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Abstract: This paper proposes a model of interactions between twat poot
cesses, ruled by a reproduction functionwhich is considered as the intensity of
a Poisson process. In particular, we focus on the contextwfascience to detect
possible interactions in the cerebral activity associatét two neurons. To pro-
vide a mathematical answer to this specific problem of nealofists, we address
so the question of testing the nullity of the intensity We construct a multiple
testing procedure obtained by the aggregation of singls tessed on a wavelet
thresholding method. This test has good theoretical ptiggerit is possible to
guarantee the level but also the power under some assumptintits uniform sep-
aration rate over weak Besov bodies is adaptive minimaxn;Téeme simulations
are provided, showing the good practical behavior and thestmess of our testing
procedure.
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1 Introduction

In neuroscience, an important issue lies in a better uratatstg of the dynamics of cerebral activity in the
cortex. In practice it is possible to measure, in vivo andd@pecific task, the cerebral activity through the
emission of action potentials by several neurons, and thefspinterest of the neurobiologists is to understand
how these action potentials appear. During a task, the dagpof all arrival times of these action potentials
(or spikes) on a neuron forms a spike train. From this poini@iy, the spike train can be modeled by a point
process.

Several years ago it was thought that activities of differgurons during a task were independent (for
example, see Barlow][3]); this explains why in the studiles,gpike trains were usually modeled by independent
Poisson processes. Today, thanks to technological advamtgrms of recording brain activity, various studies

*Corresponding author, Tel: (+33) 1 69 15 57 79, Fax: (+33) 1%80 34


http://arxiv.org/abs/1301.5802v2

show that this belief is false (for instance, see Gerste88hdhd Lestienne [24]). Thus the recent studies consider
neuronal assemblies instead of the separate neuronatiasti¥or example, activities of pairs of neurons, that
have been recorded simultaneously, show that there exteraomenon called synchronization (for instance,
see Grammont and Riehle |14] and Getral.[16]): the presence of a spike on one of the two spike trains ca
affect the apparition of a spike, with a delay, on the secqikestrain. From a biological point of view, such

a phenomenon reflects a reality. Indeed, an action poteatigdars if the neuron is sufficiently excited. To
obtain a sufficient excitation, two strategies exist: @ittiee frequency of spikes received by a single neuron
increases, or the receiving neuron receives less spikes the same time from different neurons. This second
strategy is precisely the synchronization. From a biolaigimint of view, it is less energy consuming and the
reaction is faster. Therefore, the neurobiologists arerésted in detecting the synchronization phenomenon.
More generally, they want to detect whether or not neuron$vevindependently of each other, a dependence
being a hint of a functional connection during a task.

To mathematically answer this question, we need a modehgakito account the possible interactions
between two neurons. In neuroscience, a possible modetisitlwkes process (for example, seel [18] for
theoretical aspects and| [5,]123, 27] 28] for its introductiomeuroscience). The complete Hawkes process
being, theoretically speaking, a very complicated modelcansider a modified version which is also realistic
for the possible applications (in neuroscience, in gensmic.) and for which it is possible to carry out
computations. One possible model is the following one. Mgand.V, be two point processes with respective
intensity conditionally on the past

t
Ap ity and .t —s p. +/ h(t — u) dNp(u), (1.2)
—00

wherep, > 0, u. > 0, h : R — R with A(t) = 0 for ¢ < 0 and whereiN,, is the point measure associated with
the processV,. The parameterg,, and .. describe the spontaneous part (in the context of neurassi¢he
spontaneous apparition of spikes) and the functioeflects the influence a¥, on V.. The function)\, which
denotes the intensity conditionally on the past\of specifically means that the probability that a new point
appears oV, at timet is the combination of the spontaneous parand the vote of each point ¥, before
t through the functiorh. Moreover,N, is a homogeneous Poisson process (for instance,,_see [2P] ais a
special case of Hawkes process. The biological problemiwtoasists in knowing whetheY,, influencesN,
is equivalent to test the null hypothesig: "h = 0" against the alternativé{,: "h £ 0".

