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Abstract

We study sequential Bayesian inference in continuous-time stochastic kinetic models with
latent factors. Assuming continuous observation of all the reactions, our focus is on joint
inference of the unknown reaction rates and the dynamic latent states, modeled as a hidden
Markov factor. Using insights from nonlinear filtering of jump Markov processes we develop
a novel sequential Monte Carlo algorithm for this purpose. Our approach applies the ideas
of particle learning to minimize particle degeneracy and exploit the analytical jump Markov
structure. A motivating application of our methods is modeling of seasonal infectious disease
outbreaks represented through a compartmental epidemic model. We demonstrate inference in
such models with several numerical illustrations and also discuss predictive analysis of epidemic
countermeasures using sequential Bayes estimates.

Keywords: sequential Monte Carlo, particle learning, jump Markov process, stochastic epidemic
models

1 Introduction

Stochastic jump-Markov models have become ubiquitous in multiple application areas, including
systems biology, molecular chemistry, epidemiology, queuing theory and finance. An important
class of such systems is described using the chemical reaction system paradigm, which classifies
jumps in terms of a finite number of possible reactions. System transitions are specified prob-
abilistically in terms of the distributions of the inter-reaction periods and next-to-fire reaction
type. The reaction rates depend on the current system state and impose a Markovian structure,
termed a stochastic kinetic model (SKM) [Wilkinson 2006].

While the basic setup assumes time-stationarity, in many contexts time-dependence, seasonality,
and other regime shifts of reaction rates are crucial. A popular way to incorporate stochastic shifts
in the environment is through Markov modulation, i.e. introduction of an additional (latent)
dynamic factor that affects transition rates. We christen such systems Hidden Markov Stochastic
Kinetic Models (HMSKM).

Usage of an HMSKM in an application requires statistical estimation of the reaction rates and
environmental factors. In the present paper we are concerned with Bayesian inference which allows
unified filtering of latent system states and parameters and full quantification of the posterior
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uncertainty. Moreover, anticipating dynamic optimization and decision making applications, we
are interested in sequential inference. As a motivating example of such HMSKM inference, we
describe below a stochastic model of seasonal epidemics of infectious diseases. Here the SKM
paradigm is used to give a mechanistic description of outbreak progression using a compartmental
description of the population, while the latent factor represents environmental factors affecting the
outbreak (such as new genetic shifts in the pathogen or weather patterns). Sequential inference
of the reaction rates (infectiousness, etc.) and dynamic seasonality determines outbreak severity
and is the central problem in biosurveillance and corresponding public health policy-making.

Bayesian inference in SKMs is typically accomplished through Markov chain Monte Carlo
(MCMC) methods [Golightly and Wilkinson 2006, Boys et al 2008, Niemi 2009, Golightly and
Wilkinson 2011] and has been also used for related epidemics inference problems [O’Neill 2002,
Jewell et al 2009, Lawson 2009, Merl et al 2009]. But sequential inference requires re-running an
MCMC analysis after every new data point is obtained and therefore is not computationally effi-
cient. A more suitable and flexible alternative is to apply sequential Monte Carlo methods (SMC),
also known as particle filters, which use an empirical selection-mutation mechanism [Doucet et al
2001, Cappé et al 2005]. The main drawback of SMC is particle degeneracy which becomes
especially serious during estimation of constant parameters. A recent class of particle learning
methods [Carvalho et al 2011, Dukic et al 2010] has been designed to overcome these challenges
by exploiting additional analytical structures. Starting with these ideas we develop new SMC
methods targeting continuous-time stochastic kinetic models, demonstrating the efficiency and
tractability of Bayesian inference in this novel context.

The aims of this work are three-fold. First, we wish to draw the attention of the computational
statistics and stochastic simulation community to the convenient analytic structure of hidden
Markov stochastic kinetic models. This structure allows for highly efficient Bayesian sequential
inference algorithms in rather general settings, which to our knowledge supercede previous results
in this direction. Second, we provide a new extension of the particle learning SMC method. In
contrast to existing literature, we work in continuous time and further consider a hidden Markov
factor. Thus, to compute the predictive and conditional likelihoods we use tools from stochastic
filtering (namely filtering of doubly-stochastic Poisson processes) which have not been hitherto
used in this context. Our results demonstrate the wide applicability and attractiveness of particle
learning in jump-Markov models.

Finally, we extend the burgeoning body of literature on sequential inference in compartmental
epidemiological models. Precisely, we propose a new SIR-type model of seasonal epidemics with
a stochastic seasonality factor. The model allows for tractable online inference assuming full
observation of all epidemiological events and can be used as a testbed to analyze alternative ways
of epidemic control under imperfect information.

In the next section we provide more background on our main motivating application in epidemic
modeling; the rest of the paper is organized as follows. Section 2 provides a general setup of a
hidden Markov stochastic kinetic model; the resulting inference problem and the particle learning
algorithm are constructed in Section 3. Section 4 then illustrates the results and provides numer-
ical examples for a simple SIS model of seasonal epidemics. Section 5 then discusses predictive
analysis of outbreak countermeasures in the developed sequential framework.

1.1 Seasonal Epidemics

Probabilistic modeling of infectious disease epidemics is an important tool in public health anal-
ysis. Stochastic models provide a tractable way to quantify the uncertainty about epidemic
dynamics and carry out predictive analysis on the future path of the outbreak. Public health
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Figure 1: Percentage of Influenza Like Illness (ILI) outpatient visits in Santa Barbara county in
2004-2011 based on weekly sentinel providers data collected by Santa Barbara County Department
of Public Health [Bellomy 2011]. No data is normally collected during the summer.

agencies increasingly rely on such techniques to compare alternative courses of action and mount
an efficient policy response through behavioral or biomedical interventions.

Recurring seasonal epidemics, with a prime example of influenza, provide some of the best
testbeds for quantitative analysis thanks to availability of time-series data of previous outbreaks.
Figure 1 shows the ILI flu incidence statistic in Santa Barbara county in California over the
past seven years. ILI or influenza-like illness is a formal description of symptoms that typically
occur in infected individuals, and is the most common proxy for measuring the incidence of flu
in the population. The figure illustrates the apparent fact that flu is generally more prevalent
during winters, due to emergence of new virus strains and colder weather making susceptibility
higher. Nevertheless, significant variation in flu incidence cases and timing of outbreaks can be
observed year over year. A case in point was the 2008-09 season when the new H1N1 influenza
strain caused a world-wide pandemic peaking in early Fall 2009, scrambling the traditional flu
calendar of public health actions1. To summarize, Figure 1 demonstrates three main features of
flu outbreaks: (i) strong seasonality; (ii) year-to-year variability; and (iii) stochastic fluctuations
during each outbreak. Other endemic infectious diseases with similar patterns include rotavirus,
norovirus, measles, dengue fever, and cholera [Grassly and Fraser 2006].

