading to a new test statistic Ht where

Ht = max
k

Hk,t, Hk,t = Dk,t/Ck,t,

and Ck,t is the Bartlett correction factor:

Ck,t = 1+
11

12

(
1

k
+

1

t− k
− 1

t

)
+

(
1

k2
+

1

(t− k)2
− 1

t2

)
.

However, this does not fully resolve the issue. Ordi-

narily, such an approximate correction would result in

a test statistic which is approximately χ2
2 distributed

for moderate sized samples, but in the change point

setting, this is not the case. The problem is that the

maximization over k in Equation 3 leads to Dk,t being

computed for small values of k, such as k < 5 (or sym-

metrically when k > t − 4), even when the number of

observations t is large. Therefore, one sample will con-

tain a very small number of observations regardless of

how large t is, and the test statistic may hence differ

substantially from its asymptotic distribution. To quan-

tify this, consider the expected value of Hk,t under the

null hypothesis when a large number of observations

have been received and t→∞ but k remains small. It

can be shown (see Appendix) that:

E[Dk,t] = t(log(2/t) + ψ((t− 1)/2))

− k(log(2/k) + ψ((k − 1)/2))

− (t− k)(log(2/(t− k)) + ψ((t− k − 1)/2)),

where ψ(z) = Γ ′(z)/Γ (z) is the digamma function. For

large values of t, E[Dk,t] →t log(2/k) + ψ((k − 1)/2).

Similarly, the value of the Bartlett correction factor Ck,t
as t → ∞ is 1 + 11/12k−1 + k−2 hence (by Slutsky’s

theorem):

E[Hk,t]→t
log(2/k) + ψ((k − 1)/2)

1 + 11/12k−1 + k−2
.

A χ2
2 random variable has an expected value of 2,

and for k ∈ {2, 3, 4, 5, 6} the corresponding asymptotic

values of E[Hk,t] are {2.30, 2.08, 2.03, 2.02, 2.01} which

shows that the approximation fails for small values of k.

This means that the Ht statistic used in HZ has a sub-
stantially higher expected value under the null hypoth-

esis than it should otherwise have, due to these large

expected values at the boundary values of k. This leads

to their threshold sequence ht being inflated, which can

cause changes to be detected slower, since the higher ht
thresholds take longer to be breached after a change oc-

curs.

Figure 1a illustrates this effect by plotting the ex-

pected values of Hk,t when t = 50. The spike at the end

when k < 5 (and symmetrically when k > 45) is clearly

visible. One possible way to solve this problem would

be to only carry out the maximization of Hk,t over a

smaller range of values, such as 5 ≤ k ≤ t− 4. However

this is not practical in the sequential setting. When a

change occurs in the sequence, it must generally be de-

tected as quickly as possible. This means that ideally

the number of post-change observations that need to be

processed before the change is detected should be small,

which implies that the largest Hk,t values should occur

when only a small number of post-change observations
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(b) Values of thresholds ht for HK chart (dotted line)
and our proposal (solid line)

are split off. By not including the k > t − 4 terms in

the maximization, the ability to detect changes quickly

is hence reduced, and these slower detections can be a

serious problem in practice.

We therefore instead propose using a new set of

statistics Dc
k,t for change detection using a better cor-

rection to the likelihood ratio test. It is well known (for

example Jensen (1993)) that if Λ denotes a log like-

lihood ratio test with an asymptotic χ2
q distribution,

then convergence can be improved by instead working

with (qΛ)/E[Λ], which converges to χ2
q at a faster rate.

This motivates using the following finite-sample cor-

rected test statistics:

Dc
k,t =

2Dk,t

E[Dk,t]
, Dc

t = max
k

Dc
k,t

where E[Dk,t] is defined as above. Figure 1a shows

the expected values of these Dc
k,t statistics when t = 50,

and it can be seen that the small sample spike no longer

exists at the boundaries. Using this new Dc
k,t statistic,

we computed threshold sequences ht corresponding to

various values of the ARL0 by simulation, using the

Monte Carlo approach described in the previous sec-

tion. For several different choices of the ARL0 = 1/γ,

we generated 2 million random sequences of Gaussian

variables and computed empirically the values of ht
which would give such an ARL0. In order to reduce the

sampling variation that occurs when simulating such

threshold sequences, the sequences are then exponen-

tially smoothed using the formula h̃t = 0.7h̃t−1 +0.3ht.

The Appendix contains examples of such sequences for

some of the more commonly used ARL0 values; note

that we have restricted the monitoring procedure to be-

gin after the 20th observation, on the grounds that when

fewer observations are available it becomes increasingly

difficult to detect changes.