The above formulation of the intensity, is an integral form. However it is possible conditionally on
all the points ofN,, to have a vision in terms of descendants and no more in ternmenfsity conditionally
on the only past observations. Indeed, giém positive real number representing the time of record of the
neuronal activity and givem a fixed positive integer, conditionally on the event "the temof points of
N, lying in [0;T] is n", the points of the procesd), obey the same law asrasample of uniform random
variables or0; 7], denoted/1, . .., U,, and named parents. Thus, conditionally@n . .., U,, we can write
S\C(t) = fic + > iy h(t — U;). This new expression of, can be interpreted as follows. Eath gives birth
independently to a Poisson proceS$ with intensity the functioni(t — U;) with respect to the Lebesgue
measure ofR, to which is added a homogeneous Poisson prodgswith constant intensity., representing
the orphans. We consequently consider the aggregatedsgroce

N = N! whose intensity is given by the functiory,. + > _ h(t — U;) 1.2)
=0 -1

and the points of the procegé. are hamed children. With this interpretation, the goal &f pihesent paper
is to test the "influence or not" of the parents on the childséa the reproduction functioh. This second
writing contains many benefits. First, the assumption thastpport of is included inR* is not mandatory.
With respect to the first formulation, this may appear like imon difference, but in practice the impact is
considerable. Indeed, if we refer to the context of neusys®, assuming that the support/ofs in R
means that one favors a sense of interactions, nanighffects/V.. However in practice, we do not have this
information a priori. Therefore, when the test does notate}é), it means thatV,, does not seem to influence
N, but it may be because in reality itdg. that affectsV,. We must be careful that the initially proposed model
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is not symmetric in terms of neurons and that a suppoR_indoes not really allow to answer the question of
dependence. The causality is indeed represented by thth&a child appears after its parent and therefore
h has to be supported iR, . Heuristically, a consequence is the following interptieta if a parent has a
child before its own birth, it may represent that the childhis parent and the parent the real child. Looking
at both sides of the support (by consideriRg and alsoR_) makes the procedure in some sense adaptive
to the causality of parent/child roles but it does not allonvsymmetrize the test by inverting the parent/child
roles. Indeed, in our model, one parent can have severarehibut a child has at most one parent. Another
advantage of this second writing is that it allows applmagi to other disciplines such as genomics where one
studies for example the favored or avoided distances betwaterns on a strand of DNA and where it is not
always possible to know which pattern rules the other. M@ataits about this application to genomics can be
find in Sansonnet [34], where the author proposes an estimptocedure of the functiol, assumed to be well
localized, based on wavelet thesholding methods, in a werijes model to the one studied here. The interested
reader will find other estimation procedures of the funcfiain this DNA context, by using a Hawkes’ model

in Gusto and Schbath [17] and Reynaud-Bouret and Schbath [30

In this paper, giverd” a positive real number representing the recording time arehg a fixed positive
integer, we consider a-sample(U1, ..., U,) of uniform random variables of); 7' representing the parents
and we consider the model defined by [1.2) for the childrem.tff@simulation study, parents procégg); is
simulated according to a homogenous Poisson process oSityte,. Since the null hypothesigy: "h = 0"
means that conditionally on the total number of point&pfthe points of the process, are i.i.d. (independent
and identically distributed) with uniform distribution fiest rather naive approach is to perform a Kolmogorov-
Smirnov test (for instance, see [8]). But this test is not @dul, as illustrated in the section devoted to simula-
tions. The aim of this paper is then to build a more powerful aanparametric tesk,, with values in{0, 1}
of Hy: "h = 0" against the alternative{;: "h # 0", rejectingH, when®,, = 1, with prescribed probabilities
of first and second kind errors. The performance of thedgsis measured by its uniform separation rate (for
example, see [1]).

In neuroscience, parametric methods exist to detect supbndence. For instance, the Unitary Event
(UE) (seel[16]) and the Multiple Tests based on a GaussianoXppation of the UE (MTGAUE) (see [35])
methods answer partially the problem by considering cdemnces (see Section 4.4 for more details). In the
one-sample Poisson process model (that is torsay 1 and . = 0 in our model), many papers deal with
different problems of testing the simple hypothesis thablserved point process is a Poisson process with a
known intensity. We can cite for example the papers of Famli lautoyants|[[10] where the alternative is also a
Poisson process with a known intensity, Fazli [9] where tker@atives are Poisson processes with one-sided
parametric intensities or Dachian and Kutoyants [7] whaeedlternatives are self-exciting point processes
(namely, Hawkes processes). In the nonparametric frankewagster and Kutoyants [20] propose a goodness-
of-fit test where the alternatives are Poisson processésneitparametric intensities in a Sobol&( R) or a
Besov ballng(R) with 1 < ¢ < oo and known smoothness parametem hey establish its uniform separation
rate over a Sobolev or a Besov ball and show the adaptivitiiaif testing procedure in a minimax sense.

