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Abstract This paper addresses the Monte Carlo approxi-
mation of posterior probability distributions. In particular,
we consider the population Monte Carlo (PMC) technique,
which is based on an iterative importance sampling (IS) ap-
proach. An important drawback of this methodology is the
degeneracy of the importance weights (IWs) when the di-
mension of either the observations or the variables of in-
terest is high. To alleviate this difficult , we propose a new
method that performs a nonlinear transformation of the IWs.
This operation reduces the weight variation, hence it avoids
degeneracy and increases the efficien y of the IS scheme,
specially when drawing from proposal functions which are
poorly adapted to the true posterior. For the sake of illustra-
tion, we have applied the proposed algorithm to the estima-
tion of the parameters of a Gaussian mixture model. This is
a simple problem that enables us to discuss the main fea-
tures of the proposed technique. As a practical application,
we have also considered the challenging problem of estimat-
ing the rate parameters of a stochastic kinetic model (SKM).
SKMs are multivariate systems that model molecular inter-
actions in biological and chemical problems. We introduce

a particularization of the proposed algorithm to SKMs and
present numerical results.

Keywords Population Monte Carlo · Importance
sampling · Degeneracy of importance weights · Stochastic
kinetic models

1 Introduction

The problem of performing inference in multidimensional
spaces appears in many practical applications. For exam-
ple, it is of increasing interest in the biological sciences to
develop new techniques that allow for the efficien estima-
tion of the parameters governing the behavior of complex
autoregulatory networks (Wilkinson 2011a). The main diffi
culty often encountered when tackling this kind of problems
is the design of numerical inference algorithms that scale up
efficientl with the dimension of the parameter space.
A very common strategy, which has been successfully ap-

plied in a broad variety of complex problems, is the Monte
Carlo methodology (Robert and Casella 2004). We consider
a recently proposed technique known as population Monte
Carlo (PMC) (Cappé et al. 2004), which is based on an it-
erative importance sampling (IS) approach. The aim of this
method is the approximation of probability distributions by
way of discrete random measures consisting of samples and
associated importance weights (IWs). The target distribution
is often the posterior distribution of a set of variables of in-
terest, given some observed data.
The main advantages of the PMC scheme, compared to

the widely established Markov chain Monte Carlo (MCMC)
methodology (Robert and Casella 2004), are the possibility
of developing parallel implementations, the sample indepen-
dence and the fact that an unbiased estimate is provided at
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each iteration, which avoids the need of a convergence pe-
riod.
On the contrary, an important drawback of the IS ap-

proach, and particulary of PMC, is that its performance
heavily depends on the choice of the proposal distribution
(or importance function). When the target probability den-
sity function (pdf) is very sharp with respect to the pro-
posal (this occurs when, e.g., the dimension of the vari-
ables of interest or the number of observations is high), the
vast majority of the IWs become practically zero, leading to
an extremely low number of representative samples (Kong
et al. 1994; Doucet et al. 2000). This problem is commonly
known as weight degeneracy and is closely related to the
“curse of dimensionality” (Bengtsson et al. 2008). The issue
was already mentioned in the original paper (Cappé et al.
2004). However, to the best of our knowledge, it has not
been successfully addressed in the PMC framework.
The effort in the fiel of PMC algorithms has been di-

rected toward the design of efficien proposal functions. The
recently proposed mixture PMC technique (Cappé et al.
2008) models the importance functions as mixtures of ker-
nels. The weights and the parameters of each mixture com-
ponent are adapted along the iterations to minimize the
Kullback-Leiber divergence between the target density and
the proposal. This scheme also suffers from degeneracy and
the authors of Cappé et al. (2008) propose to apply a Rao-
Blackwellization scheme in order to mitigate this drawback.
Another recently proposed PMC scheme is based on the

Gibbs sampling method (Djuric et al. 2011) and allows to
sample efficientl from high-dimensional proposals. How-
ever, the IWs still present severe degeneracy due to the ex-
treme values of the likelihood function in high-dimensional
spaces. The technique is based on the multiple marginalized
PMC algorithm introduced in Bugallo et al. (2009), Shen
et al. (2010).
In this paper we propose a novel PMC method, termed

nonlinear PMC (NPMC). The emphasis is not placed on the
proposal update scheme, which can be very simple.1 The
main feature of the technique is the application of a nonlin-
ear transformation to the IWs in order to reduce their varia-
tions. In this way, the efficien y of the sampling scheme is
improved (specially when drawing from “poor” proposals)
and the degeneracy of the weights is drastically mitigated
even when the number of generated samples is relatively
small. We provide a simple convergence analysis for two
types of nonlinear transformations.
To illustrate the degeneracy problem and evaluate the

performance of the proposed method we have used a sim-
ple Gaussian mixture model (GMM), already discussed in
Cappé et al. (2004). The NPMC scheme outperforms the

1Here, for instance, we restrict ourselves to multivariate normal densi-
ties when choosing the importance functions.

original PMC of Cappé et al. (2004) in terms of robustness
and accuracy.
As a practical application, we have chosen the challeng-

ing problem of estimating the parameters in stochastic ki-
netic models (SKMs) (Wilkinson 2011a, 2011b; Golightly
andWilkinson 2011; Milner et al. 2013). SKMs describe the
time evolution of the population of a set of chemical species,
which evolve according to a set of constant rate parameters.
We introduce a particularization of the NPMC algorithm to
SKMs and show numerical results for the Lotka-Volterra
model, consisting of two interacting species related by three
reaction equations with associated unknown rates (Volterra
1926). In this scenario, the proposed method turns out ad-
vantageous compared to state-of-the-art MCMC techniques
(Golightly and Wilkinson 2011).
The rest of the paper is organized as follows. A formal

problem statement is presented in Sect. 2. In Sect. 3 the PMC
algorithm is described and the weight degeneracy problem
is discussed. The proposed NPMC method is introduced in
Sect. 4, with a convergence analysis in Sect. 5. In Sect. 6
we present numerical results on a GMM that illustrate the
effects of degeneracy and the performance of the proposed
algorithm. In Sect. 7 we describe the practical application
of the proposed algorithm to the estimation of the rate pa-
rameters of a SKM, and show numerical results. Section 8
summarizes the main finding of the paper.

2 Problem statement

Let θ = [θ1, . . . , θK ]� be a column vector of K unobserved
real random variables with prior density p(θ) and let y =
[y1, . . . , yN ]� be a vector of N real random observations re-
lated to θ by way of a likelihood function p(y|θ). In this pa-
per we address the problem of approximating the posterior
probability distribution of θ , i.e., the (conditional) distribu-
tion with density

p(θ |y) ∝ p(y|θ)p(θ), (1)

using a random grid of M points, {θ (i)}Mi=1, in the space of
the random vector θ . Once the grid is generated, it is sim-
ple to approximate any moments of p(θ |y), i.e., expecta-
tions of the form Ep(θ |y)[f (θ)] = ∫

f (θ)p(θ |y)dθ , where
f : RK → R is some real integrable function of θ . For
example, the posterior mean of θ can be approximated as
Ep(θ |y)[θ ] ≈ 1

M

∑M
i=1 θ (i).

Unfortunately, the generation of samples that represent
the probability measure p(θ |y)dθ adequately when K (or
N ) is large is normally a very difficul task. The main goal of
this work is to devise and assess an efficien computational
inference (Monte Carlo) methodology for the approximation
of p(θ |y)dθ and its moments.
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3 Population Monte Carlo

3.1 Importance sampling

One of the main applications of statistical Monte Carlo
methods is the approximation of integrals of the form

(f,π) =
∫

f (θ)π(θ)dθ,

where π(θ) is some pdf of interest (termed the target den-
sity). In problems of the type described in Sect. 2, the target
density is the posterior pdf of θ , i.e., π(θ) = p(θ |y). If π(θ)

is some standard pdf, then it is straightforward to draw a
random i.i.d. (independent and identically distributed) sam-
ple from π(θ) and approximate (f,π) by the sample mean.
However, in many practical cases it is not possible to draw
from π(θ) directly. A common approach to overcome this
difficult is to apply an IS methodology (Robert and Casella
2004). The key idea is to generate an i.i.d. sample of size
M ,ΘM = {θ (i)}Mi=1, from a (simpler) proposal pdf q(θ), and
then compute normalized IWs w(i) as

w(i)∗ ∝ π(θ (i))

q(θ (i))
, w(i) = w(i)∗

∑M
j=1w(j)∗ , i = 1, . . . ,M.

Using ΘM and the associated weights, we can construct a
discrete random measure

πM(dθ) =
M∑

i=1
w(i)δθ (i) (dθ),

where δθ (i) (dθ) is the unit delta measure located at θ = θ (i),
and approximate (f,π) by the weighted sum

(
f,πM

) =
M∑

i=1
w(i)f

(
θ (i)

)
.

The efficien y of an IS algorithm depends heavily on the
choice of the proposal, q(θ). However, in order to ensure
the asymptotic convergence of the approximation (f,πM),
asM → ∞, it is sufficien to select q(θ) such that q(θ) > 0
whenever π(θ) > 0 (Robert and Casella 2004). Finally, note
that the computation of the normalized IWs requires that
both π(θ) and q(θ) can be evaluated up to a proportionality
constant.

3.2 Population Monte Carlo algorithm

The population Monte Carlo (PMC) method (Cappé et al.
2004) is an iterative IS scheme that seeks to generate a se-
quence of proposal pdf’s q�(θ), � = 1, . . . ,L, such that ev-
ery new proposal is closer (in some adequate sense to be
defined to the target density π(θ). Such scheme demands,

Table 1 Generic PMC algorithm (Cappé et al. 2004)

Iteration (� = 1, . . . ,L):
1. Select a proposal pdf q�(θ), based on Θ̃M

�−1 for � ≥ 2. For � = 1,
choose q1(θ) = p(θ), the prior density.

