Skip to main content
Log in

Posterior inference on parameters of stochastic differential equations via non-linear Gaussian filtering and adaptive MCMC

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

This article is concerned with Bayesian estimation of parameters in non-linear multivariate stochastic differential equation (SDE) models occurring, for example, in physics, engineering, and financial applications. In particular, we study the use of adaptive Markov chain Monte Carlo (AMCMC) based numerical integration methods with non-linear Kalman-type approximate Gaussian filters for parameter estimation in non-linear SDEs. We study the accuracy and computational efficiency of gradient-free sigma-point approximations (Gaussian quadratures) in the context of parameter estimation, and compare them with Taylor series and particle MCMC approximations. The results indicate that the sigma-point based Gaussian approximations lead to better approximations of the parameter posterior distribution than the Taylor series, and the accuracy of the approximations is comparable to that of the computationally significantly heavier particle MCMC approximations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aït-Sahalia, Y.: Maximum likelihood estimation of discretely sampled diffusions: a closed-form approximation approach. Econometrica 70(1), 223–262 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  • Aït-Sahalia, Y.: Closed-form expansion for multivariate diffusions. Ann. Stat. 36(2), 906–937 (2008)

    Article  MATH  Google Scholar 

  • Andrieu, C., Moulines, E.: On the ergodicity properties of some adaptive MCMC algorithms. Ann. Appl. Probab. 16(3), 1462–1505 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Andrieu, C., Thoms, J.: A tutorial on adaptive MCMC. Stat. Comput. 18(4), 343–373 (2008)

    Article  MathSciNet  Google Scholar 

  • Andrieu, C., Doucet, A., Holenstein, R.: Particle Markov chain Monte Carlo methods. J. R. Stat. Soc., Ser. B, Stat. Methodol. 72(3), 269–342 (2010)

    Article  MathSciNet  Google Scholar 

  • Arasaratnam, I., Haykin, S., Hurd, T.R.: Cubature Kalman filtering for continuous-discrete systems: theory and simulations. IEEE Trans. Signal Process. 58(10), 4977–4993 (2010)

    Article  MathSciNet  Google Scholar 

  • Archambeau, C., Opper, M.: Approximate inference for continuous-time Markov processes. In: Inference and Learning in Dynamic Models. Cambridge University Press, Cambridge (2011)

    Google Scholar 

  • Atchade, Y.F., Rosenthal, J.S.: On adaptive Markov chain Monte Carlo algorithms. Bernoulli 11(5), 815–828 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • Bar-Shalom, Y., Li, X.R., Kirubarajan, T.: Estimation with Applications to Tracking and Navigation. Wiley, New York (2001)

    Book  Google Scholar 

  • Bernardo, J.M., Smith, A.F.M.: Bayesian Theory. Wiley, New York (1994)

    Book  MATH  Google Scholar 

  • Beskos, A., Papaspiliopoulos, O., Roberts, G., Fearnhead, P.: Exact and computationally efficient likelihood-based estimation for discretely observed diffusion processes (with discussion). J. R. Stat. Soc., B 68(3), 333–382 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Beskos, A., Papaspiliopoulos, O., Roberts, G.: Monte Carlo maximum likelihood estimation for discretely observed diffusion processes. Ann. Stat. 37(1), 223–245 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  • Brandt, M., Santa-Clara, P.: Simulated likelihood estimation of diffusions with an application to exchange rate dynamics in incomplete markets. J. Financ. Econ. 63(2), 161–210 (2002)

    Article  Google Scholar 

  • Doucet, A., Pitt, M., Kohn, R.: Efficient implementation of Markov chain Monte Carlo when using an unbiased likelihood estimator (2012). arXiv:1210.1871

  • Elerian, O., Chib, S., Shephard, N.: Likelihood inference for discretely observed non-linear diffusions. Econometrica 69(4), 959–993 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  • Eraker, B.: MCMC analysis of diffusion models with application to finance. J. Bus. Econ. Stat. 19(2), 177–191 (2001)

    Article  MathSciNet  Google Scholar 

  • Ferm, L., Lötstedt, P., Hellander, A.: A hierarchy of approximations of the master equation scaled by a size parameter. J. Sci. Comput. 34(2), 127–151 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Fort, G., Moulines, E., Priouret, P.: Convergence of adaptive MCMC algorithms: ergodicity and law of large number. Tech. Rep., LTCI (2011)

  • Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B.: Bayesian Data Analysis, 2nd edn. CRC Press/Chapman & Hall, Boca Raton/London (2004)

    MATH  Google Scholar 

  • Godsill, S.J., Doucet, A., West, M.: Monte Carlo smoothing for nonlinear time series. J. Am. Stat. Assoc. 99(465), 156–168 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Golightly, A., Wilkinson, D.J.: Bayesian sequential inference for nonlinear multivariate diffusions. Stat. Comput. 16(4), 323–338 (2006)