However, working with such raw sequences is cum-

bersome, so in order to allow practitioners to more eas-

ily use our algorithm we provide the following approxi-

mate equation relating ht to various values of γ, which

was found by fitting a non-linear regression model to

the generated sequences:

ht = 1.51− 2.39 log(γ) +
3.65 + 0.76 log(γ)√

t− 7
. (5)

It is interesting to compare the value of these thresh-

olds to the thresholds when using the HZ procedure.

In Figure 1b, the dotted line shows the values of the

ht statistic corresponding to an ARL0 of 500 for HZ,

while the ht values for the same ARL0 when using our

statistic are plotted as a solid line. It can be seen that

the thresholds when using our statistic are lower than

when using that of HZ, since they are not being dis-

torted by the extreme values associated with the k < 5

cases. We will show in Section 5 that this leads to the

faster detection of all types of change.

4 Change Points in Exponentially Distributed

Sequences

Although the above discussion has focused on detect-

ing changes in Gaussian sequences, the general change

point model framework can be used for change detec-

tion in other parametric contexts where unknown pa-

rameters are present. In most cases the approach will

be identical to the above, with a test statistic derived

from the two-sample likelihood ratio test being maxi-

mized over every possible split point in the sequence,

As in the above Gaussian discussion, there may also

be a need to make a finite sample corrections to the

test statistics in order to prevent large values in the
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small segments distorting the maximization. To illus-

trate this, we now develop a test statistic to monitor

for changes in a sequence of Exponential random vari-

ables when both the pre- and post-change parameters

are unknown. As discussed in the introduction, control

charts for the Exponential distribution are widely used

to monitor for changes in the expected time between

failures in SPC situations.

As in the previous section, we begin with a Phase

I setting with n Exponentially distributed observations

x1, . . . , xn containing at most one change point. To test

whether a change point occurs at location τ = k, the

sequence is split into the two samples {x1, . . . , xk} and

{xk+1, . . . , xn}. The null hypothesis of identical distri-

bution is then:

H0 : Xi ∼ Exp(λ0) ∀i.

The alternative hypothesis that there is a single

change point at location k is:

H1 : Xi ∼
{

Exp(λ0) if i ≤ k
Exp(λ1) if i > k.

where λ0 and λ1 are unknown. Letting L0 and L1

denote the likelihoods under the null and alternative hy-

pothesis respectively, and writingMk,n = −2 log(L0/L1),

the generalized likelihood ratio test statistic is then:

Mk,n = −2

(
n log

n

S0,n
− k log

k

S0,k
− (n− k) log

n− k
Sk.n

)
where Si,j is defined as above. The test for a change

point could then be based on Mn = maxkMn,k. How-

ever doing this naively leads to the same problem as in

the Gaussian case, namely that even though Mk,n has

an asymptotic χ2
1 distribution, this will not be achieved

when k is close to 0 or n . Specifically, it can be shown

(see Appendix) that:

E[Mk,t] = −2[kψ(k) + (n− k)ψ(n− k)− nψ(n)+

n log(n)− k log k − (n− k) log(n− k)].

Hence as n → ∞, E[Mn,k] → −2k[ψ(k) − log(k)]

for any fixed k, while the expected value of a χ2
1 ran-

dom variable is 1 . Figure 1 illustrates this by plot-

ting the expected values of Mk,50 for each value of

k ∈ {1, 2, . . . , 49}, which shows the same pattern as

before, with a large spike as both boundaries are ap-

proached.

In order to correct this, we again define a corrected

version of the test statistic by again dividing by its finite

sample expectation:

1.00

1.05

1.10

1.15

0 10 20 30 40 50
k

D
kt

Fig. 1: Values of Mk,50 (dotted line) and M c
k,50 (solid

line)

M c
k,t =

Mk,t

E[Mk,t]
, M c

t = max
k

M c
k,t.

The values of the M c
k,50 statistics are also plotted

on Figure 1 and it can be seen that the spike at the

boundary no longer exists.

Sequential change detection can then be carried out

in the same manner to the Gaussian case, with M c
t

being recomputed after each observation, and the ht
sequence being chosen to bound the ARL0. Table 6 in

the Appendix gives the values of ht which correspond to

various values of the ARL0 for both M c
t and M c

t . In the

next section we will show how using the finite-sample

correction again leads to superior change detection per-

formance.

5 Performance Analysis

We now investigate the performance of the proposed

change detection statistics. First, in Section 5.1 we com-

pare the performance of the statistics which have had

their finite sample moments corrected, to the uncor-

rected versions which rely on asymptotic distributions.

By the arguments in the previous section, it should be

expected that the corrected versions outperform the un-

corrected versions in all reasonable situations. Next, in

Section 5.2 we discuss how the frequentist paradigm

used in this paper compares to recent Bayesian ap-

proaches for sequential change detection, such as that

of Fearnhead and Liu (2007). Finally in Section 5.3 we

explore how the statistics perform when applied to sev-

eral real data sets.