2. Draw a set of i.i.d. samples ΘM
� = {θ (i)

� }Mi=1 from q�(θ).
3. Compute normalized IWs w

(i)
� ∝ π(θ

(i)
� )/q�(θ

(i)
� ), i = 1, . . . ,M .

4. Perform a resampling step according to the weights w
(i)
� to create

an unweighted sample set Θ̃M
� = {θ̃ (i)

� }Mi=1.

therefore, the ability to learn about the target π(θ), given the
set of samples and weights at the (� − 1)-th iteration, in or-
der to produce the new proposal q�(θ) for the �-th iteration
(� ≥ 2). The PMC algorithm is outlined in Table 1.
At every iteration of the algorithm it is possible to com-

pute an estimate of (f,π) as

(
f,πM

�

) =
M∑

i=1
w

(i)
� f

(
θ

(i)
�

)

and, if the proposals q�(θ) are actually improved across it-
erations, it can be expected that the approximation error
|(f,π) − (f,πM

� )| also decreases with �.
A frequently used index for the performance of Monte

Carlo approximations of probability measures is the effec-
tive sample size (ESS) Meff = [∑M

i=1(w(i))2]−1 and its
normalized version (NESS)Mneff = Meff /M (Kong et al.
1994; Doucet et al. 2000). We expect the ESS to increase
along the iterations as the algorithm converges. Thus, it may
be used to quantitatively monitor the convergence of the
PMC algorithm and to stop the adaptation when the ESS
reaches a steady value.
However, unless the proposal pdf is well tailored to the

target density, the resulting IWs will often present very large
variations, leading to a low number of effective samples.
This problem is well known to affect IS schemes and is usu-
ally termed degeneracy of the weights (Kong et al. 1994;
Doucet et al. 2000).

3.3 Degeneracy of the importance weights

The degeneracy of the IWs is a problem that arises when
the normalized IWs w(i), i = 1, . . . ,M , of a set of sam-
ples {θ (i)}Mi=1 present large fluctuation and their maximum,
maxi w(i), is close to one, leading to an extremely low ESS.
This situation occurs when the target and the proposal den-
sities are approximately mutually singular, i.e., they (essen-
tially) have disjoint support.
The degeneracy of the IWs critically increases with K

(Bengtsson et al. 2008), which has been widely accepted as
one of the main drawbacks of IS. However, it can be easily
verifie (numerically) that existing PMC methods can suf-
fer from degeneracy even when applied to low dimensional
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systems. Assume that the target pdf is the posterior given
by Eq. (1) and consider a set of M samples {θ (i)}Mi=1 drawn
from the prior pdf p(θ), which is the case at the firs iteration
of the PMC algorithm. Assuming conditionally independent
observations, the IW associated to the i-th sample is given
by

w(i) ∝ p
(
y|θ (i)

) =
N∏

n=1
p
(
yn|θ (i)

)
, i = 1, . . . ,M. (2)

Thus, the IWs are obtained from a likelihood consisting of
the product of a potentially large number of factors. As the
number of observations N increases, the posterior proba-
bility concentrates in a smaller region (it becomes sharper),
leading to a low probability of obtaining representative sam-
ples. This shows how in low dimensional systems degener-
acy of the IWs can be motivated by a high number of ob-
servations N , unless the computational inference method is
explicitly designed to account for this difficult . In Sect. 6
we present numerical results to support this claim, which
provides a rationale to understand the poor performance of
existing PMC methods with certain low dimensional mod-
els.
The degeneracy problem was already identifie in Cappé

et al. (2004). However, to the best of our knowledge, no sys-
tematic solution has been provided so far for this problem. In
the next section we introduce a new methodology to tackle
the weight degeneracy, either due to large K or to large N .
The key feature of the method is the application of a non-
linear transformation to the IWs, in order to reduce their
variations and obtain an ESS that is large enough to ade-
quately perform the proposal update and provide consistent
estimates of the variables of interest.

4 Algorithms

In this section we describe the proposed algorithm, termed
nonlinear PMC (NPMC). We adopt a simple proposal up-
date scheme, where the importance functions are multivari-
ate normal (MVN) pdf’s with moments matched to the latest
approximation of the posterior distribution. The key feature
is the application of a nonlinear transformation of the IWs.
Besides the basic version of the algorithm, we propose an
adaptive version where this transformation is only applied
when the value of the ESS is below a certain threshold. Fi-
nally, we explore different forms of the weight transforma-
tion.

4.1 Nonlinear PMC

Assume, in the sequel, that the target pdf is the posterior
density given by Eq. (1). For simplicity, we select the impor-
tance functions in the PMC scheme as MVN densities. The

initial proposal is selected as the prior, i.e., q1(θ) = p(θ). In
the subsequent iterations

q�(θ) =N (θ;μ�,Σ�), � = 2, . . . ,L,

where μ� is the mean vector and Σ� is a positive definit
covariance matrix. These parameters are chosen to match
the moments of the distribution described by the discrete
measure obtained at the previous iteration. In particular, we
compute the mean and covariance as

μ� = 1
M

M∑

i=1
θ̃

(i)

�−1 (3)

and

Σ� = 1
M

M∑

i=1

(
θ̃

(i)

�−1 − μ�

)(
θ̃

(i)

�−1 − μ�

)�
, (4)

where {θ̃ (i)

�−1}Mi=1 is the set of (unweighted) samples avail-
able after the (� − 1)-th iteration. Note that this particular
proposal update scheme is not a constraint of the algorithm.
The importance functions can be designed as freely as in the
standard PMC method.
The key modificatio of the algorithm is the computation

of transformed IWs (TIWs). We introduce a sequence of
nonlinear, real positive functions ϕM

� , � = 1, . . . ,L, which
depend both on the iteration index � and the size-M sample
at the (�− 1)-th iteration. The unnormalized TIWs are com-
puted as w̄

(i)∗
� = ϕM

� (w
(i)∗
� ), i = 1, . . . ,M , where w

(i)∗
� is

the standard unnormalized IW associated to the sample θ
(i)
� .

The nonlinearity should be chosen so as to reduce the
variation of the normalized TIWs, w̄(i)

� = w̄
(i)∗
� /

∑M
j=1 w̄

(j)∗
� .

Intuitively, it should preserve the ordering of the samples
(those with larger IWs should also have the largest TIWs)
while reducing the difference maxi w̄(i)

� −mini w̄(i)
� or some

other measure of weight variation. This modificatio of the
algorithm mitigates the sensitivity of the conventional IS to
the selection of the proposal pdf. The NESS computed from
the TIWs w̄

(i)
� is denoted as M̄

neff
� = [M ∑M

i=1(w̄
(i)
� )2]−1.

The proposed generic algorithm is outlined in Table 2.
Step 5 of the NPMCmethod involves multinomial resam-

pling, which consists in sampling with replacement from the
set {θ (i)

� }Mi=1 with probabilities equal to the associated TIWs
w̄

(i)
� , to obtain an unweighted set {θ̃ (i)

� }Mi=1. This is not the
only choice of resampling algorithm and we use it only for
the sake of simplicity. See, e.g., Bain and Crisan (2008),
Carpenter et al. (1999), for an overview of resampling tech-
niques.
At each iteration � = 1, . . . ,L, we obtain two discrete ap-

proximations of the posterior distribution with density π(θ),
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Table 2 Nonlinear PMC with target π(θ) ∝ p(y|θ)p(θ)

Iteration (� = 1, . . . ,L):
1. Select the proposal pdf q�(θ):

– At iteration � = 1, let q1(θ) = p(θ).
– At iterations � = 2, . . . ,L the proposal is a MVN pdf q�(θ) =

N (θ;μ�,Σ�), where the mean and covariance are computed ac-
cording to Eqs. (3) and (4).

2. Draw a set ofM samples ΘM
� = {θ (i)

� }Mi=1 from q�(θ).
3. Compute the unnormalized IWs

w
(i)∗
� ∝ p(θ

(i)
� |y)

q�(θ
(i)
� )

∝ p(y|θ (i)
� )p(θ

(i)
� )

q�(θ
(i)
� )

, i = 1, . . . ,M.

4. Compute normalized TIWs as

w̄
(i)∗
� = ϕM

�

(
w

(i)∗
�

)
, w̄

(i)
� = w̄

(i)∗
�

∑M
j=1 w̄

(j)∗
�

, i = 1, . . . ,M.

5. Resample to obtain an unweighted set Θ̃M
� = {θ̃ (i)

� }Mi=1: for i, j =
1, . . . ,M , let θ̃

(i)

� = θ
(j)
� with probability w̄

(j)
� .

namely the measures

π̄M
� (dθ) =

M∑

i=1
w̄

(i)
� δ

θ
(i)
�

(dθ) and

π̃M
� (dθ) = 1

M

M∑

i=1
δ
θ̃

(i)

�

(dθ),

and the integral (f,π) can be approximated as either

(
f, π̄M

�

) =
M∑

i=1
w̄

(i)
� f

(
θ

(i)
�

)
or

(
f, π̃M

�

) = 1
M

M∑

i=1
f

(
θ̃

(i)

�

)
.

The estimator (f, π̃M
� ) involves one extra Monte Carlo step

(resampling) and, hence, it has more variance than (f, π̄M
� )

(Douc et al. 2005). Therefore, we assume in the sequel that
estimates are computed by way of the measure π̄M

� unless
explicitly stated otherwise.
Note as well that, since π(θ) ∝ p(y|θ)p(θ), any ex-

pectation with respect to the posterior distribution is actu-
ally an integral with respect to the measure π(θ)dθ , i.e.,
Ep(θ |y)[f (θ)] = (f,π), and, therefore, it can be approxi-
mated using π̄M

� , namely, Ep(θ |y)[f (θ)] ≈ (f, π̄M
� ).