In some practical cases like the study of the expression wfonal interactions or the study of favored
or avoided distances between patterns on a strand of DNA, gmooth alternatives (Sobolev or Besov balls)
cannot be considered. Indeed, the intensity of the Poissmegs/V, in these cases may burst at a particular
position of special interest for the neuroscientist or tlwdgist. So we have to develop a testing procedure
able to distinguish a constant function (or here a null fiomtfrom a function that has some small localized
spikes. These features are not well captured by using cidsBesov spaces. Hence we focus in particular
on alternatives based on sparsity rather than on alteasabimsed on smoothness. For this, we are interested
in the computation of uniform separation rates over wealigas of Besov balls. Such alternatives have
already been considered. For instance, Fronedral.[11] propose non-asymptotic and nonparametric tests
of the homogeneity of a Poisson process that are adaptivevavieus Besov bodies simultaneously and in
particular over weak Besov bodies. Another example is Frambal.[12] which construct non-asymptotic
and nonparametric multiple tests of the equality of thensities of two independent Poisson processes, that
are adaptive in the minimax sense over a large variety obefasf alternatives based on classical and weak
Besov bodies in particular.

The testd,, proposed in this paper consists in a multiple testing proedbtained by aggregating several
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single tests based on a wavelet thresholding method as mdatet al.[11,[12] (they also consider model
selection and kernel estimation methods). Fijrst, Proposi proves that the multiple test is anlevel test
and Theoreml2 gives a condition on the alternative to ensateour multiple test has a prescribed second kind
error. This result reveals two regimes as in Sansonnét [Btleed our model presents a double asymptotic
through the numben of parents and the recording tinfe (hamely, the length of the observations interval),
which is not usual. SincéV, is a homogeneous Poisson process with constant intemsitthe numbem
of points of N, falling into [0; 7] is the realization of a Poisson random variable with parameiT’. As a
conseguence with very high probability, is proportional ton and in this case, the uniform separation rates
of the multiple test over weak Besov bodies are establislgéfheorem 8. Thus, our testing procedure is near
adaptive in the minimax sense over a class of such alteasatithe proofs of these results are essentially based
on concentration inequalities (see[26]) and on exponkeimggualities forU-statistics (see [19]). Secondly,
some simulations are carried out to validate our procedara & practical point of view, which is compared
with the classical Kolmogrov-Smirnov test, a test of hommay due to Fromonet al.[11] and a testing
procedure proposed by Tuleau-Maktal.[35], which formalized a well-known procedure in neuroscie,
namely the UE method (see Grénhal.[16]).

The paper is organized as follows. Section 2 deals with tiserg#ion of our testing procedure. Section
3 is devoted to the general results of the paper. The contibleoprobability of second kind error is ensured
by[Theorem 11 for the single testing procedures and by The@rfanthe multiple test. The uniform separation
rates of the multiple test over weak Besov bodies are praviil@heorem B. Section 4 presents the simulation
study. The proofs of our main theoretical results are finadigtponed in Section 6.

2 Description of our testing procedure

In the sequel, the support afis supposed to be compact and known. For instance, in neéenasg there is a
maximal time of synchronization (estimated to 40 ms) dudrgsk according to the neuroscientists. Without
loss of generality, we suppose now that the suppoft isfstrictly included in[—1; 1] and that we observe the
U;'s (the parents) of0; T'] and realizations of the procedé. (the children) on—1;7 + 1]. In addition, we
assume thab belongs to; (R) and . (R) and consequently, we can consider the decomposition af the
Haar basis denoted Hypy, A € A}:

h=" Brpx with /BA:/Rh(x)‘PA(x)dwv

AEA

where

and for any\ € A and anyz € R,

[ Ga—k) A= (LK)
Pa(e) = { 29/2(2x — k) if A= (j,k)withj >0

with
¢ =1y and ¢ =11,y — L.

The functionsp ande are respectively the father and the mother wavelets. Shmegdal is to detect a signal,
more precisely to detect if the functignis identically null or not, the Haar basis is suitable in oantext.
Furthermore from a practical point of view, the use of the Hzmsis yields fast algorithms, easy to implement.
Nevertheless the theoretical results of the present papebe generalized to a biorthogonal wavelet basis (see
[6] for a definition of this particular basis) as in |29,/ 31].3¥Ve precise that we can easily extend our results
to a functionh compactly supported i A; A] for any A > 0 by scaling the data byA| + 1.