5.1 The Effect of the Finite Sample Correction

We begin by comparing the finite-sample corrected Gaus-

sian and Exponential change detection statistics to both
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the Gaussian statistic from Hawkins and Zamba (2005)

which uses an asymptotic correction, and to the un-

corrected Exponential statistic from Section 4. As dis-

cussed in Section 2, the standard approach for com-

paring the performance of frequentist change detection

methods is to ensure that each method generates false

positives at the same rate (denoted by the ARL0) under

the assumption that there has been no change points,

and to then compare the average number of post-change

observations required before changes of various mag-

nitudes are detected (Basseville and Nikiforov, 1993).

This is analogous to comparing classical hypothesis tests

where the power of each test is investigated subject to

a bound on the Type I error probability. In the below

experiments we have chosen a value of ARL0 = 500 for

each chart, although the patterns we observe are the

same for all values.

Since we are concerned with cases where the pre-

change parameters are unknown, the number of obser-

vations which are available from the pre-change distri-

bution will affect the delay until the change is detected,

as a larger number of observations means that the un-

known parameters will be more accurately estimated,

resulting in quicker detection. We therefore investigate

changes which occur at locations τ = 25 and τ = 100

which correspond to an early and a late change respec-

tively.

5.1.1 Gaussian Sequences

For each change point location τ , the pre-change distri-

bution is set to Xi ∼ N(0, 1) when i ≤ τ . We then in-

vestigate both mean changes where the post change dis-

tribution shifts to N(µ1, 1) for µ1 ∈ [0, 2], and variance

changes where the post change distribution shifts to

N(0, σ2
1) for σ1 ∈ [0.33, 3]. For each change location and

change magnitude, 100000 sequences were generated ac-

cording to these distributions. For each sequence, the

observations were processed sequentially until a change

was detected. This allows the average detection delay

E[T − τ |T > τ ] to be estimated, where T denotes the

observation after which a change is first signalled. Ide-

ally this delay should be as low as possible; i.e changes

should be detected as soon after they occur as possible.

Tables 1a and 1b show the average detection delay

for mean changes which occur after 25 and 100 obser-

vations respectively, while Tables 2a and 2b give the

same information for variance changes. Unsurprisingly,

these results show that changes which occur after 100

observations are detected faster, with larger changes

being easier to detect than smaller ones. Similar to the

findings which have been reported by others who have

Table 1: Average number of observations before a

change from N(0, 1) to N(µ1, 1) occurring at time τ

is detected. Ht represents the chart from Hawkins and

Zamba (2005), while Dc
t denotes our the finite-sample

corrected statistic.

(a) τ = 25

µ1 Ht Dc
t

0.00 502.4 497.7
0.25 473.9 436.0
0.50 388.0 335.4
0.75 211.6 182.4
1.00 75.7 63.8
1.25 26.0 23.3
1.50 13.8 12.8
1.75 9.7 9.1
2.00 7.6 7.2

(b) τ = 100

δ Ht Dc
t

0.00 499.1 504.2
0.25 388.0 341.9
0.50 118.8 106.6
0.75 34.8 32.5
1.00 18.5 17.5
1.25 12.1 11.6
1.50 8.8 8.6
1.75 6.9 6.7
2.00 5.6 5.5

studied changes in variance (Hawkins and Zamba, 2005;

Ross et al, 2011), decreases in the variance take longer

to detect than increases.

Looking at the comparative performance of the finite-

sample corrected Dc
t statistic compared to the HZ ap-

proach, it can be seen that the former detects changes

faster across every combination of change magnitude

and change time. The size of the performance gain de-

pends on the magnitude of the change; when τ = 25,

using the Dc
t statistic results in changes being detected

around 10% faster, with greater improvements for smaller

change magnitudes. For example, when the mean in-

creases by 0.25, our chart on average detects the change
roughly 40 observations faster than the HZ proposal.

Such performance improvements may be substantial in

typical situations where the change must be detected

as fast as possible.

Finally, we note that using the Dc
t statistic still

results in faster change detection when τ = 100. In

this case the performance improvement is slightly less

substantial, particularly when the change magnitude is

large. However smaller changes are still detected more

than 10 observations faster when using Dc
t . This again

may be a substantial improvement in a process control

setting where quick detection is paramount. This high-

lights the previous point that the use of a larger sample

does not fix the issues which negatively affect the per-

formance of the HZ chart, since it is still constrained by

having the maximization occur over split points which

produce small samples. As the extra computation re-

quired to compute the Dc
t statistic is minimal, we would

hence recommend using Dc
t in any practical situation.
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Table 2: Average number of observations before a

change from N(0, 1) to N(0, σ2
1) occurring at time τ is

detected. increases in variance are given first, followed

by decreases.