4.2 Modifie NPMC

The nonlinear transformation ϕM
� is most useful at the firs

iterations of the NPMC, when the proposal density is gen-
erally much broader than the target density and the standard

Table 3 Modifie NPMC algorithm

Step 4 of the NPMC algorithm is replaced by the following
computations:

4. Compute the normalized IWs w
(i)
� = w

(i)∗
� /

∑M
j=1w

(j)∗
� and the

ESSM
eff
� = [∑M

i=1(w
(i)
� )2]−1.

If M
eff
� < M

eff
min, compute normalized TIWs w̄

(i)∗
� = ϕM

� (w
(i)∗
� ),

w̄
(i)
� = w̄

(i)∗
� /

∑M
j=1 w̄

(j)∗
� , i = 1, . . . ,M . Otherwise, set

w̄
(i)
� = w

(i)
� .

IWs may display high variability. However, in some appli-
cations it may be possible to remove the nonlinear transfor-
mation after a few iterations, when the proposal is closer to
the target.
Thus, we propose a modificatio of the NPMC algorithm

which consists in applying the nonlinear transformation only
if the ESS M

eff

� computed from the standard normalized
IWs w

(i)
� is below a specifie threshold M

eff
min. We recom-

mend that the threshold M
eff
min be a relatively large value

(e.g., M
2 ≤ M

eff
min < M) to ensure that the algorithm is suffi

ciently stable before removing the transformation. The mod-
ifie algorithm only differs from the NPMC in step 4, which
is outlined in Table 3.

4.3 Selecting the transformation of the IWs

The nonlinearity ϕM
� may be constructed in multiple ways.

In this section we describe and intuitively justify two spe-
cifi functions based on the “tempering” and the “clipping”,
respectively, of the standard IWs.

4.3.1 Tempering

In this case, the unnormalized TIWs are obtained as

w̄
(i)∗
� = ϕM

�

(
w

(i)∗
�

) = (
w

(i)∗
�

)γ� , i = 1, . . . ,M,

where 0< γ� ≤ 1. The sequence γ�, � = 1, . . . ,L, has to be
adapted along the iterations, taking low values at the firs
steps and getting closer to 1 as the algorithm converges.
The sequence γ� can be selected a priori, regardless of the
values of the IWs. For instance, it may be constructed as a
polynomial function γ� ∝ �m, m ∈ N, or a sigmoid function
γ� = 1

1+e−� of the iteration index �. While in simple exam-
ples this procedure provides a remarkable reduction of the
weight variations and an increase of the ESS, in complex
problems it is not enough to guarantee a stable and consis-
tent convergence.
This technique is closely related to the simulated tem-

pering of the target density, which has been widely stud-
ied in the MCMC literature (Gramacy et al. 2010; Mari-
nari and Parisi 2007). More recently, a class of sequential
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Monte Carlo (SMC) samplers that rely on IS and can encom-
pass PMC methods as a particular case have been proposed
(Del Moral et al. 2006), and tempering techniques have been
specificall considered within this framework (Del Moral
et al. 2006; Jasra et al. 2011; Beskos et al. 2012). However,
the IWs in the SMC methodology of Del Moral et al. (2006)
are computed in the conventional manner, and tempering
is only applied to the target density (Beskos et al. 2012).
Therefore, these methods depart from the NPMC algorithm,
as the same set of samples in the parameter space (even
drawn from the same proposal) would be weighted differ-
ently. However, it is possible to derive a NPMC algorithm
with tempering within the framework of Del Moral et al.
(2006), as shown in Appendix A, under some constraints on
the choice of the importance functions. Unfortunately, the
latter constraints rule out the class of q�(θ) introduced in
Sect. 4.1.

4.3.2 Clipping

We now introduce a simple and effective methodology that
avoids the fittin of any parameters and guarantees a base-
line ESS at all iterations. In particular, we perform a clipping
procedure on the MT < M highest IWs at each iteration of
the NPMC algorithm. Since the highest weights w(i)

� usually
correspond to the most representative samples θ

(i)
� , we thus

obtain fla TIWs in the region of interest of θ . As a conse-
quence, at least MT samples obtain non negligible weights
at all iterations, allowing to consistently update the proposal.
To be specific at each iteration �, consider a permu-

tation i1, . . . , iM of the indices in {1, . . . ,M} such that
w

(i1)∗
� ≥ . . . ≥ w

(iM)∗
� and choose MT < M . We select a

threshold value T M
� = w

(iMT
)∗

� and apply clipping to the IWs
w

(ik)∗
� ≥ T M

� , k = 1, . . . ,MT − 1. Thus, the unnormalized
TIWs w̄

(i)∗
� , i = 1, . . . ,M , are computed from the original

IWs w
(i)∗
� as2

w̄
(i)∗
� = ϕM

�

(
w

(i)∗
�

) =min(w(i)∗
� ,T M

�

)
. (5)

Note that, since T M
� = w

(iMT
∗)

� , the number of samples with
equal TIWs is exactlyMT .
The selection of the parameterMT in relation to the total

number of samples M is not crucial. In practice, we have
found that choosing MT /M = 0.1 works well for many ex-
amples. If the total number of samples M is very large, it
is not necessary that MT ∝ M . Indeed, MT should be sim-
ply large enough to “identify” the region where the posterior

2According to Eq. (5) and the definitio of the threshold T M
� , ϕM

� is
a function of both the complete weight set {w(j)∗

� }Mj=1 and the index
of the weight to be transformed, i.e., ϕM

� : {w(j)∗
� , j = 1, . . . ,M} ×

{1, . . . ,M} → [1,+∞).

probability mass is located. Correspondingly, for the asymp-
totic analysis of Sect. 5 we will assume thatMT /M → 0 as
M → ∞.
This technique is a generalization of the one proposed in

Koblents and Míguez (2011), which applies clipping to the
likelihood p(y|θ) instead of to the complete weights. How-
ever, transforming only the likelihood does not guarantee a
sufficien ESS, and its performance heavily depends on the
selection of the prior.

5 Convergence of nonlinear IS

The convergence of the original PMC scheme is easily jus-
tifie by the convergence of the standard IS method. Indeed,
it can be proved (Geweke 1989) that the discrete measure
πM

� (dθ) = ∑M
i=1w

(i)
� δ

θ
(i)
�

(dθ) converges to π(θ)dθ under
mild assumptions, meaning that

lim
M→∞

∣
∣
(
f,πM

�

) − (f,π)
∣
∣ = 0 almost surely (a.s.) (6)

for every � ∈ {1, . . . ,L} and any f ∈ B(RK), where B(RK)

is the set of bounded real functions over RK .
In Sect. 5.1, we provide a result similar to Eq. (6) for

the discrete measure π̄M
� generated by the NPMC algorithm

with a clipping transformation. The analysis, therefore, is
concerned with the asymptotic performance of the approxi-
mation as the number of samplesM grows, but not with the
convergence as the iteration index � increases. Hence, we
shall drop the latter subscript for convenience in the sequel.
The section is completed with an analysis of the error

induced by the tempering transformation. Note that when
γ < 1 (again, we drop the iteration subscript � and focus on
a single iteration) the error in the approximation of (f,π)

via the NPMC scheme with tempering does not vanish as
M → ∞. It is relatively straightforward, however, to fin an
upper bound for the approximation error (with fi ed γ < 1
andM → ∞) and then show that this error vanishes as γ →
1. These results are formally obtained in Sect. 5.2.

5.1 Asymptotic convergence of IS estimators with clipping

5.1.1 Notation and basic assumptions

Let π be the pdf associated to the target probability distri-
bution to be approximated, let q be the importance function
used to propose samples in an IS scheme (not necessarily
normalized) and let h(θ) = aπ(θ) be a function proportional
to π , with the proportionality constant a > 0 independent of
θ . The samples drawn from the distribution associated to q

are denoted θ (i), i = 1, . . . ,M , and their associated unnor-
malized IWs are w(i)∗ = h(θ (i))/q(θ (i)), i = 1, . . . ,M .
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Let us defin the weight function g(θ) = h(θ)/q(θ) and,
in particular, g(θ (i)) = w(i)∗. The support of g is the same
as the support of q , denoted S ⊆R

K . If we assume that both
q(θ) > 0 and π(θ) ≥ 0 for any θ ∈ S, then g(θ) ≥ 0 for
every θ ∈ S as well. Also, trivially, π ∝ gq , with the propor-
tionality constant independent of θ . These assumptions are
standard for classical IS.
The approximation πM of the target probability measure

generated by the standard IS method is constructed form the
normalized IWs w(i), namely

πM(dθ) =
M∑

i=1
w(i)δθ (i) (dθ),

where w(i) = g(θ (i))
∑M

j=1 g(θ (j))
, i = 1, . . . ,M .

The nonlinear transformation ϕM of the weights is as-
sumed to be of a clipping class, as described in Sect. 4.3.2.
We note that, given an index permutation i1, . . . , iM such
that w(i1)∗ ≥ . . . ≥ w(iM)∗, the transformation ϕM can be ex-
pressed as

ϕM
(
w(ik)∗) =

{
w(iMT

)∗, for k = 1, . . . ,MT , and
w(ik)∗, for k = MT + 1, . . . ,M.

(7)

We assume that the weight function g ∈ B(RK) is up-
per bounded, and thus the TIWs satisfy w̄(i)∗ ≤ ‖g‖∞ =
supz∈RK |g(z)| < ∞.
The approximation π̄M of the target probability measure

generated by the nonlinear IS method is constructed form
the normalized TIWs w̄(i) as

π̄M(dθ) =
M∑

i=1
w̄(i)δθ (i) (dθ),

where w̄(i) = ϕM(g(θ (i)))
∑M

j=1 ϕM(g(θ (j)))
, i = 1, . . . ,M . Additionally,

we introduce an approximation π̌M constructed from a set of
unnormalized TIWs w̌(i) that will be referred to as “bridge
weights” in the sequel, namely

π̌M(dθ) =
M∑

i=1
w̌(i)δθ (i) (dθ), (8)

where w̌(i) = ϕM(g(θ (i)))
∑M

j=1 g(θ (j))
, i = 1, . . . ,M .