Full understanding of community epidemic dynamics remains elusive given the paucity of avail-
able data. While issues such as inhomogeneous mixing, age effects, and spatial interactions are
undoubtedly crucial, their mathematical and statistical modeling requires large-scale computa-
tional and modeling efforts [Halloran et al 2008]. Alternatively, mechanistic models of outbreak
provide a simplified but highly tractable paradigm of describing outbreak progression that can
be calibrated to real data. A popular mechanistic approach is given by the class of stochastic
compartmental models [Andersson and Britton 2000]. Thus, the population is partitioned into
several classes of individuals based on their epidemiological status, such as Susceptible, Infected,
etc., and the outbreak is described on the macroscopic level in terms of transition rates Θ among

1The usual H3N1 strain was also present that year and hence the time series effectively combines two distinct
outbreaks
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the compartments. This SIR framework has been successfully used in modeling a range of infec-
tious diseases, ranging from influenza [Merl et al 2009] to measles [Cauchemez and Ferguson 2008],
and foot-and-mouth disease [Jewell et al 2009]. Probabilistically, this approach corresponds to
imposing a Markovian structure at the group level and captures the intrinsic uncertainty through
the stochasticity of the transitions taking place.

To model the observed strong seasonality of influenza outbreaks, we introduce a further level
of uncertainty through a stochastic seasonal factor {Mt}. Thus, the transition rates between the
compartmental classes are modulated by {Mt}, which can be interpreted as the seasonal presence
of a new pathogen. This seasonal factor is evidently an abstract object, i.e. latent2. We note
that its effect is indirect, since {Mt} only affects the rates of the transitions, not transitions
themselves. We refer to LeStrat and Carrat [1999], Mart́ınez-Beneito et al [2008] for related
hidden Markov model representations of epidemics. There is further large literature on seasonal
forcing in epidemics that focuses on deterministic SIR models using tools of dynamical systems
[Keeling et al 2001, Dushoff et al 2004, Stone et al 2007] or multi-scale analysis [Kuske et al 2007].

Bayesian inference in compartmental models consists of estimating the transition rates between
classes and the dynamic size of each class. This is by now a classical problem in biosurveillance;
for example, a whole strand of literature is devoted to estimating the basic reproductive ratio
R which is the single most important parameter for predicting epidemic impact [Ball and Neal
2002, Cintron-Arias et al 2009, O’Neill 2002, Chowell et al 2009]. The complementary inference
of latent states is treated in the aforementioned LeStrat and Carrat [1999], Mart́ınez-Beneito et al
[2008]. However, little research has been done for joint parameter and state estimation due to the
associated computational challenges inherent in both Markov chain and sequential Monte Carlo
approaches. In this paper we present a novel algorithm for such joint inference of {Mt} and
outbreak parameters Θ using sequential Monte Carlo.

Beyond pure inference, the ultimate objective of decision-makers is to mitigate the epidemic
impact. This is achieved by implementing response policies including vaccination, quarantine,
pharmaceutical or hospital treatment, information campaigns, etc. Since any policy involves
budgetary or human resources, a balance is needed between costs due to epidemic morbidity
and mortality and costs arising from policy actions. Moreover, to be optimal, a policy must be
adaptive, i.e. rely on the latest collected information; thus, policy analysis is inherently linked
to sequential inference. Quantitative approaches to such dynamic epidemic management include
continuous-time Markov chain models [Merl et al 2009], Markov decision processes [Tanner et al
2008], systems of ordinary differential equations [Chowell et al 2009], agent-based representations
[Halloran et al 2008] and stochastic control [Ludkovski and Niemi 2010]. However, existing meth-
ods are limited in adequately addressing the questions of unknown system dynamics, parameters
and states. Below we demonstrate that regime-switching compartmental models in fact provide
a flexible paradigm for analyzing these issues by allowing for accurate sequential inference.

2 General Setup

We consider a d-dimensional continuous-time jump-Markov process {Xt}, Xt ∈ Nd on a proba-
bility space (Ω,F ,P), that evolves according to laws of a chemical reaction system. Namely, Xk

t

denotes the (non-negative) number of species of class k = 1, . . . , d and there are Q reaction types
with corresponding stoichiometry vectors ∆q ∈ Zd, q = 1, 2, . . . ,Q. The ∆q’s indicate the impact
of a reaction on Xt: denoting by τk, k = 1, . . . , the reaction times, i.e. the jump times of {Xt}, if

2As stated by Grassly and Fraser [2006] “despite the near ubiquity of this phenomenon [seasonality], the causes
and consequences of seasonal patterns of incidence are poorly understood”
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the k-th reaction is of type q, then Xτk = Xτk− + ∆q. Between reactions {Xt} is constant.
A convenient representation of {Xt} is via a multivariate marked point process X ≡ (τk, Rk),

k = 1, 2, . . . , where

τk := inf{t > τk−1 : Xt 6= Xt−}, k ≥ 1, with τ0 = 0,

are the transition epochs, and

Rk := Xτk −Xτk−1
∈ {∆1, . . . ,∆Q}, k ≥ 1,

are the corresponding reactions which may be canonically identified with reaction types {1, 2, . . . ,Q}.
It is immediate that

Xt = X0 +
∑
τk≤t

Rk, (1)

showing the equivalence of the two formulations. We also introduce the counting processes

N q
t :=

∑
τk≤t

1{Rk=∆q} and N q,i
t :=

∑
τk≤t

1{Rk=∆q ,Mτk
=i}

for the number so far of each reaction by type, so that

Xt = X0 +
Q∑
q=1

N q
t ·∆q.

The probability triple (Ω,F ,P) also supports a finite-state jump process {Mt} that represents
the modulating factor. Intuitively, Mt ∈ {1, . . . , I} is a Markov chain with generator

GM := (µij), i, j ∈ {1, . . . , I}. (2)

Slightly more generally, we take GM ≡ GM (t,Xt), allowing the transition rates of {Mt} to depend
on time and the current state of {Xt}, so {(Xt,Mt)} is jointly Markov.

To complete the description of {Xt} and {Mt} we finally specify the transition rates α of {Xt},
or equivalently the arrival rates of the counting process N q,i. We assume that the corresponding
propensity functions are of the form

αq(t,Xt,Mt) = θq(Mt) · hq(t,Xt), q = 1, . . . ,Q,

where Θ ≡ (θ1(1), θ1(2), . . . , θQ(I)} are the reaction rates, modulated by {Mt}, and h’s are the
mass action laws. Let

ᾱ(t,Xt,Mt) :=

Q∑
q=1

αq(t,Xt,Mt) (3)

be the total current arrival rate, and

fq(t,Xt,Mt) :=
αq(t,Xt,Mt)

ᾱ(t,Xt,Mt)
(4)

be the conditional likelihood of the next reaction being of type q.

5



Due to the local Markovian structure, the distribution of the point process (τk, Rk), conditional
on a path of {Mt} is given explicitly by [Amrein and Künsch 2012]

p (τ1, R1, . . . , τn, Rn|Ms, s ≤ t) = exp

(
−
∫ t

0
ᾱ(s,Xs,Ms)ds

)

×
n∏
k=1

 Q∑
q=1

αq(τk, Xτk−,Mτk) · 1{Rk=∆q}

 , (5)

where the first term accounts for the total arrival intensity on [0, t] and the second term for the
likelihoods of the observed event types. Recall that if Ms is constant and α’s are independent of
t, then the inter-arrival times are exponentially distributed.

3 Inference

Statistical inference in the presented framework consists of estimating the reaction rates Θ and the
seasonal factor {Mt}. As already mentioned, throughout we assume that {Xt} is fully observed,
i.e. by any date t, a full record of all reaction times τk before t and corresponding reaction types
Rk is available. To explain our method, we shall consider the following three cases:

(a) Θ unknown; {Mt} observed;

(b) Θ known; {Mt} unobserved;

(c) Both Θ unknown and {Mt} unobserved.

Case (c) is the main object of interest in our study; however to understand its properties, in the
next sections we briefly review Cases (a) and (b).