(a) τ = 25

σ1 Ht Hc
t

0.00 495.2 497.4
1.50 414.0 366.4
2.00 153.3 124.5
2.50 29.0 24.0
3.00 10.8 9.9
0.67 294.1 256.2
0.50 66.0 57.2
0.40 22.5 20.6
0.33 14.5 13.6

(b) τ = 100

σ Ht Hc
t

0.00 501.2 497.7
1.50 85.3 76.3
2.00 15.7 15.0
2.50 8.4 8.2
3.00 5.8 5.7
0.67 78.5 72.0
0.50 23.8 22.5
0.40 15.4 14.7
0.33 12.0 11.5

Table 3: Average number of observations before a

change from Exp(1) to Exp(δ) occurring at time τ is

detected. Mt represents the uncorrected test statistic,

while M c
t denotes the finite-sample corrected statistic

(a) τ = 25

δ Mt Mc
t

1.50 332.1 330.3
2.00 134.5 127.2
2.50 47.4 44.3
3.00 22.4 21.2
0.67 428.9 418.4
0.50 224.5 208.8
0.40 77.4 70.2
0.33 26.1 24.4

(b) τ = 100

δ Mt Mc
t

1.50 130.0 125.5
2.00 30.1 29.5
2.50 17.6 17.0
3.00 12.9 12.6
0.67 167.3 160.1
0.50 27.4 26.3
0.40 13.4 13.2
0.33 9.1 8.9

5.1.2 Exponential Sequences

We perform a similar set of experiments for sequences

which have an Exponential distribution where Xi ∼
Exp(1) if i ≤ τ and Xi ∼ Exp(δ) if i > τ , where δ ∈
[0, 3]. As mentioned previously, such change detection

tasks may arise in failure-time monitoring problems, or

when testing for shifts in the rate of a Poisson process.

Tables 3a and 3b show the average number of obser-

vations before a change is detected using both the finite-

sample corrected and uncorrected statistics, for τ = 25

and τ = 100. Similar to the Gaussian case, the finite

sample corrected statistic has superior change detection

performance across all values of δ and τ , illustrating the

importance of using a finite-sample correction. Again,

this may prove to be very important in situations where

fast change detection is critical.

5.2 Comparison to Bayesian Change Detection

This paper has focused on the frequentist paradigm,

where change detection is carried out subject to a hard

bound on the rate at which false positive detections

occur, represented by the ARL0. Due to the structure of

the likelihood ratio test statistics we considered for the

Gaussian and Exponential distribution, such a bound

can be guaranteed even when the pre- and post-change

parameter values are unknown.

There is also a substantial literature which approaches

change detection from a Bayesian standpoint (Fearn-

head and Liu, 2007; Green, 1995; Chib, 1998). This al-

lows prior information about both the location of the

change point, and the values of the monitored param-

eters within each segment, to be incorporated into the

model. Although most existing Bayesian literature fo-

cuses on the non-sequential Phase I setting, recently

there has been important work extending such methods

to sequential detection through the use of particle filters

(Fearnhead and Liu, 2007). We now give some general

remarks on the situations for which the frequentist and

Bayesian approaches are appropriate.

The method described in Fearnhead and Liu (2007)

starts by putting a prior g(x) on the number of obser-

vations between each pair of successive change points,

with the Geometric and Negative Binomial being stan-

dard choices. Next, within each segment a number of

models M1, . . . ,Mk are allowed, with all parameters

chosen in a manner such that the marginal likelihood

L(r, s, i) for model i in the segment xr+1, . . . , xs can be

obtained analytically under the assumption that there

are no change points within the segment - typically this

is satisfied as long as conjugate priors are used. Next, a

sequence of latent state variables C1, . . . , Cn are intro-

duced, where Ct is associated with observation xt and

denotes the location of the most recent change point

(i.e. Ct = k if the location of the last change point be-

fore xt occurred at observation xk, with Ct = 0 if no

change points have occurred so far). Under this param-

eterisation, the authors present a set of recursive equa-

tions which allow the posterior distributions of each

Ct to be computed sequentially. This allows for exact

sampling from the posterior distribution of the change

points. Although the computational time required to

compute each posterior distribution Ct increases lin-

early with the number of observations, making it un-

suitable for sequential data sets with more than a few

hundred observations, the authors present an approx-

imation based on particle filters which achieves con-

stant computational complexity subject to a specified

approximation error. This methodology can be easily
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Fig. 2: The left plot shows various weakly-informative priors for the Exponential parameter λ, namely Gamma(1,1)

(black line), Gamma(0.1,0.1) (red line) and Gamma(0.01,0.01) (blue line). The right plot shows the informative

Gamma(22.5,7) prior which is peaked at 7.5.

adapted to the change point problems we have consid-

ered in previous sections,.