    Article  MathSciNet  Google Scholar 

  • Golightly, A., Wilkinson, D.J.: Bayesian inference for nonlinear multivariate diffusion models observed with error. Comput. Stat. Data Anal. 52(3), 1674–1693 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  • Golightly, A., Wilkinson, D.J.: Bayesian parameter inference for stochastic biochemical network models using particle Markov chain Monte Carlo. Interface Focus 1(6), 807–820 (2011)

    Article  Google Scholar 

  • Haario, H., Saksman, E., Tamminen, J.: Adaptive proposal distribution for random walk Metropolis algorithm. Comput. Stat. 14(3), 375–395 (1999)

    Article  MATH  Google Scholar 

  • Haario, H., Saksman, E., Tamminen, J.: An adaptive Metropolis algorithm. Bernoulli 7(2), 223–242 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  • Haario, H., Laine, M., Mira, A., Saksman, E.: DRAM: efficient adaptive MCMC. Stat. Comput. 16(4), 339–354 (2006)

    Article  MathSciNet  Google Scholar 

  • Hurn, A.S., Lindsay, K.A.: Estimating the parameters of stochastic differential equations. Math. Comput. Simul. 48(4–6), 373–384 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  • Hurn, A.S., Lindsay, K.A., Martin, V.L.: On the efficacy of simulated maximum likelihood for estimating the parameters of stochastic differential equations. J. Time Ser. Anal. 24(1), 45–63 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • Hurn, A.S., Lindsay, K.A., McClelland, A.J.: A quasi-maximum likelihood method for estimating the parameters of multivariate diffusions. J. Econom. 172, 106–126 (2013)

    Article  MathSciNet  Google Scholar 

  • Ito, K., Xiong, K.: Gaussian filters for nonlinear filtering problems. IEEE Trans. Autom. Control 45(5), 910–927 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  • Jazwinski, A.H.: Stochastic Processes and Filtering Theory. Academic Press, San Diego (1970)

    MATH  Google Scholar 

  • Jeisman, J.: Estimation of the Parameters of Stochastic Differential Equations. Doctoral dissertation, Queensland University of Technology (2005)

  • Jensen, B., Poulsen, R.: Transition densities of diffusion processes: numerical comparison of approximation techniques. J. Deriv. 9(4), 18–32 (2002)

    Article  Google Scholar 

  • Jones, C.S.: A simple Bayesian method for the analysis of diffusion processes. Working paper, University of Pennsylvania (1998)

  • Julier, S.J., Uhlmann, J.K., Durrant-Whyte, H.F.: A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Trans. Autom. Control 45(3), 477–482 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  • Kandepu, R., Foss, B., Imsland, L.: Applying the unscented Kalman filter for nonlinear state estimation. J. Process Control 18(7–8), 753–768 (2008)

    Article  Google Scholar 

  • Kitagawa, G.: Non-Gaussian state-space modeling of nonstationary time series. J. Am. Stat. Assoc. 82(400), 1032–1041 (1987)

    MATH  MathSciNet  Google Scholar 

  • Kloeden, P.E., Platen, E.: Numerical Solution to Stochastic Differential Equations. Springer, Berlin (1999)

    Google Scholar 

  • Komorowski, M., Finkenstädt, B., Harper, C., Rand, D.: Bayesian inference of biochemical kinetic parameters using the linear noise approximation. BMC Bioinform. 10(1), 343 (2009)

    Article  Google Scholar 

  • Kurtz, T.G.: Solutions of ordinary differential equations as limits of pure jump Markov processes. J. Appl. Probab. 7(1), 49–58 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  • Kurtz, T.G.: Limit theorems for sequences of jump Markov processes approximating ordinary differential processes. J. Appl. Probab. 8(2), 344–356 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  • Kushner, H.J.: Approximations to optimal nonlinear filters. IEEE Trans. Autom. Control 12(5), 546–556 (1967)

    Article  Google Scholar 

  • Liang, F., Liu, C., Carroll, R.J.: Advanced Markov Chain Monte Carlo Methods: Learning from Past Samples. Wiley, Chichester (2010)

    Book  Google Scholar 

  • Liu, J.S.: Monte Carlo Strategies in Scientific Computing. Springer, Berlin (2001)

    MATH  Google Scholar 

  • Maybeck, P.: Stochastic Models, Estimation and Control vol. 2. Academic Press, San Diego (1982)

    MATH  Google Scholar 

  • Mbalawata, I.S., Särkkä, S., Haario, H.: Parameter estimation in stochastic differential equations with Markov chain Monte Carlo and non-linear Kalman filtering. Comput. Stat. 28(3), 1195–1223 (2013)

    Article  Google Scholar 

  • Øksendal, B.: Stochastic Differential Equations: An Introduction with Applications. Springer, Berlin (2003)

    Book  Google Scholar 

  • Pedersen, A.R.: A new approach to maximum likelihood estimation for stochastic differential equations based on discrete observations. Scand. J. Stat. 22(1), 55–71 (1995)