Probabilistically, the three cases are distinguished by the different filtrations of observed infor-
mation. Let (Gt),

Gt ≡ FX,M,Θ
t := σ(Xs,Ms : 0 ≤ s ≤ t) ∨ σ(Θ), (6)

denote the full filtration and using obvious notation let (FX,Mt ), (FX,Θt ), and (FXt ) denote the sub-
filtrations corresponding to cases (a), (b), (c), respectively. Then our aim is to compute the (joint)
posterior distribution Zt := p(Mt,Θ|Ft) of the seasonal factor and the parameters for the above
choices of filtrations. For later use we also define the posterior probabilities Πt :=

(
Π1
t , . . . ,Π

I
t

)
where

Πi
t =Pπ(Mt = i|FXt ), i ∈ {1, . . . , I}, (7)

where Pπ denotes the conditional probability measure given the prior distribution Π0 = π of M0.

3.1 Conjugate Inference of Epidemic Parameters

If {Mt} is observed (i.e. (FX,Mt ) is available), then {Xt} forms a time-inhomogeneous Markov
chain. In particular, a full description and analysis of {Xt} is possible on the intervals [σ`, σ`+1]
where (σ`) are the transition times of {Mt}: σ`+1 = inf{t ≥ σ` : Mt 6= Mt−}.
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It is well known that conjugate Bayesian updating of Θ is available using Gamma priors [Boys
et al 2008, Amrein and Künsch 2012]. Specifically, let

p(Θ|FX,M0 ) =
I∏
i=1

Q∏
q=1

Ga(θq(i); a
i
q, b

i
q),

where a· and b· denote the shape and rate parameters respectively of the Gamma distribution, be
the independent priors of θq. Then given FX,Mt we can express the full data likelihood as follows:

p(Θ|FX,Mt ) =

I∏
i=1

Q∏
q=1

Ga
(
θq(i); a

i
q(t), b

i
q(t)
)
, (8)

aiq(t) :=aiq +N q,i
t ,

biq(t) :=biq +

∫ t

0
hq(s,Xs)1{Ms=i} ds,

where we recall that N q,i
t is the number of observed reactions of type q during the i-regime.

We summarize those sufficient statistics as st = (aiq(t), b
i
q(t)), i = 1, . . . , I, q = 1, . . . ,Q and

denote the updating by the function S(·) from (8) , i.e.,

sT = S(st, t, T,M·) :=
(
aiq(t) +N q,i

T −N
q,i
t , biq(t) +

∫ T

t
hq(s,Xs,Ms)1{Ms=i} ds

)Q
q=1

. (9)

Relation (9) provides an explicit sequential way to update the posterior of Θ along the trajectory
of {(Xt,Mt)}.

3.2 Estimation of the Latent Seasonal Factor

In case (b), we assume that all rates Θ are known and a full record of {Xt} is available, but the
path of {Mt} is unobserved. Intuitively, inference of {Mt} is based on comparing the likelihoods
of observed event epochs/types conditional on the possible values of the seasonal factor, using (5).
Using the representation of {Xt} as a state-dependent marked doubly-stochastic Poisson process
implies that Πt can be described in closed-form and possesses piecewise-deterministic dynamics.
Applying [Ludkovski and Sezer 2012, Prop 2.1] we obtain the following characterization

Proposition 1. The sample paths of {Πt} follow
Πt = ~x(t− τk,Πτk , Xτk), τk ≤ t < τk+1, k ∈ N

Πi
τk

=
αRk(τk, Xτk−, i)Π

i
τk−∑I

j=1 αRk(τk, Xτk−, j)Π
j
τk−

, i = 1, . . . , I, (10)

where the vector field ~x(t, ~π,X) is defined via

xi(t, ~π,X) =
P(τ1 > t,Mt = i|M0 ∼ ~π,X0 = X)

P(τ1 > t|M0 ∼ ~π,X0 = X)
, (11)

i ∈ {1, . . . , I}, and has the explicit solution P(τ1 > t,Mt = i|M0 ∼ ~π,X0 = X) = ~π·exp(
∫ t

0 GM (s,X)−
A(s,X) ds) with A(s,X) := diag(ᾱ(s,X, ·)) and

A(s,X)ii′ =

{
ᾱ(s,X, i) if i = i′;

0 otherwise.
(12)

Proposition 1 completely identifies the distribution of the I-dimensional posterior Πt of Mt

through the recursion (10).
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3.3 Joint Sequential Inference using SMC

We now turn to our main case (c) where we only have access to (FXt ), so that neither {Mt}
nor Θ is observed. In that case, even if all transitions of {Xt} are fully observed, the posterior
distribution Zt = p(Mt,Θ|FXt ) no longer admits any sufficient finite-dimensional statistics. Hence,
no closed-form analysis is possible and we turn to constructing efficient numerical approximation
schemes.

The sequential Monte Carlo approach to recursively update Zt consists of constructing a particle
approximation

Zt '
J∑
j=1

w
(j)
t δ{m(j)

t ,θ(j)}

where δ is the Dirac delta function and each of the J particles is defined by its (normalized)

weight w
(j)
t ≥ 0, its M -location m

(j)
t and its parameter versions θ(j). In other words,

P((Mt,Θ) ∈ A|FXt ) '
∑

(m
(j)
t ,θ(j))∈A

w
(j)
t .

The particles are updated using a propagation-selection scheme. However, since the parameters
Θ are fixed throughout, it is well known that naive SMC implementation typically leads to par-
ticle degeneracy, namely the diversity of θ(j)’s across the particles increasingly diminishes due to
resampling. As we shall see in Section 4.2, this issue is acute for HMSKMs.

The availability of the sufficient statistics st from (9) for Θ conditional on {Mt} allows to
dramatically reduce degeneracy. We recall the early approach of Storvik [2002] who applied a
basic bootstrap particle filter [Gordon et al 1993] on the pair (Xt, st), where the likelihood of
observations is evaluated by sampling from the posterior of Θ, i.e.

p(Xt|Mt, st) ' p(Xt|Mt, θ
(j)) θ(j) ∼ st i.i.d. (13)

3.4 Particle Learning in HMSKM

In our case, even more efficiency can be achieved through a resample-move SMC [Gilks and
Berzuini 2001] which takes advantage of the explicit predictive likelihood of X given Θ (see (15)
below) and leads to a version of the particle learning (PL) framework originally proposed within a
discrete-time setting in Carvalho et al [2010, 2011]. The use of a resample-move algorithm allows
direct sequential filtering of (Mt, st) rather than the static Θ. Thus, the filtered distribution at
time t is approximated by the particle cloud

Zt ' Z(J)
t :=

J∑
j=1

w
(j)
t fΘ(·|s(j)

t )δ{m(j)
t ,s

(j)
t }

, (14)

where s
(j)
t are again the parameter sufficient statistics in (9). Thus, the conditional distribution

of Θ, fΘ(·|st), is a product of independent Gamma’s and the overall Z(J)
t represents the posterior

of each θq as a mixture of Gamma distributions.