By considering this wavelet decomposition fof the null hypothesis{,: "h = 0" means that all the
coefficientssy, are null and the alternative hypothegis: "h # 0" means that there exists at least one non-zero
coefficient. Sincen is strictly supported irj—1; 1], if one coefficient3 _, ;) is non-zero, then there exists at
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least one coefficiens; ;) with j > 0 which is also non-zero. Therefore, we focus only on the auefits
Bk with j > 0 and we introduce the following subsef A

F={A=(ik) €A:j>0keK;},
with K; = {k € Z: =29 < k < 27 — 1} (K, is the set of integerk such that the intersection of the support of

©x and[—1; 1] is not empty, with\ = (34, k)).
For every\ in T, the coefficients,, is estimated by

By = g(gp’\), with  G(py) = /RZ [‘PA(HC —Uy) - 2 1E7r(80,\(9€ —U))| dNc(z),
=1

n n

wherer denotes the uniform distribution df; 7] andE.(f(U)) the expectation of (U) whereU ~ = for
any measurable functiofi. These estimates, inspired by those proposed_ in [34] fomaler model, namely
with p. = 0, are unbiased:

Proposition 1. For all A = (j,k) in T, By is an unbiased estimator ;.

The proof of Proposition|1 uses the fact that for)aih I", fil @i (t) dt = 0, avoiding boundary effects (see
Section 6.1).

In order to test the null hypothesig,: "h = 0" againstH1: "h # 0", namely 'S\ € T', 8 # 0", we first
propose to test for alk € T, the null hypothesis{, against the alternative/y: "3y # 0". For each\ € T,
the associated simple test actually consists in testihg= 0" against '3y # 0" or more precisely, in testing
the absence of variation of the functiéron a small interval. Then in a second time, we will aggreghgse
simple tests to test the nullity @f on its complete support.

2.1 The single testing procedures

Let us fix somex €]0; 1] and\ € T'. We want to construct an-level test of the null hypothesidy: "h = 0"
againstiy: "B, # 0", from the observation of the parerits, . . . , U, and the realization of the Poisson process
N.. We notice first that the null hypothesis entails in parécuahats, = 0.

We introduce the testing statisfig, defined by

T = |B)].
Our single test consists in rejecting the null hypothesisnif, is too large and more precisely, when

U1,...,Un;Ne,to
T)\>q£\1 tt](a)

)

whereN. ;. is the (random) number of points of the procéésfalling into [—1; 7" + 1] and for anym € N*,

q[AUl""’U";m] () is the(1 — «)-quantile conditionally oit/y, ..., U, of

5 1| & & n—1

1), = - > [SDA(V/? —Ui) —— Er(ox(Vy — U))} , (2.1)

k=1 i=1
with (V2. ..., V,2) am-sample with uniform distribution op-1; 7'+ 1] (namely am-sample of the process.
undert,). We can easily prove that conditionally @, ...,U, and N, = m, T andevm have exactly
the same distribution undét,. Thus, the corresponding test function is defined by
q)k,a = 1T>\>q[AU1 ’’’’’ Un%Nc,tot](a)' (22)



2.2 The multiple testing procedure

Previously, testing procedures have been built based dnsagle empirical coefficienf,. We propose in
this subsection to consider a collection of empirical cogdfits instead of a single one, and to define a multiple
testing procedure by aggregating the corresponding stagte.

Let {wy, A € I'} be a collection of positive numbers such that .. e~ < 1. This set allows us to put
weights to empirical coefficients according to their index (j, k) € T'. Givena €]0; 1], we consider the test
which rejectst{y when there exists at least oien I" such that

. Ut,....Un;N. Ui,...,Un;Ne _
T)\ > qg\ 1,--Un, c,tot}(u[a 1 n c,tot}e w>\)

)

where

Ut,...,Un;Ne
u[a 1 n L,tot]

. , (2.3)
= sup {u >0:P <r)r\1a13< (T)(\]N Y qg\Uh...,Un,Nc,mt](ue—m)) >0 ‘ Up,...,Uy; N, tot) < } )
e El c,to ]
The corresponding test function is defined by
d,=1 . 4 . 2.4
« maxxer <TA _qE\Ul ~~~~~ UnaNc,tot](ugUl ~~~~~ UnuNc,tot]e—wA)> >0 ( )

We mention that, since the deis infinite countable, the number of tests to be performenfisite and this
is not a problem from a theoretical point of view. But in piegef we have to perform a finite number of single

tests and so, we will fix a maximal resolution leygland we will carry out the single tests, ,, for A = (j, k)

in I" with j < jo. The role ofuLUl’“"U”;NC’“”] is crucial in particular to guarantee the level of the midtigst

and consequently, this quantity depends on the chosen rabs@solution levelj, when we consider a finite
number of single tests.

In the next section, we study the properties of the singks ties,, defined by[(2.R) and the multiple test,
defined by[(Z.4), through their probabilities of first and@®tkind errors.