We will use the following two simple change detec-

tion problem to illustrate the key differences between

the two approaches, both based on the Exponential(λ)

distribution. In the first example, {X}t denotes a se-

quence of random variables whereXt ∼ Exp(1) if t < 50

and Xt ∼ Exp(3) otherwise. In the second, {Y }t de-

notes a sequence where Yt ∼ Exp(5) if t < 50 and

Yt ∼ Exp(10) otherwise. Note that we have chosen to

have only a small number of observations prior to the

change point so that the posterior distributions from

Fearnhead and Liu (2007) can be computed exactly

without need for a particle approximation, and we re-

strict attention to sequences containing only a single

change point in order to keep the analysis simple.

Suppose first that very little prior information is
available regarding either the change point location, or

the values of the Exponential distribution parameter λ

within each segment, and so relatively non-informative

priors must be chosen. For the segment length, a Neg-

ative Binomial prior with mean 200 and standard de-

viation 200 is chosen. Selecting a non informative prior

for the λ parameters is more difficult. Because change

detection is essentially a model selection problem, us-

ing a prior which is overly non-informative makes it

more difficult to detect change points, a consequence

of Lindley’s paradox (Bernardo and Smith, 2000). We

will use a conjugate Gamma(ε, ε) prior where the prior

becomes flatter as ε → 0, with Gamma(1/2, 0) being

the (improper) Jeffrey’s prior. Figure 2a shows a plot

of these priors for various choices of ε.

In order to use the Bayesian scheme for sequential

change detection, we flag that a change has occurred

at time τ̂ where τ̂ = mint P (Ct = 0|x1, . . . , xt) < c,

i.e. the first time that the probability of there being

no previous change point drops below some fixed value

c. In practice c will be chosen in order to minimise a

loss function which trades-off the cost of false alarms

against quick detections but, to allow direct compari-

son to the frequentist approach, we consider a range of

values of c. For each choice of c, we simulated 10000 re-

alisations of both {X}t and {Y }t, and computed both

the proportion of times a false positive was generated

(defined as a change being signalled before observation

50), and the average number of observations taken for

a change to be detected, conditional on τ̂ > 50. We

also performed the same set of experiments using the

frequentist test statistic M c
t , where we chose the ARL0

to be 200 in order to match the expected value of the

Bayesian prior on the segment length.

Table 5 shows the average results for the {X}t se-

quences where the distribution changes from Exp(1)

to Exp(3) after 50 observations. There are several fea-

tures of this which deserve comment. First, when the
non-informative (and improper) Jeffrey’s prior is used,

the Bayesian scheme fails to detect any change points.

This is a well known issue related to Lindley’s paradox

in model selection and illustrates the problems which

come with using non-informative priors in change point

problems; as the prior becomes increasingly flat, the

range of values which receive non-neglible prior weight

increases, resulting in an increasingly diffuse posterior

which makes it hard to find change points. Similarly

when ε→ 0 in the Gamma(ε, ε) prior corresponding to

a flatter prior, the Bayesian scheme requires more and

more post-change observations before the change point

is detected, and the frequentist method consistently de-

tects changes faster.

Note however that for the Gamma(1,1) prior there

are values of c that result in the Bayesian scheme hav-

ing both a superior false positive rate and detection

speed compared to the frequentist method. This is be-

cause such a prior is quite informative and assigns a
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relatively high probability mass to values of λ around

1, as can be seen from Figure 2a. To illustrate this,

we repeated the analysis for the {Y }t sequences which

change from Exp(5) to Exp(10), and the results are

shown in Table 4b, Here it can be seen that such a

Gamma(1, 1) prior results in extremely slow detection

of changes due to the low weight it puts on parame-

ter values around λ = 5. Again, using a relatively non-

informative Gamma (0.01,0.01) prior results in slow de-

tections compared to the frequentist approach.

These examples show that it is quite difficult to de-

sign a Bayesian change detection scheme when there

is no accurate prior information due to the difficulties

encountered with non-informative priors. In a typical

Bayesian modeling scenario, the solution to the above

issues would be to instead use a hierarchal prior speci-

fication with a Gamma(α, β) prior being assigned to λ

in each segment, with a further prior assigned to α and

β to allow them to be learned from the data. However

although such an approach is possible when working

with non-sequential Phase I change detection problems,

it is not possible in the sequential context presented in

Fearnhead and Liu (2007), which requires the indepen-

dence of observations in different segments and hence

fixed prior paramours.