5.1.2 Asymptotic convergence

We aim at proving that limM→∞ |(f, π̄M) − (f,π)| = 0 a.s.
for any f ∈ B(RK). To obtain such a result, we split the
problem into simpler questions by applying the triangle in-

equality
∣
∣(f, π̄M

) − (f,π)| ≤ |(f, π̄M
) − (

f,πM
)∣∣

+ ∣
∣
(
f,πM

) − (f,π)
∣
∣. (9)

The second term on the right hand side of (9) is handled eas-
ily using standard IS theory. For the firs term, we have to
prove that the discrete measure generated by the nonlinear
IS method (π̄M ) converges to the discrete measure gener-
ated by the standard IS method (πM ). This can be done by
resorting to another triangle inequality,
∣
∣(f, π̄M

) − (
f,πM

)∣∣ ≤ ∣
∣(f, π̄M

) − (
f, π̌M

)∣∣

+ ∣
∣
(
f, π̌M

) − (
f,πM

)∣
∣, (10)

that reveals the role of the bridge measure in (8).
The following lemma establishes the asymptotic conver-

gence of the term |(f, π̄M) − (f, π̌M)| in (10).

Lemma 1 Assume that limM→∞ MT

M
= 0, g ∈ B(RK), and

the transformation function ϕM satisfie (7). Then, for ev-
ery f ∈ B(RK) and sufficientl largeM , there exist positive
constants c1, c

′
1 independent ofM andMT such that

P

{∣
∣(f, π̄M

) − (
f, π̌M

)∣∣ ≤ c1
MT

M

}

≥ 1− exp (−c′
1M

)
.

Proof See Appendix B.

Next, we establish the convergence of the bridge measure
π̌M toward πM .

Lemma 2 Assume that limM→∞ MT

M
= 0, g ∈ B(RK) and

the transformation function ϕM satisfie (7). Then, for every
f ∈ B(RK) there exist positive constants c2, c

′
2 independent

ofM andMT such that

P

{
∣
∣
(
f, π̌M

) − (
f,πM

)∣
∣ ≤ c2

MT

M

}

≥ 1− exp (−c′
2M

)
.

Proof See Appendix C.

The combination of Lemmas 1 and 2, together with the
triangle inequality (10), yields the convergence of the error
|(f, π̄M) − (f,πM)|.

Lemma 3 Assume that limM→∞ MT

M
= 0, g ∈ B(RK), and

the transformation function ϕM satisfie (7). Then, for every
f ∈ B(RK), and sufficientl large M , there exist positive
constants c, c′ independent ofM andMT such that

P

{
∣
∣
(
f, π̄M

) − (
f,πM

)∣
∣ ≤ c

MT

M

}

≥ 1− 2exp (−c′M
)
.
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In particular,

lim
M→∞

∣
∣(f, π̄M

) − (
f,πM

)∣∣ = 0 a.s.

Proof See Appendix D.

Finally, Lemma 3 can be combined with inequality (9) to
yield the desired result, stated below.

Theorem 1 Assume that limM→∞ MT

M
= 0, g ∈ B(RK) and

the transformation function ϕM satisfie (7). Then, for every
f ∈ B(RK),

lim
M→∞

∣
∣(f, π̄M

) − (f,π)
∣
∣ = 0 a.s.

Proof It is classical result that (Geweke 1989)

lim
M→∞

∣
∣
(
f,πM

) − (f,π)
∣
∣ = 0 a.s. (11)

Combining (11) with the second part of Lemma 3 and the
triangle inequality in (9) yields the desired result. �

Remark 1 Lemma 3 shows that the approximation π̄M that
uses the transformed weights can be seen as a “distortion”
of the conventional IS approximation πM . Such distortion
depends on the ratio MT /M and, hence, can be controlled
by the choice ofMT .

5.2 Asymptotic convergence of IS estimators with
tempering

When the tempering transformation is applied, the TIWs can
be written as

w̄(i) = g(θ (i))γ

∑M
j=1 g(θ (j))γ

, i = 1, . . . ,M. (12)

If γ < 1 is fi ed and f ∈ B(RK) is non-constant, it is ap-
parent that the integral (f, π̄M) does not converge to (f,π)

as M → ∞. However, it is straightforward to fin an upper
bound for the distortion with respect to the conventional IS
approximation, (f,πM), as given by the following proposi-
tion.

Proposition 1 Assume that g ∈ B(RK), ϕM(w) = wγ and
both 0< γ ≤ 1 and M < ∞ are fi ed. Then, for every f ∈
B(RK),
∣
∣
(
f,πM

) − (
f, π̄M

)∣
∣ ≤ ∣

∣
(
f

(
1− gγ−1),πM

)∣
∣

+ ‖f ‖∞
∣
∣
(
1− gγ−1,πM

)∣
∣. (13)

Proof See Appendix E.

The inequality (13) is useful because it yields an upper
bound for the distortion |(f,πM) − (f, π̄M)|, introduced
by the tempering nonlinearity, that depends on the standard
IS approximating measure πM alone. Since 1 − gγ−1 ∈
B(RK), the standard convergence results for IS (Geweke
1989) can be applied to the integrals on the right hand side
of (13) and, as a consequence,

lim
M→∞

∣
∣
(
f,πM

) − (
f, π̄M

)∣
∣

≤ ∣
∣
(
f

(
1− gγ−1),π

)∣
∣ + ‖f ‖∞

∣
∣
(
1− gγ−1,π

)∣
∣ (14)

a.s. Moreover, (13) also shows that the difference (f,πM)−
(f, π̄M) vanishes when γ → 1. Indeed, when γ → 1, (1−
gγ−1,πM) → 0 and (f (1− gγ−1),πM) → 0, hence

lim
γ→1

∣
∣(f,πM

) − (
f, π̄M

)∣∣ = 0.

Similarly, from (14) we observe that

lim
γ→1

lim
M→∞

∣
∣(f, π̄M

) − (f,π)
∣
∣ = 0 a.s.,

as intuitively expected.

6 Example 1: a Gaussian mixture model

In this section we provide numerical results that illustrate the
degeneracy problem and the performance of the proposed
NPMC scheme applied to the Gaussian mixture model
(GMM) example of Cappé et al. (2004).

6.1 Model

We consider the GMM given by

p(y|θ) = ρN
(
y; θ1, σ 2

) + (1− ρ)N
(
y; θ2, σ 2

)
(15)

where the variable of interest θ = [θ1, θ2]� contains the
means of the mixture components. The true values of the un-
knowns are set to θ = [0,2]�. The mixture coefficien and
the variance of the components are assumed to be known
and set to ρ = 0.2 and σ 2 = 1.
We assume a prior pdf p(θ) = p(θ1)p(θ2) composed of

equal independent components for each unknown, given by
p(θk) = N (θk;ν,σ 2/λ), for k = 1,2. The hyperparameters
are set to ν = 1 and λ = 0.1.
A set y of N i.i.d. scalar observations are drawn from the

mixture model in Eq. (15), and we aim at approximating the
posterior pdf π(θ) = p(θ |y).
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Fig. 1 Evolution of the average maximum IW maxi w(i) (left) and
the ESS Meff (right) vs the number of observations N and the num-
ber of samplesM . The curves corresponding to maximum degeneracy
(maxi w(i) = 1 andMeff = 1) are plotted with circles. The curves cor-

responding to the optimum case with uniform weights (maxi w(i) =
1/M and Meff = M) are depicted with squares. All curves are aver-
aged over P = 103 independent simulation runs

6.2 Degeneracy of the importance weights

The model in Eq. (15) serves to illustrate the effects of the
degeneracy problem in a simple and low dimensional IS ex-
ample. Consider a set of M samples ΘM = {θ (i)}Mi=1 drawn
form the prior pdf p(θ). The IWs are computed from the
likelihood function as in Eq. (2). For this model, we have
investigated the behavior of the maximum IW, maxi w(i),
and the ESS, Meff , when the number of observations N

increases. Let both the number of observations N and the
number of samples M vary from 1 to 103. For each pair of
values of N andM we have performed P = 103 simulation
runs of the standard IS procedure.
In Fig. 1 (left) the average maximum IW is represented

versusM and N . The curves representing the extreme cases
maxi w(i) = 1 (degeneracy) and maxi w(i) = 1/M (uniform
weights) are also plotted on the graph. It can be observed
that, for a fi ed M , as the number of observations N in-
creases, maxi w(i) → 1, leading to severe degeneracy.
Equivalently, in Fig. 1 (right) the average ESS is repre-

sented versusM andN . The casesMeff = 1 andMeff = M

are plotted for reference. It can be observed that, as N in-
creases, the ESS is smaller for the same value of M . For
example, with N = 103 observations andM = 103 samples,
the average ESS is only 1.5.

6.3 Comparison of algorithms

In this section we compare, by way of computer simula-
tions, the performance of the GMM-PMC scheme proposed
in Cappé et al. (2004), which we reproduce in Table 4, the
GMM-PMC with a clipping transformation, and the NPMC

Table 4 GMM-PMC algorithm (Cappé et al. 2004)

Initialization (� = 0):
1. Consider a set of p scales (variances) vj and an initial number

rj = m of samples per scale, j = 1, . . . ,p.
2. For i = 1, . . . ,M = pm, draw {θ (i)

0 } from q0(θ) = p(θ).