8



Require: Priors s0, Π0, initial state X0, number of particles J
1: Sample m

(j)
0 ∼ Π0 i.i.d., set s

(j)
0 ← s0, j = 1, . . . , J

2: loop { for k = 0, 1, . . . ,}
3: Sample θ(j) ∼ p(θ|s(j)τk ), j = 1, . . . , J

4: Calculate weights w
(j)
k+1 ∝ p(τk+1 − τk, Rk+1|m(j)

τk
, θ(j))

5: for j = 1, . . . , J do
6: Re-sample j′ ∝ w(·)

k+1 where j′ ∈ {1, . . . , J}
7: Sample a trajectory m

(j)
(τk,τk+1]

using the conditional law p(M·|m(j′)
τk
, θ(j

′), τk+1, Rk+1)

8: Update s
(j)
k+1 ← S

(
s
(j′)
k , τk, τk+1,m

(j)
(τk,τk+1]

)
9: end for

10: end loop

Algorithm 1: Particle Learning for Hidden Markov Stochastic Kinetic Model

Algorithm 1 summarizes in pseudo-code the steps of the proposed particle learning algorithm.
Its main steps are computing particle weights in (4) for resampling using the predictive likelihood
of the next event, forward propagation step (6) using the conditional law of the environment factor,
and updating of the sufficient statistics step (7) for the parameters. Overall, besides the analytical
results detailed below, only the ability to simulate {Mt} and {Xt} is needed to implement the
above Monte Carlo scheme, highlighting the flexibility of PL. A basic simulation method for SKM
that is exact and can always be used is the Gillespie algorithm (see e.g. Wilkinson [2006]), here
slightly extended to take into account additional transition times of {Mt}.

To calculate the predictive likelihood of the next inter-arrival interval τk+1 − τk and reaction
type Rk+1 conditional on Mτk and parameters Θ we rely on the analytic expression in (5),

p(τk+1 − τk, Rk+1|Mτk ,Θ) =

I∑
i=1

p(Rk+1|Mτk+1
= i,Θ)× p(τk+1 − τk,Mτk+1

= i|Mτk ,Θ). (15)

The first term on the right-hand-side is fr(τk+1, Xτk+1−,Mτk+1
) using the parameters Θ, and the

second term is

P(τk+1 − τk = t,Mτk+1
= i|Mτk = i′,Θ) := Pi′i(t)ᾱ(τk+1, Xτk+1−, i) (16)

with Pi′i(t) being an element of the matrix exponential P (t) = e
∫ t
0 GM (s,X)−A(s,X)ds, see (12).

When there are just two latent states, |I| = 2, P (t) can be computed explicitly using eigenvector
decomposition.

The conditional law of {Mt} given τk+1 − τk, Rk+1 is not available in closed form. However,
using Bayes rule

p(M(τk,τk+1]|Mτk , sτk ,Θ, τk+1, Rk+1)

∝ p(τk+1 − τk, Rk+1|M(τk,τk+1],Θ)p(M(τk,τk+1]|Mτk) (17)

where

p(τk+1 − τk, Rk+1|M(τk,τk+1],Θ) (18)

= exp

{
−
∫ τk+1

τk

ᾱ(s,Xτk ,Ms) ds

}
· αRk+1

(τk+1, Xτk ,Mτk+1
)

9



and p(M(τk,τk+1]|Mτk) is determined from the transition matrix of {Mt}. To implement (17) we
use a rejection sampling step relying on the fact that there is an easy upper bound of (18) :

p(τk+1 − τk, Rk+1|M(τk,τk+1],Θ)

≤ exp
{

(τk − τk+1) min
i,s

ᾱ(s,Xτk , i)
}
·max

i
αRk+1

(τk+1, Xτk , i). (19)

Thus, we simulate using the unconditional law p(M(τk,τk+1]|Mτk) and then accept the simulation
with probability given by the ratio between (18) and (19). Since τk are typically tightly spaced, the
above conditional likelihoods are all close to each other, requiring only a few additional simulations
(acceptance probability is usually > 95%).

Finally, as already mentioned, the sufficient statistics for Θ are always conjugate-Gamma with
the updating given explicitly in (9). We note that for typographical convenience in Algorithm 1
resampling takes place at each reaction time τk. In practice, any other resampling frequency can
be chosen; in that case the weights are updated accordingly until resampling takes place. Also,
a variety of resampling schemes (multinomial, residual, stratified, etc.) are available [Cappé et al
2005] and can be used to lower Monte Carlo error.

Like all SMC methods, PL still exhibits sample impoverishment which implies that the filtering

error ‖Z(J)
T −ZT ‖ (in an appropriate metric) grows exponentially in T . Thus, exponentially more

particles are needed to control the Monte Carlo error in terms of the number of observations. We
therefore recommend utilizing PL on a fixed horizon T as in our application below.

4 Model of Seasonal Epidemics

We now return to our main example of a Markov-modulated chemical reaction system — a
compartmental model of seasonally-forced endemic diseases. As a simple example, we shall analyze
a classical stochastic SIR-type model (20) of epidemics that incorporates a latent seasonal factor
{Mt}. For concreteness, we phrase our discussion in terms of the human influenza virus.

A basic description of an endemic disease such as flu can be provided using an SIS compart-
mental model [Andersson and Britton 2000], which features just two population compartments of
Susceptibles {St} and Infecteds {It}. Since only partial immunity is available against influenza (it
is common for an individual, especially children, to have several flu episodes in one season), the
Recovered compartment is omitted and we assume that upon recovery individuals immediately
pass back into the susceptible pool. Other models of endemic diseases are reviewed in N̊asell
[2002].

Let Mt ∈ {1, 2} denote the seasonal factor at date t, with Mt = 1 representing low flu season
and Mt = 2 high flu season. We assume a closed population of constant size N := St + It that
represents a fixed geographic area (such as a college campus, a town, or a county). We assume
that {Mt} forms a time-stationary Markov chain with infinitesimal generator

GM :=

(
−µ12 µ12

µ21 −µ21

)
.

In other words, holding times for {Mt} in regime i are exponentially distributed with mean µ−1
ij .

Conditional on Mt = i, {Xt} ≡ {St, It} is a jump-Markov process involving two reaction types
Infection: S + I

θ1(i)h1−−−−→ 2I h1 := (It + ι)
St
N

;

Recovery: I
θ2(i)h2−−−−→ S h2 := It.

(20)
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Thus, new infections take place according to the law of mass action [Andersson and Britton
2000], where the infection rate is driven by the possible pairings between infected and susceptible
individuals (assuming homogenous mixing of the full population). Additionally, we add an “im-
migration of infecteds” rate ι which can be viewed as an external reservoir of the flu (e.g. from
travellers) that provides a constant source of additional infections. We use this term to prevent a
stochastic fade-out of the epidemic and guarantee endemicity. There are two epidemic parameters
Θ ≡ (θ1, θ2), interpreted as infectiousness (θ1) and mean recovery time (1/θ2). Since St = N − It,
{It} summarizes the epidemic state and we omit St from further discussion.

For simplicity, we assume that seasonal variations affect only the contact rate θ1(Mt), so that
θ2(Mt) = θ2 is constant. We moreover assume that the effect on the contact rate is multiplicative,

θ1(2) = (1 + SF )θ1(1),

for a known seasonality impact ratio SF > 0. This is meant to model the case where the
seasonality increases probability of susceptibles becoming infected (due e.g. to cold weather) but
has no impact on the severity of the flu once infected.