Of course, in many situations there will be accurate

prior information available, and an informative rather

than non-informative prior can be used. To illustrate

this, we also analyzed the {Y }t sequence using an in-

formative Gamma(22.5, 3) prior which has a mean of

7.5, midway between the pre- and post-change values

of λ, and a variance of 2.5, as shown in Figure 2b. The

results when using this prior are also given in Table 4b

and it can be seen that for some choices of the thresh-

old c, the performance is superior to the frequentist

method, both in terms of false positives and detection

speed. This illustrates the strength of Bayesian change

detection when it is possible to choose an informative

prior which assigns relatively high weight to the true

parameter values.

To further highlight the difference between the fre-

quentist and Bayesian procedure, Table 5 shows the

false positive rate and detection delay when the pre-

and post-change values of λ are not fixed, but are sam-

pled from the Gamma(22.5, 3) prior. In this case, the

change point occurs at τ = 50, and the observations

are distributed as Exp(λ0) for t ≤ 50 and as Exp(λ0)

for t > 50, where both λ0 and λ1 are sampled from

the Gamma(22.5, 3) distribution. Again, 10000 simula-

tions were carried out, with different values of λ0 and λ1
sampled for each simulation. The prior for the Bayesian

method was set to be equal to the true Gamma distri-

bution used to sample these parameters. This is the

Table 4: Proportion of false positives, and average de-

tection delays for different choices of the Bayesian prior,

and the frequentist M c
t statistic (top line) with an

ARL0 of 200

(a) Exp(1) → Exp(3)

Fps Delay
Mc

t 0.14 60.5
c Gamma(1, 1)

0.2 0.01 68.7
0.4 0.04 64.9
0.6 0.11 61.7
0.8 0.34 57.7

c Gamma(0.1, 0.1)
0.2 0.01 72.2
0.4 0.02 68.3
0.6 0.04 65.1
0.8 0.12 61.4

c Gamma(0.01, 0.01)
0.2 0.01 80.9
0.4 0.01 76.4
0.6 0.02 72.9
0.8 0.02 68.9

(b) Exp(5) → Exp(10)

Fps Delay
Mc

t 0.14 76.1
c Gamma(1, 1)

0.2 0.01 186.7
0.4 0.01 169.3
0.6 0.01 153.5
0.8 0.04 133.2

c Gamma(0.01, 0.01)
0.2 0.01 170.0
0.4 0.01 151.2
0.6 0.01 134.4
0.8 0.01 114.6

c Gamma(22.5, 3)
0.2 0.01 99.3.
0.4 0.01 81.0
0.6 0.02 68.0
0.8 0.43 55.5

optimal setting for the Bayesian approach, since in this

case the informative prior matches the data generat-

ing distribution exactly. As can be seen from Table 5 ,

the Bayesian approach is unsurprisingly superior to the

frequentist method in this context.

In summary, Bayesian change detection schemes such

as the one described in Fearnhead and Liu (2007) give

excellent performance in situations where there is enough

prior knowledge about the distribution parameters in

each segment to allow a relatively informative prior dis-

tribution to be specified. In these cases, performance

will generally be superior to frequentist methods. How-

ever in situations where there is no such information,

using a non-informative prior can result in very poor

performance. In this case, the frequentist method may

be preferred as a more robust alternative, with the

added benefit of being able to put a hard bound on

the false positive rate, even when the distributional pa-

rameters are unknown.

5.3 Real Data

We conclude with two examples of change detection in

real applications. We first consider a hard bake process

which is taken from the statistical process control liter-

ature, and then look at an example using a potentially

heavy-tailed financial return series.
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Fig. 3: Measurements taken from the hard bake pro-

cess, with the discovered change points superimposed

as dotted lines

5.4 Hard Bake Process

The hard-bake process is a commonly used step in the

manufacturing of semi-conductors. It is typical to apply

it to wafers after they have had light-sensitive photore-

sistive material applied, in order to increase their resist

adherence and etch resistance. During this process, a

key quality characteristic is the flow width of the resist.

Data taken from such a process is given in Montgomery

(2005), which consists of 125 flow width measurements

representing the initialization phase where control chart

parameters are learned, followed by 95 Phase II obser-

vations which must be monitored for changes. The key

advantage of the unknown parameter formulation we

have used in this paper is that there is no need to treat

the initialization phase different from the actual mon-

itoring, and so we treat the data as being a single se-

quence containing 220 observations. This observations

are plotted in Figure 3

We use the Dc
t statistic in order to perform sequen-

tial change detection on this sequence. Although we

previously only considered sequences containing a single

change point,, the extension to multiple change points is

simple. The change detector processes the observations

sequentially, until the first time Dc
t > ht, in which case

a change is signaled. Suppose this occurs at observa-

tion T1. Then, the best estimate of the location of the

change point is τ̂1 ≤ T1 where τ̂1 is equal to the value of

k which maximized Dk,T1 . Sequential change detection

then resumes at observation Xτ̂1+1, which is the first

observation following the estimated change point, with

the previous observations being discarded.