Iteration (� = 1, . . . ,L):
1. For j = 1, . . . ,p
– generate a sample {θ (i)

� } of size rj from q�(θ) =
N (θ

(i)
� ; θ (i)

�−1, vj IK), where IK denotes the identity matrix
of size K × K .

– compute the normalized IWs w
(i)
� ∝ p(y|θ (i)

� )p(θ
(i)
� )

q�(θ
(i)
� )

.

2. Resample with replacement the set {θ (i)
� }Mi=1 according to the

weights w
(i)
� to obtain {θ̃ (i)

� }Mi=1.
3. For j = 1, . . . ,p update rj as the number of elements generated
with variance vj which have been resampled.

scheme of Sect. 4 with tempering and clipping transforma-
tions. We have performed P = 104 independent simulation
runs of each algorithm, with L = 10 iterations andM = 200
samples per iteration.
The parameters of the GMM-PMC algorithm have been

selected as suggested in Cappé et al. (2004) (p = 5 scales,
v = [5,2,0.1,0.05,0.01]�, m = 40 samples per scale).
A minimum of 1 % of samples per scale has been kept as
a baseline. The GMM-PMC scheme with TIWs has been
simulated simply substituting the standard IWs w

(i)
� in the

resampling step by TIWs w̄(i)
� computed via a clipping trans-

formation (withMT = 20).
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Fig. 2 Evolution along the iterations of the average NESS (left) and 
the average MSE of 91 (right) for the GMM-PMC, GMM-PMC with 
clipping, NPMC with tempering and NPMC with clipping in the GMM 

In the NPMC algorithm with tempering, the sequence Ye has been obtained from the sigmoid function of the iteration 
index as Ye = 1 +e�{l-Sj , i. = l ,  ... , L. With this choice ofnonlinearity, the transformation of the weights is practically eliminated after 10 iterations. The NPMC algorithm with clipping has been simulated in its modified version, i.e., with the nonlinear transfor­mation removed when the ESS Meff reaches a value of 
M,%� = 100. In this problem this occurs on average be­tween the third and fourth iterations. On the contrary, in the 
GMM-PMC scheme with clipping, the ESS never reaches the threshold value and the nonlinear transformation thus cannot be removed. The clipping parameter has been set to 
MT= 20 in both algorithms. 

In Fig. 2 (left) the evolution of the average NESS Mt11 along the iterations is depicted for the GMM-PMC and the 
M-ne 

eff for the rest of schemes. It can be observed that theoriginal GMM-PMC scheme presents a low NESS, converg­ing to a value of 0.13. The GMM-PMC with clipping outper­forms the original scheme providing an average final NESSof 0.35. The two NPMC schemes, with tempering and clip­ping, provide a smooth convergence of the NESS to a valueof 0.94.The degeneracy problem is most critical at the first iter­ations of the PMC. The GMM-PMC scheme has an initial NESS value close to zero, opposite to the rest of schemes, where M�eff is around 0.1 (it is equal to MT/ M for the clip­ping schemes and depends on the parameter y1 for the tem­
pering scheme). It can be observed from Fig. 2 (left) that in the NPMC schemes the average NESS remains constant af­ter convergence, when the nonlinear transformation has been removed. 

' 

--MMSE 
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--NPMCclip 

··\.:.�·:·············································· "., ' .. 
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example of Sect. 6.1. The MMSE of 91 is also represented, for refer­
ence, as a solid black line in the plot on the right 

If we interpret the random vector 9 e with distribution 
iif (dB)= 1, L! i 

o
9
�o (dB) (obtained after the resampling

step of the l-th iteration) as an estimator of B, then the mean square error for the estimator of the k-th log-rate parameter is naturally given by 
M l '°'(-(i) )2 (AM )2 -MSEe,k = 

ML Be,k - Bk = Be,k - Bk + Var(Be,k), i=l 
AM 1 M -u> - 1 M -ci) where Be,k = M Li= l Be,k and Var(Be,k) = M Li= l (Be,k -

8�)2 are the marginal mean and variance, respectively, of 
iJe,k given the probability measure iif. We have averaged the MSEe,k over P independent simulations (with indepen­dent sets of observations). In Fig. 2 (right) the evolution of the average MSE for B1 
(MSEe, 1) is represented for the four algorithms. Similar re­
sults have been obtained for B2 and have thus been omitted. The minimum MSE (MMSE) of each parameter, which has been approximated numerically, is also shown for reference. It can be observed that the GMM-PMC does not reach the MMSE with the given number of samples M = 200. On the other side, the GMM-PMC with clipping and the proposed NPMC schemes outperform the original method in terms of MSE, reaching the MMSE in about 6 iterations. However, the most outstanding difference in the perfor­mance of the analyzed algorithms is observed in the variance of the MSE. The final mean and standard deviation values of the MSE for B1 and Bi at l = L are shown in Table 5. The estimates provided by the GMM-PMC scheme present a very high variance. On the contrary, the modified GMM­PMC and the proposed NPMC schemes reach the MMSE, both in average and in standard deviation. 
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Table 5 Mean and standard deviation (std) of the MSE of θ1 and θ2
at the last iteration � = L, for the analyzed PMC schemes. The MMSE
(mean and std) corresponding to the true posterior p(θ |y) is also shown
for comparison. Note that all entries are multiplied by a factor of 103

MSE θ1 MSE θ2

mean× 103 std× 103 mean× 103 std× 103

GMM-PMC 52.8 498.5 5.6 34.4
GMM-PMC clip 19.7 14.1 3.6 2.4
NPMC temp 19.1 13.8 3.3 2.4
NPMC clip 19.1 13.8 3.3 2.4

True posterior 19.1 13.7 3.2 2.3

Assuming that the computation time for the GMM-PMC
method is 1, the GMM-PMC with clipping takes 1.0006
time units (that is, only is, 0.06 % higher) and the NPMC
schemes take 0.9565 and 0.9582 time units for the temper-
ing and clipping schemes, respectively. This indicates that
the proposed method outperforms the original one also in
terms of computational cost.

7 Example 2: A stochastic kinetic model

In this section, the proposed NPMCmethod is applied to the
estimation of the parameters of a simple stochastic kinetic
model (SKM), known as the predator-prey model. A SKM
is a multivariate continuous-time jump process modeling the
interactions among molecules, or species, that take place in
chemical reaction networks of biochemical and cellular sys-
tems (Wilkinson 2011b).
Several MCMC schemes have been recently proposed

to address this problem. In Boys et al. (2008) various
MCMC algorithms are evaluated in data-poor scenarios. In
Golightly and Wilkinson (2011) a likelihood-free particle-
MCMC (pMCMC) scheme is applied to this problem. In
Milner et al. (2013) the authors propose an approximation
of the likelihood based on the moment closure approxima-
tion of the underlying stochastic process.

7.1 Predator-prey model

The Lotka-Volterra, or predator-prey, model is a simple
SKM that describes the time evolution of two species x1(t)
(prey) and x2(t) (predator), t ∈ R, by means of K = 3 reac-
tion equations (Volterra 1926)

x1
c1−→ 2x1 prey reproduction

x1 + x2
c2−→ 2x2 predator reproduction

x2
c3−→ ∅ predator death

where c = [c1, c2, c3]� is the vector of constant (yet ran-
dom) rate parameters ck > 0, k = 1,2,3.

Let xn = [x1,n, x2,n]� denote the state of the system at
time instant t = nΔ, n = 1, . . . ,R, where x1,n = x1(nΔ),
x2,n = x2(nΔ) denote the nonnegative, integer population
of each species at this time instant and Δ denotes a time-
discretization period. We denote by x the vector containing
the population of each species at R discrete time instants,
i.e., x= [x�1 , . . . ,x�R ]�.
Exact stochastic simulation of generic SKMs, and pred-

ator-prey models in particular, can be carried out by the
Gillespie algorithm (Gillespie 1977), which allows to draw
samples from p(xn|xn−1, c), n = 1, . . . ,R.
We consider two different observation scenarios. In the

complete observation (CO) scenario we assume that both
species x1 and x2 are observed at regular time intervals
and corrupted by Gaussian noise, i.e., yn = xn + un, where
un ∼ N (un;0, σ 2I), n = 1, . . . ,R. We denote the com-
plete vector of observations with dimension 2R × 1 as y=
[y�1 , . . . ,y�R ]�.
In the partial observation (PO) scenario only x1 is ob-

served at discrete time instants and also contaminated
by Gaussian noise, i.e., yn = x1,n + un, where un ∼
N (un;0, σ 2), n = 1, . . . ,R. In the PO case, the vector of
scalar observations with dimension R × 1 is constructed as
y= [y1, . . . , yR]�.
The goal is to approximate the posterior distribution

of the log-rate parameters θ = [θ1, θ2, θ3]� (where θk =
log(ck), k = 1,2,3), with density p(θ |y) ∝ p(y|θ)p(θ),
given the prior pdf p(θ) and the likelihood p(y|θ), in the
CO and PO scenarios.

7.2 NPMC algorithm for SKMs

In this particular problem, the observations y are related to
the parameters θ through the random vector x. Indeed, the
likelihood of θ has the form

p(y|θ) =
∫

p(y|x)p(x|θ)dx= Ep(x|θ)

[
p(y|x)],

where p(y|x, θ) = p(y|x), since the observations are inde-
pendent of the parameter θ given the population vector x. In
practice, the likelihood term p(y|θ) cannot be evaluated ex-
actly. A set of likelihood-free techniques have been recently
proposed to tackle this kind of problems, which avoid the
need to evaluate the likelihood function. In Golightly and
Wilkinson (2011) a powerful pMCMC (Andrieu et al. 2010)
method was proposed for the approximation of the posterior
p(θ |y) of the log-rate parameters in SKMs, which uses a
particle filte (PF) to estimate the marginal likelihood p(y|θ)

required to compute the acceptance ratio.3

3Note that this approximation becomes hard when the measurement
noise variance is very small, as the weights of the PF may degenerate.
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We propose to apply the NPMC method to the estimation
of the rate parameters in SKMs. Similarly to Golightly and
Wilkinson (2011), we resort to a PF to obtain an approxima-
tion of the likelihood p(y|θ), required, in our case, to com-
pute the TIWs. We provide details on this approximation in
Appendix F.