As described above, givenM , the key state {It} forms a recurrent Markov chain on {0, 1, . . . , N}.
Using the notation in Section 2, we have Rk ∈ {−1, 1} with

α1(I, i) := θ1(i)
(I + ι)(N − I)

N
, α−1(I, i) := θ2I, (21)

for i = 1, 2, and

fr(I, i) =

{
θ1(i)(I+ι)(N−I)/N

θ1(i)(I+ι)(N−I)/N+θ2I
if r = 1;

θ2I
θ1(i)(I+ι)(N−I)/N+θ2I

if r = −1.
(22)

Since {Mt} only takes on two values, its posterior is described by the one-dimensional proba-
bility process

Π2
t := P(Mt = 2|FIt ).

Applying Proposition 1 and using the fact that θ2 is independent of {Mt} leads to the following
simple dynamics of Π2

t :

Corollary 1. The evolution of {Π2
t } is characterized on each t ∈ [τk, τk+1) by

dΠ2
t

dt
=(1− 2Π2

t )µ21 − SF · θ1
(N − Iτk)(Iτk + ι)

N
Π2
t (1−Π2

t ), (23)

and Π2
τk

=


(1+SF )Π2

τk−
1+SFΠ2

τk−
> Π2

τk−, if Rk = 1,

Π2
τk−, if Rk = −1.

 . (24)

An explicit solution to (23) can be obtained by computing the eigen-pairs of the corresponding
matrix A(I).

The particle learning Algorithm 1 can be straightforwardly applied in this model using particles

of the form (m
(j)
t , s

(j)
t ) ∈ {1, 2}×R4

+. Since θ2 is not modulated, its posterior is in fact deterministic
given FIt , i.e. the same for all particles and only the two sufficient statistics of θ1 need to be
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recorded:

p
(
θ1|FIt , {m(j)

s , 0 ≤ s ≤ t}
)

= Ga
(
a1 +N1

t , b1(t)
)

;

p
(
θ2|FIt

)
= Ga

(
a2 +N2

t , b2 +

∫ t

0
Is ds

)
;

b1(t) := b1 +

∫ t

0

(
1 + SF1{m(j)

s =2}

)(Is + ι)(N − Is)
N

ds,

where s0 = (a1, a2, b1, b2) is the original Gamma prior of Θ.

4.1 Illustration

To illustrate the above algorithms, this section presents several numerical experiments. Table 1
summarizes the parameters used. We consider a single flu season lasting 9 months (approximately
September through May), which includes on average a 6-month long high-season (so that µ−1

21 =
365/2). Such a model is meant to capture a single seasonal cycle as is commonly done by US
epidemiological agencies on a Fall-Spring basis, see Figure 1.

We consider a fixed population of N = 10, 000 individuals with an initial I0 = 50 infecteds.
During the low season, θ1(1) < θ2 meaning that the epidemic would on its own fade out; the disease
remains endemic through contact with outside infecteds, with a carrying capacity (i.e. the long-run
expected level of Infecteds freezing environmental fluctuations) of about limt→∞ E[It|Ms = 1∀s] '
50. In the high season, θ1(2) > θ2 so that an outbreak begins. Even though the infectiousness rate
increases by just SF = 15%, the resulting carrying capacity jumps to over 500, i.e. more than 5%
of total. This illustrates that even small changes in the contact rate can have a dramatic effect on
the equilibrium disease incidence. In line with common estimates, we use average infectiousness
period of about 4 days, θ2 ' 0.25.

Table 1: Parameter values used. All rates are daily.

Parameter Meaning Value

µ12 Transition rate to high season 6/365
µ21 Transition rate to low season 2/365
θ2 Recovery rate 0.25
θ1(1) Low-season infectiousness 0.235
θ1(2) High-season infectiousness 0.27025
SF Seasonality effect 0.15
ι Immigration of outside infecteds 2
N Population size 10,000
T Time horizon (days) 273
(M0, I0) Initial Condition (0,50)
(a1(0), b1(0)) Initial Priors for θ1 (25,100)
(a2(0), b2(0)) Initial Priors for θ2 (25,100)

Figure 2 shows a sample trajectory of the infected population count over the nine months
in conjunction with the underlying seasonal factor {Mt}. In this scenario, starting with low-
season, high season {Mt = 2} begins on day 61 and ends on day 182, lasting just over four months
(compared to average high season length of 1/2-year). The seasonality effect is clear, as soon after
the beginning of the high season, {It} begins an upward trend which is reversed once Mt = 1
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Figure 2: Sample path of {Mt, It} over a course of 9 months. There are a total of 20079 transitions.

again. Nevertheless, we observe a lot of stochastic fluctuations against these main trends (e.g. a
significant decrease in It around day 100). Overall, there were a total of 10051 infections recorded
over the period, corresponding to roughly each member of the population becoming infected once,
in line with observed statistics on influenza. Peak number of infecteds was 335 on day 164.

Starting with a rather vague prior for Θ, Figure 3 shows the sequential Bayesian inference of
Θ assuming that the trajectory of {Mt, It} shown in Figure 2 is fully observed. We note that the
posterior means apparently converge to the true values and the posterior credibility interval (CI)
narrows at roughly a hyperbolic rate over time. As data is accumulated, the oscillations in the
posterior distributions decrease quickly.

Figure 4 presents the results from the other nested model (b), namely assuming known param-
eters Θ but unobserved seasonal factor {Mt}. In Figure 4 we show the posterior probability Π2

t

of the high season over the same trajectory of {It} shown in Figure 2. We note that generally
the filter is able to well-identify the present seasonality effect and responds very quickly when
{Mt} changes (see the very sharp drop around t = 185). The dynamic lag between change in
the true {Mt} and the response by the filter is on the order of 10-20 days which is quite fast
and would be difficult to identify with a “naked eye” looking at the trajectory of {It}. At the
same time, the filter Π2

t is highly sensitive to the local behavior of {It} making it very noisy. For
example the mentioned drop in infecteds around t = 100 causes posterior likelihood of high season
to decrease from over 95% to as low as 35%, albeit with a sharp reversal once the upward trend
is re-established. The underlying piecewise-deterministic behavior of {Π2

t } (see Proposition 1) is
highlighted in the inset figure which clearly shows the discrete upward jumps of {Π2

t } when new
infections are recorded.

Finally, Figure 5 shows the output from running the SMC algorithm for joint inference of
(Mt,Θ) using J = 5000 particles. Uncertainty about both parameters and seasonal factor makes
the posterior credible intervals wider compared to Figure 3. In terms of the posterior probability
of the high season, the resulting Π2

t is less volatile compared to Figure 4 and responds slightly
slower to underlying regime shifts.

The implemented instance of Algorithm 1 is somewhat computationally intensive since it re-
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Figure 3: Posterior mean and 95% credibility interval of Θ ≡ (θ1, θ2) over the sample path of
{Mt, It} in Figure 2. Solid horizontal lines indicate the true values used.

quires repeated simulation of paths of {Mt} and evaluation of the predictive and conditional
likelihoods over each interval [τk, τk+1) (so over 20, 000 times in the Figures shown) and for each
particle (J = 5000). However, we note that all these computations are exact, so the only noise
present is from Monte Carlo re-sampling. Running time to generate Figure 5 is about two minutes
on a typical 2011 laptop.

4.2 Comparison to Other Inference Methods

From the time-series estimation point of view, the stochastic systems we consider are characterized
by long time-series and short inter-event periods. It is well known that the basic challenge
of Sequential Monte Carlo over long horizons is particle degeneracy since repeated re-sampling
necessarily throws some information away and cuts down on diversity of the empirical particle
cloud. Degeneracy is exacerbated when one is required to estimate constant parameters. Without
further steps, the basic bootstrap filter of Gordon et al [1993] will degenerate, almost surely as
t → ∞, to a point mass estimate of the posterior density. A popular simple solution is the Liu
and West [2001] algorithm (henceforth LW) that introduces adjustment moves to particle versions
θ(j) of Θ. We implemented LW as a comparison to the presented PL algorithm and found that
degeneracy is still prevalent over the second half of the season even with as many as J = 5000
particles. As such, use of the sufficient statistics st for Θ-posteriors is crucial for HMSKMs.