    MATH  Google Scholar 

  • Roberts, G.O., Rosenthal, J.S.: Optimal scaling for various Metropolis–Hastings algorithms. Stat. Sci. 16(4), 351–367 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  • Roberts, G.O., Rosenthal, J.S.: Coupling and ergodicity of adaptive Markov chain Monte Carlo algorithms. Applied probability 44(2), 458–475 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Roberts, G.O., Rosenthal, J.S.: Examples of adaptive MCMC. J. Comput. Graph. Stat. 18(2), 349–367 (2009)

    Article  MathSciNet  Google Scholar 

  • Ross, J.V., Pagendam, D.E., Pollett, P.K.: On parameter estimation in population models II: multi-dimensional processes and transient dynamics. Theor. Popul. Biol. 75(2), 123–132 (2009)

    Article  MATH  Google Scholar 

  • Rößler, A.: Runge-Kutta methods for Ito stochastic differential equations with scalar noise. BIT Numer. Math. 46, 97–110 (2006)

    Article  MATH  Google Scholar 

  • Särkkä, S.: Recursive Bayesian inference on stochastic differential equations. Doctoral dissertation, Helsinki University of Technology (2006)

  • Särkkä, S.: On unscented Kalman filtering for state estimation of continuous-time nonlinear systems. IEEE Trans. Autom. Control 52(9), 1631–1641 (2007)

    Article  Google Scholar 

  • Särkkä, S.: Continuous-time and continuous-discrete-time unscented Rauch-Tung-Striebel smoothers. Signal Process. 90(1), 225–235 (2010)

    Article  MATH  Google Scholar 

  • Särkkä, S., Sarmavuori, J.: Gaussian filtering and smoothing for continuous-discrete dynamic systems. Signal Process. 93, 500–510 (2013)

    Article  Google Scholar 

  • Särkkä, S., Solin, A.: On continuous-discrete cubature Kalman filtering. In: Proceedings of SYSID 2012, pp. 1210–1215 (2012)

    Google Scholar 

  • Schweppe, F.C.: Evaluation of likelihood functions for Gaussian signals. IEEE Trans. Inf. Theory 11, 61–70 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  • Singer, H.: Parameter estimation of nonlinear stochastic differential equations: simulated maximum likelihood versus extended Kalman filter and Itô-Taylor expansion. J. Comput. Graph. Stat. 11, 972–995 (2002)

    Article  Google Scholar 

  • Singer, H.: Generalized Gauss-Hermite filtering. AStA Adv. Stat. Anal. 92(2), 179–195 (2008a)

    Article  MathSciNet  Google Scholar 

  • Singer, H.: Nonlinear continuous time modeling approaches in panel research. Stat. Neerl. 62(1), 29–57 (2008b)

    MATH  Google Scholar 

  • Singer, H.: Continuous-discrete state-space modeling of panel data with nonlinear filter algorithms. AStA Adv. Stat. Anal. 95(4), 375–413 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  • Snyder, C., Bengtsson, T., Bickel, P., Anderson, J.: Obstacles to high-dimensional particle filtering. Mon. Weather Rev. 136(12), 4629–4640 (2008)

    Article  Google Scholar 

  • Sørensen, H.: Parametric inference for diffusion processes observed at discrete points in time: a survey. Int. Stat. Rev. 72(3), 337–354 (2004)

    Article  Google Scholar 

  • Socha, L.: Linearization Methods for Stochastic Dynamic Systems. Springer, Berlin (2008)

    MATH  Google Scholar 

  • Stramer, O., Bognar, M.: Bayesian inference for irreducible diffusion processes using the pseudo-marginal approach. Bayesian Anal. 6(2), 231–258 (2011)

    Article  MathSciNet  Google Scholar 

  • Stramer, O., Bognar, M., Schneider, P.: Bayesian inference for discretely sampled Markov processes with closed-form likelihood expansions. J. Financ. Econ. 8(4), 450–480 (2010)

    Google Scholar 

  • Van Kampen, N.G.: Stochastic processes in physics and chemistry, 3rd edn. Elsevier, Amsterdam (2007)

    Google Scholar 

  • Vihola, M.: Robust adaptive Metropolis algorithm with coerced acceptance rate. Stat. Comput. 22(5), 997–1008 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  • Wu, Y., Hu, D., Wu, M., Hu, X.: A numerical-integration perspective on Gaussian filters. IEEE Trans. Signal Process. 54(8), 2910–2921 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Marko Laine for his valuable help in AMCMC methods, and the anonymous referees for their suggestions for improving the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simo Särkkä.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

11222_2013_9441_MOESM1_ESM.ps

Supplementary Material for “Posterior Inference on Parameters of Stochastic Differential Equations via Non-Linear Gaussian Filtering and Adaptive MCMC” (PS 366 kB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Särkkä, S., Hartikainen, J., Mbalawata, I.S. et al. Posterior inference on parameters of stochastic differential equations via non-linear Gaussian filtering and adaptive MCMC. Stat Comput 25, 427–437 (2015). https://doi.org/10.1007/s11222-013-9441-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-013-9441-1

Keywords

Navigation