Using an ARL0 of 500 as in previous examples,

change point signals were given at observations 140, 204,

and 221. The estimated change point locations were at

observations 138, 185, and 216 respectively, and these

are plotted on Figure 3. Repeating the same analysis

using the Ht statistic from Hawkins and Zamba (2005)

with the asymptotic correction resulted in the same

three change point locations being estimated, but with

corresponding detection times 140, 207, and 221. If we

can assume that the estimated change point locations

correspond to true changes, then this implies that the

second change point was detected 3 observations faster

when using the corrected Dc
t statistic, which is consis-

tent with our previous findings from Section 5.1. If these

change points represent genuine faults in the underly-

ing manufacturing process, then the ability to detect

them faster may be important in practice, if it allows

corrective action to be taken earlier.

5.5 Financial Data

Since the change point models we have considered are

parametric, appropriate care must be taken when de-

ploying them to ensure that the parametric assump-

tions are satisfied. Failure to do so may result in spuri-

ous false positives, and/or slow change detections. We

illustrate this with an example using financial stock

market returns, where we analyze the weekly returns

of the Dow Jones Industrial Average stock market in-

dex. This index is widely traded, and is made up of 30

large publicly owned American companies The data we

have spans the period from the 1st of January 1991 to

the 31st of October 2011. Let Pt denote the opening

price of the Dow Jones stock market index on week t

for each of the 1053 weeks in the sample period The log

returns Xt = log(Pt/Pt−1) then represent the weekly

price changes, and this series is plotted in Figure 4a

where it can clearly be seen that the variance of this

series is non-stationary and changes over time. Finding

appropriate models for such return series is a widely

studied problem within financial econometrics. Although

the conditional variance of financial returns is often

modelled using a pure GARCH process (Engle, 2001)

it is now accepted that many return series also con-

tain structural breaks in the unconditional variance,

and that these can be found using a change point ap-

proach . It is common to first look for change points by

treating the Xt series as if it the observations are inde-

pendent and identically distributed between each pair

of change points (Aggarwal et al, 1999; Ross, 2013; In-

clan and Tiao, 1994).

We illustrate this by using the Dc
t statistic to se-

quentially locate the change points in this sequence of

returns. This is done an identical manner to the previ-

ous example, where the sequence is processed one obser-

vation at a time and a sequential decision is made about

whether a change has occurred after each data point.

Since there are a large number of observations, we chose
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(b) Nonparametric

Fig. 4: Log-returns of the Dow Jones stock index from 2001 to 2011, with the change points found using both the

parametric Dc
t statistic and the nonparametric Lepage statistic superimposed as dotted lines

an ARL0 of 5000 to avoid an excessive number of false

positives being generated. In total 10 change points

were detected, which are shown in Figure 4a. Running

the same analysis using the asymptotically corrected

Ht statistic from Hawkins and Zamba (2005) again re-

sulted in the same 10 change points being found, but as

in the previous examples, 4 of these were detected later

than when using the finite sample corrected statistic Dc
t

with the increased delays varying from between 1 and

5 additional observations.

The likelihood ratio test underlying both theDc
t and

Ht statistics is based on the assumption of Gaussianity.

However previous studies have found evidence that fi-
nancial returns are non-Gaussian and exhibit heavy tail

behavior, even when the conditional variance is taken

to be time-varying (Ross, 2013). To investigate this, we

also tried detecting change points using the nonpara-

metric Lepage-based statistic described in Ross et al

(2011) which can detect change points in the mean

and/or variance without making distributional assump-

tions. Running this method with the ARL0 also set to

5000 resulted in only 7 change points being detected,

which are shown in Figure 4b. Comparing the change

points found by the two methods, it can be seen that the

Gaussian assumption made when using the Dc
t statis-

tic results in extreme outlying observations being in-

terpreted as change points, such as the change point

found in late 1995. As the nonparametric test is more

robust against heavy tailed data, it detects fewer change

points. This highlights the pitfalls which can arise when

deploying such parametric models to series which are

not known to be Gaussian. In this case, it may be more

appropriate to first make a transformation to the data

in order to make it closer to Gaussian (Qiu and Li,

2011), or simply use a nonparametric technique.

Of course, in situations where the parametric as-

sumptions used in the likelihood ratio test are correct,

the parametric change point models will generally be

able to detect changes faster than their nonparamet-

ric counterparts, conditional on the same bound on the

ARL0.