We also implemented the Storvik [2002] filter. Compared to the PL filter, its main difference is
that Storvik [2002] applies propagate-resample steps, and as such does not require analytic form
of the predictive likelihood (17) in Step 4 of Algorithm 1. Instead, one simply uses

w(j)
τk
∝ exp

(
−
∫ τk

τk−1

ᾱ(Is,m
(j)
s ) ds

)
· α(j)

Rk
(Iτk−,m

(j)
τk

),

where the propensity rates α’s use the sampled particle versions θ(j) ∼ sτk−1
. The Storvik algo-

rithm runs slightly faster since it does not need to evaluate the matrix exponential in (23).
To quantitatively compare the performance of the described SMC algorithms, we started by

creating a benchmark using a PL filter with 2 · 104 particles. We then generated 100 runs of
the PL, Storvik and LW schemes each using J = 2000 particles and residual resampling for
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Figure 4: Posterior probability Π2
t = P(Mt = 2|FIt ) over the sample path of {It} in Figure 2,

assuming known (θ1, θ2). For comparison we also show the respective true trajectory of {Mt}.

the realization of {Mt, It} in Figure 2. Because in the case study the second reaction rate θ2

is independent of {Mt}, its sufficient statistic s2
t is the same for all particles and is computed

exactly by both Storvik and PL algorithms for any filter size J . On the other hand, the estimate
of θ1 is highly sensitive to correct tracking of {Mt} over time. We first compare the 95% coverage
probabilities with respect to the true θ1, i.e. how frequently does the true value θ1 = 0.235 belong
to the corresponding 95% posterior CI obtained from SMC. The results for the two time-points
of T1 = 120 and T2 = 270 days are summarized in Table 2. We find that the PL algorithm
performs best; the Storvik algorithm has somewhat higher MC errors but still maintains particle
diversity. The LW algorithm posteriors start to collapse mid-way through the data and completely
degenerate by the end, so that their coverage probabilities are nil. Figure 6 further shows that
the posterior 95% CI of the PL algorithm includes fewer outliers, in other words nearly all runs
of the algorithm recover the correct posterior.

In Table 2 we also compare the standard error E
[
‖Π2

t − Π̂2
t ‖2
]

of the posterior probability of

the high season Π2
t with respect to the benchmark filter Π̂2

t . We observe that compared to PL,
the Storvik scheme is more prone to “losing track” of Mt, in other words the Monte Carlo runs
appear to be more leptocurtic. The LW algorithm in fact usually tracks Π̂2

t well but also had
several completely failed runs and clearly suffers from particle degeneracy. Overall, this analysis
confirms our preference for PL; its advantages can be compared to the improvement from the
bootstrap to the auxiliary particle filter in the classical SMC setup.

4.3 Discussion

The presented model is clearly stylized and would not be able to capture all the features of real
epidemics. Since both Θ and {Mt} are assumed unobserved, it may still be possible to fit real
data even under such model mis-specification. Nevertheless, in this section we discuss some of
adjustments that may be made for achieving further realism.

While year-to-year epidemics arise in different times, there are clear patterns which imply that
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Figure 5: Joint inference of (Mt,Θ) over the trajectory of {It} in Figure 2. Left panel shows
the posterior probability of the high season Π2

t = P(Mt = 2|FIt ). The other two panels show the
posterior median and 95% credibility interval of the two parameters θ1, θ2. The SMC algorithm
used J = 5000 particles. All other parameters are from Table 1.
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Table 2: Comparison of SMC algorithm performance. All algorithms used J = 2000 particles
and we took T1 = 120, T2 = 270 days for the path of {Mt, It} in Figure 2. The LW algorithm
had a tuning parameter of h = 0.97.

PL Storvik LW

95% Cov. Prob of θ1 at T1 0.96 0.87 0.32
95% Cov. Prob of θ1 at T2 0.74 0.65 0.01
Std Error of Π2

t at T1 0.200 0.272 0.455
Std Error of Π2

t at T2 0.056 0.105 0.037

assuming time-stationary transition rates of {Mt} is not reasonable. Our general setup allows for
GM (t) in (2) to be time-dependent and could be used to capture these patterns. Other calendar-
year effects, such as the impact of the school-year start [He et al 2010], can be deterministically
added. A more serious concern is the assumption of known seasonal transition rates µij ; however
in our 2-state example those may be reasonably well-calibrated using historical data such as that
used in Figure 1. Our numerical experiments also show that mis-specification of µij is not a
serious problem for sequential inference of Πt.

The model (20) assumes that there is a single infectiousness parameter θ1 which remains
constant throughout, such that the actual contact rates are of the form α1(It,Mt) = θ1(1 +
SF1{Mt=2})h1(It). This representation is for convenience only; it is straightforward to consider
the case where we separately carry along priors for each θ1(i). We could also consider the case
where each new season leads to a “fresh” θ1 (e.g. from a new strain of the pathogen), i.e. the contact
rate on each interval [σ`, σ`+1), where (σ`) are the transition epochs of {Mt} is θ1,(`)(Mσ`) ∼ p(θ).
In that case, the sufficient statistics s

(j)
t are simply reset to the original prior when the correspond-

ing particle copy of m
(j)
t changes states. However, the difficulty with this method is that θ1(i)’s

are not independent. For instance, to have the interpretation of Mt = 2 being the high season, we
require θ1(2) > θ1(1). This precludes the simple specification of the respective marginals through
a Gamma prior. The assumption of a constant seasonal factor SF is a convenient work-around
which enforces the epidemiological meaning of seasonality.

Our choice of a two-compartment SIS model was due to its simplicity. Since our methods can
handle any HMSKM, it is immediate to extend to further compartments (e.g. an SEIRS model
with Xt = (St, Et, It, Rt) that would further include the Exposed compartment of individuals
who are infected but not infectious, and the Recovered compartment for individuals who have
temporary immunity) or multiple seasonal regimes (e.g. adding a third “pandemic” regime to
capture outbreaks like 2009 H1N1 influenza). By modifying the propensity functions hq(t,Xt) one
can also refine the modeling of population mixing [He et al 2010], incorporate external immigration
of individuals, or include age-structured populations.

Finally, an extra possibility is to allow two-way feedback between the epidemic state {Xt}
and the seasonal factor {Mt}. Thus, beyond the modulation of the transition times of X by
M , we can also introduce effect of X on M through GM = GM (t,Xt). In other words, the
seasonality dynamics are themselves affected by the epidemic. For instance, a large outbreak
could be due to a long-surviving pathogen which in turn prolongs the expected length of a high-
season. Alternatively, one could consider the case where each infection increases the chances of
a genetic mutation of the pathogen, thereby decreasing µ21. We refer to Ludkovski [2012a] for
SMC algorithms to address this possibility.

The most severe constraint of our model is the assumption of fully observing {It}. In principle
this could be achieved by exhaustive monitoring of all individuals’ status. More realistically,
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we view this model as an idealized case of biosurveillance which contends with extrinsic model
uncertainty regarding Θ and {Mt} while eschewing missing data. This then provides a useful
benchmark to analyze data collection quality. We refer to Ludkovski and Niemi [2011] for a
related setup with discrete-time observations based on binomial sub-sampling which also admits
a PL algorithm.