7.3 Simulation setup

We consider the predator-prey model of Sect. 7.1. Fol-
lowing Golightly and Wilkinson (2011), the true vec-
tor of rate parameters which we aim to estimate has
been set to c = [0.5,0.0025,0.3]�, which yields θ =
[−0.69,−5.99,−1.20]�. The initial populations and the
number of observations have been set to x0 = [100,100]�
and R = 50, respectively. The discretization period is Δ = 1
and the noise variance is σ 2 = 100 (and assumed to be
known). Independent uniform priors U(θk;−7,2) are taken
for each θk = log(ck), and independent Poisson priors
p(xl,0) = P(xl,0;λl) are considered for the initial popula-
tions xl,0, with parameters set to the true values, that is,
λl = xl,0, l = 1,2.
The number of particles of the PF used to compute the

likelihood approximation p̂(y|θ (i)) has been set to J = 100.
Increasing J improves the performance only slightly, and at
the expense of a significan increase of the computational
cost (this is coherent with the results, e.g., in Wilkinson
2011b; Golightly andWilkinson 2011, where the same value
of J is selected).
Despite the low dimension of this problem (K = 3), the

IWs of the PMC scheme present severe degeneracy, partly
due to the likelihood approximation, which introduces addi-
tional variations to the IWs. Thus, the original PMC scheme
without nonlinear transformations of the IWs does not work
in this scenario. The NPMC scheme with tempering also
performs poorly compared to the method with clipping.
Given the extreme variations of the IWs, it is not straight-
forward to select a priori a tempering sequence γ� which
provides a sufficien ESS at all iterations. For this reason,
we have focused on the NPMC scheme with clipping, which
computes TIWs at all iterations and guarantees a baseline
ESS.

7.4 Results

We have performed P = 100 independent simulation runs
of the NPMC with clipping in the CO and the PO scenarios,
with the same initial populations x0 and different (indepen-
dent) population and observation vectors. Both in the CO
and the PO cases, the same true population trajectories were
used, i.e., only the observations differ. The number of itera-
tions has been set to L = 10, the number of samples per iter-
ation isM = 103 and the clipping parameter isMT = 100.

In the CO scenario, 5 simulation runs ended with a nu-
merical error or with a fina NESS value close to MT /M ,
and were repeated, for the same observation vectors, with
M = 2000 and MT = 200. Numerical errors may occur
when very few samples θ

(i)
� attain a significan likelihood,

specially at the firs iteration. The NESS allows to detect
whether the algorithm converges properly, when its value
increases along the iterations beyond MT /M . Thus, the av-
erage number of samples per iteration required in the CO
case was M = 1050. On the contrary, in the PO case all the
simulation runs ended satisfactorily withM = 1000.
In Fig. 3 (left) the fina values of the MSE (MSEL,k) av-

eraged over the parameters θk , k = 1,2,3, versus the fina
NESS M̄

neff
L obtained at each simulation run are depicted,

in the CO (green circles) and the PO (blue squares) scenar-
ios, together with the histogram of each variable. It can be
observed that in the CO scenario a lower MSE is attained
compared to the PO scenario, given the larger amount of
data available. However, the NESS is also lower in the firs
case, which indicates more degeneracy of the IWs, again
due to the larger amount of data. The required number of
samples is larger in this case, being more computationally
demanding and more sensitive to numerical issues. The big
circle and square represent two particular simulation runs
which attained a fina MSE close to the global average value
in the CO and PO scenarios, respectively.
Figure 3 (right) depicts the fina estimate of the marginal

posteriors p(θk|y) for the simulation runs represented as a
big circle (CO) and square (PO) in Fig. 3 (left). We have
built a Gaussian approximation of the marginal posteriors,
namely p̂(θk|y) = N (θk;μk,σ

2
k ), where μk and σk are the

k-th mean and standard deviation components of μL+1 and
ΣL+1, computed as in Eqs. (3) and (4), respectively. It can
be observed that the proposed algorithm successfully identi-
fie the log-rate parameters both in the CO and the PO sce-
narios, and is robust to degeneracy problems that arise due
to a large number of observations (specially in the CO case)
and due to the approximation of the likelihood.
Table 6 shows the μk and σk parameters, k = 1,2,3,

and the MSE, for the average simulation runs represented
in Fig. 3 (left), and whose estimates p̂(θk|y) are depicted in
Fig. 3 (right), in both scenarios.
Figure 4 (left) shows the evolution of the average NESS

in the CO (green lines) and PO (blue lines) case. Both
the NESS computed with standard IWs (Mneff

� ) and TIWs
(M̄neff

� ) are represented, with dashed and solid lines, re-
spectively. Both M

neff
� and M̄

neff
� increase beyond the ef-

fect of the clipping procedure, which indicates that the algo-
rithm is able to generate more representative samples as it
converges. Figure 4 (right) shows the evolution of the aver-
age MSE in the CO and PO case. The value of the MSE at
� = 0 corresponds to the MSE obtained from the prior pdf.
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It can be seen that the MSE smoothly decreases up to a low
fina value, in just a few iterations.
The results presented here for the CO scenario can be

compared, with some caution, to those obtained in Golightly
and Wilkinson (2011) with a pMCMC scheme. The simu-
lation setup is very similar, but the synthetic datasets em-
ployed here (P = 100 independent realizations of y) and
in Golightly and Wilkinson (2011) are different, as well as
the prior describing the initial populations. Our simulations
show that nearly equivalent results can been attained with
the NPMC method, which involves a considerably lower
computational cost. Note that the effort demanded to process
one NPMC sample θ

(i)
� is approximately equivalent to that

of a single pMCMC iteration. In Golightly and Wilkinson
(2011) 5× 105 pMCMC iterations were run to compute so-
lutions for this problem, while the NPMC scheme has only
required 104 samples overall (taking into account all the it-
erations), reducing the computational cost by a factor of 50
for a similar performance.

8 Summary

We have addressed the problem of approximating posterior
probability distributions by means of random samples. A re-
cently proposed approach to tackle this problem is the pop-
ulation Monte Carlo method, that consists in iteratively ap-
proximating a target distribution via an IS scheme. The main
limitation of this algorithm is that is presents severe degen-
eracy of the IWs as the dimension of the model, K , and/or
the number of observations, N , increase. This leads to a
highly varying number of effective samples and inaccurate
estimates, unless the number of samples is extremely high
(which makes the method computationally prohibitive).
We propose to apply a simple procedure in order to

guarantee a prescribed ESS and a smooth and robust con-
vergence. It consists in applying nonlinear transformations
to the standard IWs in order to reduce their fluctuation
and thus avoid degeneracy. It is straightforward to incorpo-
rate the new weight computation scheme into any existing
method based on IS. It is possible, for example, to use TIWs
within the SMC samplers of Del Moral et al. (2006), lead-
ing to a complete family of algorithms, of which the NPMC
method introduced in the present paper would be just an in-
stance.
In order to illustrate the application of the proposed tech-

nique, we have applied it to two examples of different com-
plexity. The firs example is a simple GMM, which allows to
get insight of the performance of the standard PMC scheme,
the degeneracy problem and the behavior of the proposed al-
gorithm. We have provided extensive simulation results that
show how the proposed NPMC scheme can greatly improve
the performance of the standard method.

Additionally, we have tackled the problem of estimating
the set of constant (and random) rate parameters of a SKM.
Even for the relatively simple predator-prey model that we
have studied, this is significantl more complex than the
GMM example. The NPMC method yields satisfactory re-
sults also in this scenario.
The Matlab code used to generate the presented simu-

lation results is publicly available at http://www.tsc.uc3m.
es/~jmiguez/npmc.zip.
The convergence of standard PMC algorithms is often

justifie by the asymptotic convergence of IS (with respect
to the number of samples). The NPMC scheme modifie the
IWs and, hence, the standard theory of IS cannot be applied
directly. To address this difficult , we have analyzed the con-
vergence of the approximations of integrals computed using
clipped TIWs and proved that they converge a.s., similar to
the results available for standard IS. We have also quantifie
the distortion introduced when using tempered TIWs.

Appendix A: Connection with SMC samplers

The description of the SMC sampling methodology is
adapted from Del Moral et al. (2006). The goal is to approx-
imate a sequence of probability distributions with densities
π�(θ), � = 1, . . . ,L. In order to be able to use a sequential
importance sampling (SIS) algorithm for this purpose, let us
defin the artificia joint target density

α�(θ1:�) = π�(θ�)

�−1∏

r=1
br(θ r |θ r+1), (16)

where br(θ r |θ r+1) is the density of an arbitrary backward
kernel. By construction, the joint pdf in (16) has π�(θ�) as a
marginal, i.e.,

∫
· · ·

∫
π�(θ�)

�−1∏

r=1
br(θ r |θ r+1)dθ�−1 · · ·dθ1 = π�(θ�).

If we choose a sequence of forward kernels with densities
f1(θ1), fr(θ r |θ r−1), r = 2, . . . ,L, it is possible to run a
standard SIS algorithm (Doucet et al. 2000) to approximate
the measure α�(θ1:�)dθ1:� (and its marginals). In particular,
a simple algorithm would proceed as follows:

– Initialization: draw θ
(i)
1 from f1(θ1), i = 1, . . . ,M , and

set the initial (normalized) IWs as w
(i)
1 ∝ π1(θ

(i)
1 )/

f1(θ
(i)
1 ). Resample to obtain an unweighted set {θ̃ (i)

1 }Mi=1.
– Sequential step: at the �-th iteration,
– draw θ

(i)
� from f�(θ�|θ̃ (i)

�−1), i = 1, . . . ,M ;
– compute (unnormalized) weights

w
(i)∗
� = π�(θ

(i)
� )b�−1(θ̃

(i)

�−1|θ (i)
� )

π�−1(θ̃
(i)

�−1)f�(θ
(i)
� |θ̃ (i)

�−1)
, (17)
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– and resample according to the normalized weights

w
(i)
� = w

(i)∗
�∑M

j=1w
(j)∗
�

to obtain the set {θ̃ (i)

� }Mi=1.