6 Concluding Remarks

The task of sequential change detection is more diffi-

cult when the parameters of the pre- and post-change

distributions are unknown and must be estimated from

the data. In this situation, the sequential generalised

likelihood ratio testing gives a computationally efficient

procedure which is able to achieve a desired bound on

the rate at which false positives occur. In Hawkins and

Zamba (2005), an approach is developed along these

lines, however we have shown that it suffers from a small

but persistent bias due to the way in which test statis-

tics are calculated. Their procedure relies on an asymp-

totic argument which fails in the sequential context

where samples containing only a small number of obser-

vations must be used, regardless of how many observa-

tions are available. By introducing a finite sample cor-

rection for this statistic, we have given a more powerful

version of their method which is able to detect changes

in both mean and variance faster, across all combi-

nations of change magnitude and location. The extra

computational burden introduced by our approach is

minimal, and consists only of modifying the boundary

statistics by subtraction and division by a constant, and
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should therefore be preferred when performing Gaus-

sian change detection in practice. We also showed that

such issues can arise when performing sequential para-

metric change detection using other distributional forms,

which we illustrated by constructing a novel change de-

tection procedure for the Exponential distribution. As

in the Gaussian case, the use of a finite-sample cor-

rection provides identical or better performance in all

situations.

7 Supplementary Material

R code implementing the change detection algorithm

using the Dc
t and M c

t statistics is contained in the cpm

R package available from CRAN: http://cran.r-project.

org/web/packages/cpm/index.html.

Documentation for this package can be obtained

from the author’s website: http://www.gordonjross.

co.uk/software.html

A Test Statistic Moments

Theorem 1 Under the null hypothesis of no change:

E[Dk,t] = t(log(2/t) + ψ((t− 1)/2))

− k(log(2/k) + ψ((k − 1)/2))

− (t− k)(log(2/(t− k)) + ψ((t− k − 1)/2)).

where ψ denotes the digamma function.

Proof We roughly follow the argument of Zamba (2009). From
Equation 2, we have that

E[Dk,t] = kE[logS0,t]− kE[logS0,kj ] + (t− k)E[S0,t]

− (t− k)E[Sk,n]. (6)

Consider the first term E[logS0,t]. By basic properties of
the Gaussian distribution S0,t has the same distribution as
a χ2

t−1 random variable multiplied by a factor of K = t/(t−
1)σ2 where σ2 is the true variance. Let Wt−1 ∼ χ2

t−1, then

E[log(S0,t)] ∼ log(K) + E[log(Wt−1)].

Now, E[log(Wt−1)] can be calculated using the moment gen-
erating function,Mlog Wt−1

. Note thatMlog Wt−1
(t) = E[Wt−1].

Computing this expectation and then differentiating the mo-
ment generating function yields E[Wt−1] = log 2 + ψ((t −
1)/2). Repeating this argument for the other terms in Equa-
tion 6 gives the desired result, with the K factors cancelling
out.

Theorem 2 Under the null hypothesis of no change:

E[Mk,t] = −2[kψ(k) + (n− k)ψ(n− k)− nψ(n)+

n log(n)− k log k − (n− k) log(n− k)]

where ψ denotes the digamma function.

Proof First note that if Y1, . . . , Ym are i.i.d Exp(λ) random
variables then

∑m
i=1 Yi ∼ Gamma(n, λ). By separating out

the log terms, it follows that E[Mk,t] has the same distribu-
tion as:

−2[− n log(V +W ) + k log V + (n− k) logW + n log(n)

− k log k − (n− k) log(n− k)]

where V ∼ Gamma(k, λ) and W ∼ Gamma(n − k, λ). Using
a similar argument to the above proof based on the moment
generation function, it can easily be shown that E[log V ] =
ψ(k)− log(λ). The result then follows, with the λ terms can-
celing out.

B Results Using an Informative Prior

Table 5 shows the false positives and average detection delay
in the ideal case described in Section 5.2 where the parame-
ters in the Bayesian change detection model are assigned at
Gamma(22.5, 3) prior, and the parameters used in the simu-
lation are also sampled from this distribution.

Table 5: Proportion of false positives, and average de-

tection delays when parameters are simulated from the

Gamma(22.5,3) prior

Fps Delay
Mc

t 0.34 153.03
c Gamma(22.5, 3)

0.2 <0.01 207.67
0.4 <0.01 114.89
0.6 0.11 49.47
0.8 0.63 6.20

C ht Thresholds

Table 6 gives values of the exponentially smoothed thresh-
old sequences h̃t which correspond to several choices of the
ARL0. Note that these thresholds become roughly constant
(subject to sampling variation) after a few hundred observa-
tions, and so for values of t > 800, using the threshold value
corresponding to t = 800 is advised. For the case where the
ARL0 = 100, computing the thresholds for high values of t is
very computationally expensive, and so the thresholds were
only computed up to t = 500, with values above this being
computed using spline interpolation.
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