5 Optimized Policy Response

As mentioned in the introduction, an important use of sequential inference is for policy response.
In this section we briefly investigate such biosurveillance decision-making using the developed
inference tools.

Public health policy makers act sequentially as outbreak data is collected. Their aim is to
balance total costs which consist of morbidity costs CM associated with the pathogen, and costs
CA associated with policy actions. Denote by φt ∈ R the policy implemented at date t, where we
encode the action space as a subset of the real line. We consider time-additive costs on a given
horizon [0, T ] of the form

CM :=

∫ T

0
c(It) dt and (25)

CA :=

∫ T

0
φt dt+

∑
φt 6=φt−

K(∆φt),

where c(It) are the morbidity costs expressed as instantaneous rates, and without loss of generality
we take φt to be the instantaneous cost of the respective action. The last term in (25) with
∆φt ≡ φt − φt− corresponds to potential additional start-up costs K(·) associated with changing
a policy.

In contrast to the original presentation, now φt dynamically drives the evolution of {It,Mt}. The
impact of policy actions can be either direct or indirect. Direct actions influence the transition
rates, whereby Θ = Θ(φt). For example, quarantine can cut down infectiousness rates in a
population. Indirect actions influence the transition matrix GM = GM (φt) of {Mt}, e.g. making
low-season regime Mt = 1 more likely. These can be interpreted as prophylactic measures that
mitigate the seasonal effect and contain the disease at its baseline morbidity. In either case, since
applied policies must be based only on currently available information, the control {φt} is required
to be FIt -adapted.

We assume that the overall objective is to minimize average (expected) costs over the interval
[0, T ] across all potential dynamic policies,

inf
(φt)

Eφ [CM + λCA] = inf
φ

Eφ
[∫ T

0
c(It) + λ{φt +K(∆φt)} dt

]
, (26)

where λ is a Lagrange multiplier and to emphasize the impact of φ we denote the resulting
probability measure as Pφ. As λ is increased, the budget constraints tighten; for λ = 0 the
optimization is solely about minimizing expected morbidity.

The optimization problem (26) is a partially observed stochastic control problem. The presence
of unobserved quantities makes it nonstandard; a general approach is to reduce it to a standard
setting by passing from It to the augmented hyperstate Zt. As we have seen before, {Zt} is finite
dimensional if at least one of {Mt} or Θ is observed, but is infinite-dimensional in the main case
of interest (c) requiring joint inference. Using the Markov structure, the optimal policy response
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φ∗t at time t is a function of the posterior state Zt, φ∗t = Φ(It,Zt, φt−), for some strategy rule
Φ. Analytic treatment of such infinite-dimensional control problems is generally intractable; see
Ludkovski and Niemi [2010], Ludkovski [2012b] for flexible numerical approximations that also
rely on SMC.

Rather than carry out a full optimization, we investigate below some simple heuristics for
such rules Φ. As our case study we consider a simple example with a binary policy response,
φt ∈ {0, 1} with φt = 1 indicating the implementation of preventive measures at date t. We
assume that transition rates Θ are fixed but policy makers can influence the environment {Mt}
through

GM (t)
∣∣∣
φt=0

=

(
−6 6
2 −2

)
and GM (t)

∣∣∣
φt=1

=

(
−1 1
8 −8

)
.

Thus, when counter-measures are enacted, {Mt} is much more likely to be in the low state.
Indeed, while without any actions the high season is expected to last 6 months, with mitigation
it will only last an average of 52/8 ' 6 weeks.

With an on/off decision-making, the dynamic policy rule is described through its action regions
D0 and D1, such that a response is initiated as soon as (It,Zt) ∈ D1 and φt− = 0, and terminated
as soon as (It,Zt) ∈ D0 an φt− = 0. Note that we expect to have a hysteresis region where the
existing policy, whatever it may be, is continued, since there is no sufficiently strong evidence
to change the response. To compare, we consider three potential classes of policies that are
distinguished by the information used:

The infecteds-based control relies directly on It. Since start (resp. end) of outbreaks is char-

acterized by persistent upward (resp. downward) trend, we take DInfd
1 = {It − I(κ)

t >

Ī}, DInfd
0 = {It − I(κ)

t < I}, where

I(κ)
t :=

1

t

∫ t

0
e−κsIs ds

is an exponentially weighted moving average of the number of infecteds using discount weight
κ. Thus, measures are initiated when It is sufficiently above its moving average (strong

upward trend), and stopped when It − I(κ)
t is sufficiently negative. From our experiments,

using a 14-day moving average offers a good way of capturing trends. This is a simple policy
that requires no inference and can be seen as rule of thumb to provide response when {It}
is growing.

The Bayesian policy incorporates the full history of observations and the prior beliefs through
the posterior distribution Zt. As a simple choice we consider only the posterior of {Mt} and
analyze DBayes

1 = {Π2
t ≥ π̄} and DBayes

0 = {Π2
t ≤ π}. Thus, countermeasures are started

once the posterior probability of {Mt = 2} is above π̄ (overwhelming evidence of a high
season), and are stopped once the posterior probability is below π.

The Oracle policy takes DOrcl
0 = {Mt = 1}, DOrcl

1 = {Mt = 2}, or φt = 1{Mt=2}, i.e. the
control is applied precisely during the high season. This is an idealized benchmark since it
assumes that the policy-maker actually observes the latent seasonality variable. We note
that it is still not the globally optimal benchmark since in principle it may not be worthwhile
to respond immediately as soon as the high season begins (e.g. if It is still low then ostensibly
Mt could revert back to its low state quickly without the need for costly interventions).

Clearly, the above list is not exhaustive and is for illustration purposes only. An infinite variety of
further rules can be constructed. For example, including posterior information about Θ is clearly
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relevant to understand the severity of the outbreak and its likely future course. In general, an
automated way to build an optimal policy is more appropriate than heuristics, albeit at a cost of
losing some of the simplicity and intuition for the decision maker.

Once a class of policies is chosen, the decision rule needs to be optimized by minimizing over
the described parametric forms such as (π, π̄) or (I, Ī). Note that even for a fixed rule, the
expected costs are not analytically available since the distribution of It or Mt under Pφ is not
explicitly computable. We therefore resort to predictive analysis via Monte Carlo. Namely, fixing
the policy rule, we simulate a large number (several hundred in our example below) of scenar-
ios, i.e. trajectories of (It,Mt, φt), and then average the resulting scenario costs to approximate
Eφ[CM + λCA].

Simulation under the controlled measure Pφ is straightforward thanks to the strong Markov
properties of {Zt} and is summarized in Algorithm 2. For simplicity we restrict to the case
where φt only changes at event times τk. For these simulations we draw the actual parameters Θ
independently from the given prior p(Θ), i.e. assuming the model is correctly specified and then
generate {It,Mt} using the Gillespie algorithm.