In Del Moral et al. (2006) resampling is performed only
when the ESS falls below some threshold, but this is not rel-
evant for our discussion (hence we assume that resampling
is performed at every sequential step). After the �-th step,
the measure πM

� (dθ�) = 1
M

∑M
i=1 δ

θ̃
(i)

�

(dθ�) is an approxi-
mation of π�(θ�)dθ� (Del Moral et al. 2006).
We address the question of whether a NPMC algorithm

with tempering can be obtained as a particular case of the
SMC sampler above by a proper choice of the backward
and forward kernels. The answer is partially positive. In-
deed, consider the generic weight function in Eq. (17). If we
select a sequence of exponents 0< γ1 < γ2 < · · · < γL = 1
and defin π�(θ�) = π(θ�)

γ� , then we can equate

IW≡ π(θ�)
γ�b�−1(θ�−1|θ�)

π(θ�−1)γ�−1f�(θ�|θ�−1)
= π(θ�)

γ�

f�(θ�|θ�−1)γ�
≡ TIW,

and solve for the backward kernel density, namely

b�−1(θ�−1|θ�) ∝ π(θ�−1)γ�−1f�(θ�|θ�−1)1−γ� . (18)

However, it is not possible to make Eq. (18) hold for any pro-
posal scheme and, in particular, it cannot hold for the type
of proposals introduced in Sect. 4.1. To be precise, the back-
ward kernel density b�(θ�−1|θ�) can be chosen as in Eq. (18)
if the i-th sample in the �-th iteration is drawn conditional on
i-th sample from the iteration � − 1. This is the usual case,
e.g., in particle filterin applications where the variables of
interest are dynamic and a forward kernel density is actu-
ally part of the model. Note that f� plays the role of the pro-
posal density q� in Sect. 4. If f�(θ�|θ�−1) = f�(θ�) = q�(θ�)

is designed simply from the statistics of the population
{θ̃ (i)

�−1}Mi=1, then the backward kernel becomes independent
of the forward kernel, i.e.,

b�−1(θ�−1|θ�) ∝ π(θ�−1)γ�−1q�(θ�)
1−γ� ∝ π(θ�−1)γ�−1

and the weight function of the NPMC algorithm with tem-
pering cannot be reproduced.
Very often, in the PMC framework q� is selected by

matching the empirical moments of the population {θ̃ (i)

�−1}Mi=1,
and this is actually the case in Sect. 4, where q�(θ�) is Gaus-
sian with mean μ� = 1

M

∑M
i=1 θ̃

(i)

�−1 and covariance matrix
Σ� = 1

M

∑M
i=1(θ̃

(i)

�−1 − μ�)(θ̃
(i)

�−1 − μ�)
�.

Appendix B: Proof of Lemma 1

As a firs step, we seek a tractable upper bound for the dif-
ference

∣
∣
(
f, π̄M

) − (
f, π̌M

)∣
∣ =

∣
∣
∣
∣
∣

M∑

i=1
f

(
θ (i)

)(
w̄(i) − w̌(i)

)
∣
∣
∣
∣
∣
, (19)

where

w̄(i) = (ϕM ◦ g)(θ (i))
∑M

j=1(ϕM ◦ g)(θ (j))
,

w̌(i) = (ϕM ◦ g)(θ (i))
∑M

j=1 g(θ (j))

(20)

and (ϕM ◦g)(θ) = ϕM(g(θ)) denotes the composition of the
functions ϕM and g. Moreover, the constants in the denomi-
nators of the weights can be written as integrals with respect
to the random measure

qM(dθ) = 1
M

M∑

j=1
δθ (j) (dθ), (21)

namely,

M∑

j=1

(
ϕM ◦ g

)(
θ (j)

) = M
(
ϕM ◦ g,qM

)
(22)

and

M∑

j=1
g
(
θ (j)

) = M
(
g,qM

)
. (23)

Substituting (20), (22) and (23), into (19) yields, after
straightforward manipulations,
∣
∣
(
f, π̄M

) − (
f, π̌M

)∣
∣

=
∣
∣
∣
∣
∣
1
M

M∑

i=1
f

(
θ (i)

)(
ϕM ◦ g

)(
θ (i)

)

× (g, qM) − (ϕM ◦ g,qM)

(ϕM ◦ g,qM)(g, qM)

∣
∣
∣
∣
∣
. (24)

A useful upper bound for the difference of integrals follows
quite easily from (24). In particular, note that |f (θ (i))(ϕM ◦
g)| ≤ ‖f ‖∞‖g‖∞, since f,g ∈ B(RK) and ϕM ◦ g ≤
g, while the latter inequality also implies that (ϕM ◦
g,qM)(g, qM) ≥ (ϕM ◦ g,qM)2. Also note that, from the
definitio of ϕM ,
∣
∣
(
g,qM

) − (
ϕM ◦ g,qM

)∣
∣
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≤ 1
M

MT∑

k=1

∣
∣g

(
θ (ik)

) − (
ϕM ◦ g

)(
θ (ik)

)∣
∣

≤ 2MT ‖g‖∞
M

. (25)

As a result, we obtain

∣
∣
(
f, π̄M

) − (
f, π̌M

)∣
∣ ≤ 2‖f ‖∞‖g‖2∞MT

M(ϕM ◦ g,qM)2
. (26)

Let c1 > 0 be some arbitrary real constant. From (26),

P

{
∣
∣(f, π̄M

) − (
f, π̌M

)∣∣ ≤ MT

M
c1

}

≥ P

{
2‖f ‖∞‖g‖2∞MT

M(ϕM ◦ g,qM)2
≤ MT

M
c1

}

. (27)

If we choose

c1 = 2‖f ‖∞‖g‖2∞
( 1

a
− 1√

2

)2
(g, q)2

, (28)

where 1< a <
√
2 and (g, q) ∝ ∫

π(θ)dθ > 0, then substi-
tuting (28) into the right hand side of (27) yields

P

{
2‖f ‖∞‖g‖2∞MT

M(ϕM ◦ g,qM)2
≤ MT

M
c1

}

= P

{
(
ϕM ◦ g,qM

)2 ≥
(
1
a

− 1√
2

)2
(g, q)2

}

= P

{
(
ϕM ◦ g,qM

) − 1
a
(g, q) ≥ − 1√

2
(g, q)

}

= P

{

M
(
ϕM ◦ g,qM

) − M

a
(g,q) ≥ − M√

2
(g, q)

}

, (29)

where the second equality holds because 1
a

− 1√
2

> 0.
Next, consider the expectations Eq [(g, qM)] = (g, q)

and Eq [(ϕM ◦ g,qM)]. Since, |(ϕM ◦ g,qM) − (g, qM)| ≤
2MT ‖g‖∞/M (see Eq. (25)), it follows that
∣
∣Eq

[(
ϕM ◦ g,qM

)] − Eq

[(
g,qM

)]∣
∣

≤ Eq

[∣∣(ϕM ◦ g,qM
) − (

g,qM
)∣∣] ≤ 2MT ‖g‖∞

M
.

Therefore, since we have assumed that limM→∞ MT

M
= 0,

there existsMa such that, for allM > Ma ,

Eq

[(
ϕM ◦ g,qM

)]
>
1
a
Eq

[(
g,qM

)] = 1
a
(g, q), (30)

and combining Eq. (29) with the inequality (30) we obtain
that

P

{
2‖f ‖∞‖g‖2∞MT

M(ϕM ◦ g,qM)2
≤ MT

M
c1

}

≥ P

{

M
(
ϕM ◦ g,qM

) − MEq

[(
ϕM ◦ g,qM

)]

≥ − M√
2
(g, q)

}

. (31)

SinceM(ϕM ◦g,qM) = ∑M
i=1 ϕM(g(θ (i))) is the sum of

M independent and bounded random variables, each of them
taking values within the interval (0,‖g‖∞), it is straightfor-
ward to apply Hoeffding’s tail inequality (Hoeffding 1963)
(see also, e.g., Boucheron et al. 2004) to obtain a lower
bound on (31), namely

P

{

M
(
ϕM ◦ g,qM

) − MEq

[(
ϕM ◦ g,qM

)] ≥ − M√
2
(g, q)

}

≥ 1− exp
{

− (g, q)2

‖g‖2∞
M

}

. (32)

Substituting (32) back into (31), (29) and (27) yields the
desired result,

P

{
∣
∣
(
f, π̄M

) − (
f, π̌M

)∣
∣ ≤ MT

M
c1

}

≥ 1− exp{−c′
1M

}
,

with c′
1 = (g,q)2

‖g‖2∞ . �

Appendix C: Proof of Lemma 2

The argument is similar to that of the proof of Lemma 1. Re-
calling Eqs. (20), (21) and (23) in Appendix B as well as the
form of the standard normalized weights, w(i) = g(θ (i))

M(g,qM)
, it

is straightforward to show that
∣
∣(f, π̌M

) − (
f,πM

)∣∣

= 1
M(g,qM)

∣
∣
∣
∣
∣

MT∑

k=1
f

(
θ (ik)

)[(
ϕM ◦ g

)(
θ (ik)

) − g
(
θ (ik)