Require: (M0, I0,Z0, φ0)
1: Sample outbreak parameters Θ ∼ Z0

2: s← 0
3: loop
4: Simulate the next regime change date σ ≥ s of {Mt} using the generator GM(φs)
5: Simulate the next transition τ ≥ s of {It} conditional on (Ms, φs,Θ)
6: ρ← σ ∧ τ
7: Save M[s,ρ] and I[s,ρ]
8: Using PL Algorithm 1 update the filter {Zt} on [s, ρ]
9: Update the policy φρ ← Φ(Iρ,Zρ, φs)

10: Set s← ρ
11: end loop

Algorithm 2: Simulation of a controlled epidemic model

5.1 Cost Functionals

There are many possible summary statistics to evaluate the relative merit of different miti-
gation strategies. Among morbidity measures, one can consider average number of infecteds
Eφ[ 1

T

∫ T
0 It dt], maximum infecteds Eφ[max0≤t≤T It], or the proportion of time that It is above

some level Ihigh, Eφ[
∫ T

0 1{It≥Ihigh} dt]. One can also include metrics regarding the response, such

as the average length of time countermeasures are enacted Eφ[
∫ T

0 1{φt=1} dt], the number of times

counter-measures are started Eφ[
∑

t≤T 1{∆φt 6=0}], etc. To illustrate, we consider the following two
examples of cost functionals:

c1(I, φ) :=

∫ T

0
It + 0.02(It − 200)2

+ + 50 · 1{φt=1} dt; (27a)

c2(I, φ) :=

∫ T

0

(
It + 1000 · 1{It>300} + 200 · 1{φt=1}

)
dt+ 1400 ·

∑
t≤T

1{∆φt=1}. (27b)

The cost functional c1 has a piecewise-quadratic cost in terms of the number of infecteds It.
Here a “soft” threshold of Ihigh = 200 infecteds is applied, as well as a basic morbidity cost
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that is proportional to It. This c1 also mildly penalizes the amount of time counter-measures
are applied through the third term in (27a). The cost functional c2 is geared more towards
minimizing mitigation resources. It has much higher policy costs of 200 per day and also rewards
policy stability (i.e. avoiding too many changes in policy or “chattering”). The latter is taken
into account in (27b) through the penalty K(∆φt) = 1400 · 1{∆φt=1} which imposes a start-
up cost of 1400 (week’s worth of policy costs) each time the counter-measures are begun. In
terms of outbreak costs, c2 considers total number of infecteds-days and additionally imposes a
discontinuous penalty whenever It exceeds 300 (i.e. 3% of the population) which can be thought
of as a “hard” (but high) target regarding tolerable number of infecteds.

Figure 7: Dynamic Bayesian control of {Mt} over a sample trajectory of the outbreak. The
top panel shows the infecteds numbers {It}; the bottom panel shows the true seasonal factor
{Mt} and the posterior probability of high season {Π2

t }. Countermeasures are applied as soon as
Π2
t > 0.95 = π̄ and stopped once Π2

t < 0.05 = π. The intervals of action are indicated by the solid
bars on the x-axis, and the times of policy changes are marked with stars. The PL algorithm
used J = 5000 particles. All other parameters are from Table 1.

To generate outbreaks, we fix θ2 = 0.25 and sample θ1 ∼ Ga(1700, 20 · 365), which roughly
means θ1 ∈ [0.21, 0.25]. The remaining parameters, including SF = 0.15, are from Table 1.
Figure 7 shows the resulting Bayesian-type dynamic policy on a sample trajectory of {It}. In this
example, counter-measures start once the probability of being in the high season is at least 95%
and are ended once Π2

t < 0.05 and It < Ihigh = 200; the latter is to make sure that the outbreak
is fully contained. In the figure, the filter reacts rather slowly to the first outbreak, perhaps due
to lower than normal numbers of infecteds at its onset. Coincidentally, once counter-measures
are finally started, {Mt} reverts back to low season almost immediately. The second outbreak
begins around seven months and is responded to within 20 days. At the end of the simulation,
Mt = 2 remains in the high season. Note that the unrealistic assumption (solely for simplicity
of presentation) that {Mt} goes back to its original transition matrix once φt = 0 (even after
counter-measures were applied previously) implies that multiple high seasons are likely to occur
over the nine months.
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Ave. Policy Ave. Days Ave. Policy Eφ[c1] Eφ[c2]
Policy It Freq. It > 300 Start-Ups (’000s) (’000s)
Type Thresholds (±3) (±1%) (±1.5) (±0.1) (±4) (±2.5)

Baseline (Do-Nothing) 174 0% 54 0 187 102
Oracle 95 41% 15 4.8 60 70

Infecteds (20,-10) 92 37% 13 2.6 50 66
Infecteds (40,-20) 106 28% 17 5.3 59 65

Bayesian (0.80,0.01) 91 49% 12 2.7 48 67
Bayesian (0.95,0.05) 108 30% 19 2.6 56 64

Table 3: Expected costs and summary statistics of selected response strategies over 500 simulated

scenarios. The chosen Infecteds-based rule isDInfd
1 = {It−I(14)

t > Ī}, DInfd
0 = {It−I(κ)

t < I∩It <
Ihigh} and the chosen Bayesian rule is DBayes

1 = {Π2
t ≥ π̄} and DBayes

0 = {Π2
t ≤ π∩It < Ihigh} for

the specified thresholds. Bayesian algorithms used J = 3000 particles. The Baseline policy is to
do nothing φt ≡ 0, and the Oracle policy is φt = 1{Mt=2}. Standard deviations of the computed
expected values are in brackets.

The performance of several mitigation policies is compared in Table 3. The table demonstrates
that depending on the priorities of the policy makers, different mitigation strategies should be
considered. Crucially, one must consider the trade-off between fast response and potentially
unnecessary interventions. This trade-off is clearly observed with some strategies being more
aggressive (and hence producing lower expected morbidity) and other strategies being more con-
servative. For instance, the Bayesian policy with (π, π̄) = (0.01, 0.8) is much more aggressive
than a similar policy with (π, π̄) = (0.05, 0.95), as it starts counter-measures as soon as there is at
least 80% chance of being in the high season, and continues them until the posterior probability
drops below 1% (compared to starting at Π2

t > 95% and stopping as soon as Π2
t < 5%). Not

surprisingly, it reduces average number of infecteds by nearly 15% and the average number of
days when there are more than 300 infecteds by over 30% in comparison. This comes at a cost
of over 40 additional days on average when countermeasures are applied. Which policy is better
therefore depends on the weightings (cf. Lagrange multiplier λ in (26)) placed on the different
ingredients of the cost functional; here Eφ[c1] is smaller for (π, π̄) = (0.01, 0.8), while Eφ[c2] is
smaller for (π, π̄) = (0.05, 0.95).

Overall, we find that strategies based on Bayesian inference seem able to outperform policies
based on It only, though the difference is not very statistically significant. Of course, this result
must be tempered as we did not perform an exhaustive optimization and it obviously depends
on the cost functionals considered. We also note that strategies differ a lot in achieving similar
results. For instance the Bayesian policy with (π, π̄) = (0.01, 0.8) has similar expected costs using
the functional c1 as the Infecteds-based policy with (I, Ī) = (−10, 20). However, the latter is
much more variable (over 5.3 expected policy start-ups) in time, though lasting shorter periods
(20% less frequently).

As a final comparison, Table 3 points out that no action at all is clearly sub-optimal and
whatever the aims of the policy makers, some mitigation is obviously beneficial. Moreover, the
idealized Oracle control is in fact not optimal either, since it does not account for the dynamics of
{It} and by tracking {Mt} exactly tends to act/end too quickly. Further tailoring and refinement
of risk metrics is obviously needed for practical use and raises a host of interesting inter-disciplinary
questions that will be explored in upcoming works.
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