)]
∣
∣
∣
∣
∣
,

which readily yields the upper bound

∣
∣
(
f, π̌M

) − (
f,πM

)∣
∣ ≤ 2‖f ‖∞‖g‖∞MT

M(g,qM)
. (33)

Let c2 > 0 be some arbitrary real constant. From (33),

P

{
∣
∣
(
f, π̌M

) − (
f,πM

)∣
∣ ≤ MT

M
c2

}

≥ P

{
2‖f ‖∞‖g‖∞MT

M(g,qM)
≤ MT

M
c2

}

(34)

and if we choose c2 = 2‖f ‖∞‖g‖∞
(1− 1√

2
)(g,q)

, (recall that (g, q) ∝
∫

π(θ)dθ > 0) then

P

{
2‖f ‖∞‖g‖∞MT

M(g,qM)
≤ MT

M
c2

}
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= P

{
(
g,qM

) ≥
(

1− 1√
2

)

(g, q)

}

= P

{

M
(
g,qM

) − M(g,q) ≥ − M√
2
(g, q)

}

. (35)

Since (g, q) = Eq [(g, qM)] and (g, qM) is the sum of
M independent, and bounded, random variables taking val-
ues within the interval [0,‖g‖∞] (recall that g ≥ 0), we can
readily apply Hoeffding’s tail inequality (Hoeffding 1963)
on Eq. (35) to obtain

P

{

M
(
g,qM

) − M(g,q) ≥ − M√
2
(g, q)

}

≥ 1− exp
{

− (g, q)2

‖g‖2∞
M

}

. (36)

Substituting (36) back into (35) and (34) yields the desired
result,

P

{∣
∣
(
f, π̌M

) − (
f,πM

)∣
∣ ≤ MT

M
c2

}

≥ 1− exp{−c′
2M

}
,

where c′
2 = (g,q)2

‖g‖2∞ > 0. �

Appendix D: Proof of Lemma 3

The firs part of Lemma 3 follows from the combination of
Lemmas 1 and 2. We firs note that, from Lemma 1,

P

{∣
∣(f, π̄M

) − (
f, π̌M

)∣∣ > c1
MT

M

}

< exp
{−c′

1M
}

(37)

for sufficientl largeM , while Lemma 2 implies

P

{∣
∣(f, π̌M

) − (
f,πM

)∣∣ > c2
MT

M

}

< exp
{−c′

2M
}
, (38)

where c2 = c′
2 = (g,q)2

‖g‖2∞ . Let c = c1 + c2. Then, since

∣
∣
(
f, π̄M

) − (
f,πM

)∣
∣

≤ ∣
∣(f, π̄M

) − (
f, π̌M

)∣∣ + ∣
∣(f, π̌M

) − (
f,πM

)∣∣,

we trivially obtain that

P

{
∣
∣
(
f, π̄M

) − (
f,πM

)∣
∣ > c

MT

M

}

≤ P

{
∣
∣
(
f, π̄M

) − (
f, π̌M

)∣
∣

+ ∣
∣
(
f, π̌M

) − (
f,πM

)∣
∣ > c

MT

M

}

. (39)

However, if |(f, π̄M) − (f, π̌M)| + |(f, π̌M) − (f,πM)| >

cMT

M
is true, then

∣
∣
(
f, π̄M

) − (
f, π̌M

)∣
∣ > c1

MT

M
or

∣
∣
(
f, π̌M

) − (
f,πM

)∣
∣ > c2

MT

M
,

or both jointly, are true. Therefore,

P

{
∣
∣
(
f, π̄M

) − (
f, π̌M

)∣
∣ + ∣

∣
(
f, π̌M

) − (
f,πM

)∣
∣ > c

MT

M

}

≤ P

{∣
∣
(
f, π̄M

) − (
f, π̌M

)∣
∣ > c1

MT

M

}

+ P

{∣
∣(f, π̌M

) − (
f,πM

)∣∣ > c2
MT

M

}

≤ exp{−c′
1M

} + exp{−c′
2M

}

= 2exp
{

− (g, q)2

‖g‖2∞
M

}

, (40)

for sufficientl largeM , where the second inequality follows
from (37) and (38), and the equality is due to the fact that
c′
1 = c′

2.
Combining (39) and (40) yields the firs part of Lemma 3,

with c′ = (g,q)2

‖g‖2∞ .
The second part of Lemma 3 follows from a standard

Borel-Cantelli argument. Indeed, let EM be the event in
which |(f, π̄M)− (f,πM)| > cMT

M
holds true. From the firs

part of the Lemma,

P{EM} < 2exp
{−c′M

}
,

with c′ > 0, for sufficientl large M (specificall , for all
M > Ma , withMa as in the proof of Lemma 1). Therefore,

∞∑

M=1
P{EM } ≤ Ma +

∞∑

M=Ma+1
exp

{−c′M
}

< ∞,

because Ma < ∞ and
∑∞

M=Ma+1 exp{−c′M} < ∞. As
a consequence (see, e.g., Williams 1991, Theorem 2.7),
P{lim supEM} = 0, which implies that
lim

M→∞
∣
∣
(
f, π̄M

) − (
f,πM

)∣
∣ = 0 a.s. �

Appendix E: Proof of Proposition 1

Let us introduce a new set of (unnormalized) bridge weights
of the form

w̆(i) = g(θ (i))γ

∑M
j=1 g(θ (j))

, i = 1, . . . ,M, (41)
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and the corresponding (unnormalized) measure π̆M(dθ) =∑M
i=1 w̆(i)δθ (i) (dθ). Using π̆M , the absolute difference

|(f,πM) − (f, π̄M)| can be upper bounded by way of the
triangular inequality
∣
∣
(
f,πM

) − (
f, π̄M

)∣
∣

≤ ∣
∣
(
f,πM

) − (
f, π̆M

)∣
∣ + ∣

∣
(
f, π̆M

) − (
f, π̄M

)∣
∣. (42)

In the sequel, we manipulate the two terms on the right hand
side of (42) to show that (13) holds.
From the definitio of the bridge weights in (41), we ob-

tain that

(
f,πM

) − (
f, π̆M

) =
M∑

i=1
f

(
θ (i)

)g(θ (i)) − g(θ (i))γ

∑M
j=1 g(θ (j))

=
M∑

i=1
f

(
θ (i)

)g(θ (i))(1− g(θ (i))γ−1)
∑M

j=1 g(θ (j))

= (
f

(
1− gγ−1),πM

)
, (43)

where the last equality follows trivially if we consider the
standard weight function w(i) = g(θ (i))/

∑M
j=1 g(θ (j)).

As for the second term on the right hand side of (42), the
definition of w̄(i) and w̆(i) in (12) and (41), respectively,
yield
(
f, π̆M

) − (
f, π̄M

)

=
M∑

i=1
f

(
θ (i)

)
g
(
θ (i)

)γ

×
(

1
∑M

j=1 g(θ (j))
− 1

∑M
j=1 g(θ (j))γ

)

. (44)

Some straightforward manipulations show that the differ-
ence of fractions above can be rewritten as

1
∑M

j=1 g(θ (j))
− 1

∑M
j=1 g(θ (j))γ

=
∑M

r=1 g(θ (r))(g(θ (r))γ−1 − 1)
∑M

j=1 g(θ (j))γ
∑M

k=1 g(θ (k))
= (gγ−1 − 1,πM)

∑M
j=1 g(θ (j))γ

,

(45)

where we have used, again, the definitio of the standard
weightsw(i) = g(θ (i))/

∑M
j=1 g(θ (j)). Substituting (45) into

(44), and using the definitio of TIWs given by (12), yields

(
f, π̆M

) − (
f, π̄M

) =
M∑

i=1
f

(
θ (i)

)
w̄(i)

(
gγ−1 − 1,πM

)

= (
f, π̄M

)(
gγ−1 − 1,πM

)
. (46)

Finally, substituting (46) and (43) into (42) we arrive at
∣
∣(f,πM

) − (
f, π̄M

)∣∣ ≤ ∣
∣(f

(
1− gγ−1),πM

)∣∣

+ ∣
∣(f, π̄M

)∣∣
∣
∣(gγ−1 − 1,πM

)∣∣,

and the proof concludes by simply noting that |(f, π̄M)| ≤
‖f ‖∞ and |(gγ−1 − 1,πM)| = |(1− gγ−1,πM)|.

Appendix F: Estimating the likelihood p(y|θ) via
particle filterin

In this appendix we provide details on the approximation of
the likelihood p(y|θ). In order to apply the algorithm be-
low, one should recall that the dimension of the observation
vector y varies from the CO scenario (2R × 1) to the PO
scenario (R ×1), since in the latter case the observations are
scalars, i.e., yn = yn ∈ R.
For a given vector of log-rate parameters θ , the following

standard PF (see, e.g., Doucet et al. 2001) is run.

Initialization (n = 0):
Draw a collection of J samples {x(j)

0 }Jj=1 ∼ p(x0).

Recursive step (n = 1, . . . ,R):
1. Draw {x(j)

n }Jj=1 ∼ p(xn|x(j)

n−1, θ) using the Gillespie al-
gorithm.

2. Compute normalized IWs ω
(j)∗
n = p(yn|x(j)

n ), ω
(j)
n =

ω
(j)∗
n /

∑J
l=1ω

(l)∗
n , j = 1, . . . , J .

3. Resample J times with replacement from {x(j)
n }Jj=1 ac-

cording to the weights {ω(j)
n }Jj=1.

At every time step, the predictive pdf p(yn|y1:n−1, θ) can
be approximated as

p̂(yn|y1:n−1, θ) = 1
J

J∑

j=1
p
(
yn|x(j)

n

)
,

and the full likelihood p(y|θ) can be approximated in turn
as

p̂(y|θ) =
R∏

n=1
p̂(yn|y1:n−1, θ).

See, e.g., (Maíz et al. 2012) for an analysis of the conver-
gence of this approximation.
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