3 Main theoretical results

3.1 Probability of first kind error

We constructed our single and multiple tests in such a waythiesfirst kind error, which measures the proba-
bility that the test wrongly rejects the null hypothesideiss thany.

Proposition 2. Let a be a fixed level in0; 1[. Then the single tesk, ,, defined by[(2]2) for any € I' and

the multiple test®,, defined by[(Z}4) are of level. Furthermore,ugjl""’U";NC’“”] defined by[(Z]3) satisfies
[U17~~~7Un§Nc,tot}
Uy >«

This result shows that the tests are exactly of levelvhich is required for a test from a non-asymptotic
point of view (namelyn and7T" are not required to tend to infinity).

3.2 Probability of second kind error

The second kind error, which measures the probability theteést does not wrongly reject the null hypothesis
is not fixed by the testing procedure, unlike the first kinderiWe have to control the probability of second
kind error in such a way that it is close to 0, in order to obf@ewerful tests. The following theorem brings out
a condition which guarantees that the single tests havesanived second kind error.

We denote byP, the distribution of the aggregated procégsunder,, P, the distribution ofN. whose
intensity conditionally ort/y, . .., U, is given by the functionu. + > ", h(t — U;) for any alternativex and by
[E;, the corresponding expectation. Sirfeéelongs to; (R) and (R), we introduceR; and R, two positive
real numbers such thdt|; < R; and||h||c < Roo-



Theorem 1. Let«, 8 be fixed levels if0; 1[. Let¢ and x be positive constants depending 8nu., R; and
R. Forall A e T, let®, , be the test function defined Iy (2.2). Assume that

2 1 1 2-J
18] > \/Eg (5*?* sz”>

il Ja P iz 9-if
+,i{ In (2/c) (%JF%J}JT\F) +1n(2/a) <g+]5;2 +2an )}

(3.1)

for A = (4, k). Then,
Pp(®ra =0) < 6.

Note that the quantity: + 7 + 2;;” that appears under the square root of the first term of thé highd
side of [3:1) is of the same order as the upper bound of thanaeiof the estimate$, (see Proposition 1 of
[34]). Consequently, the right hand side [of (3.1) can be eibws a standard deviation term, since the other
terms are not asymptotically larger than the first term if \wsume that’ < n?/(Inn)?, where asymptotic
meansamin(n,T) — +oc.

means that if the coefficietit is far enough from 0, then the probability of second kind lerro
is controlled. This result gives a threshold féx from which our associated single testing procedure is able
to detect a signal and shows that its power is larger thans. Furthermore, if we consider the regim& "
proportional ton" in order to compare our result with known asymptotic ratetesting, Condition[(3]1) can
be easily obtained for instancedf > C/n by assuming tha@’ < n?/(Inn)?, with C' a positive constant.

Now we are interested in the power of the multiple testingcpdure and the following theorem gives a
condition on the alternative in order to ensure that our ipleltest has a prescribed second kind error.

For an orthonormal basigpy, A € L} of a finite dimensional subspaég, of 2(R), we denote byD;, the
dimension ofS;, (hamely the cardinal of) and byhy, the orthogonal projection df onto Sy,.

Theorem 2. Let o, 3 be fixed levels if0; 1[. Let®,, be the test function defined By (2.4). Assume that there
exists at least one finite subgebf I" such that

1 n jr . jir 1
2 2 L
lhrll5 > <C1DL + Cy );Lw)\> |:E + ﬁ:| + <C3DL + Cy );jw)\ +Cs );Lw)\) [ﬁ + 3 + a3 |

(3.2
wherej;, = max{j > 0 : (j,k) € L withk € K;} and Cy, C5, Cs, C4 and C5 are positive constants
depending ony, 3, i, R1 and R,. Then,

This theorem means that if there exists one subspacef »(R) such thath;, (the orthogonal projection
of h onto Sy) lies outside a small ball around 0, then the probabilityexfand kind error is controlled. This
result gives a threshold for the energyhgf from which our multiple testing procedure is able to detesigaal
and shows that its power is larger than- 3. Furthermore, if we consider the regimé proportional ton"
in order to compare our result with known asymptotic ratetesfing, Condition[(3]2) can be easily obtained
for example if||kL||3 > C x (D + > \cp wr+ Yorer, w3) /n by assuming thae’z < n?/(Inn)?, with
C a positive constant. Then, the separation rate betweenutlhanmd the alternative hypotheses is of order
Dy, /n, and this is typical for testing procedures based on a tbtdsty approach (for instance, sée|[L1} 12]).
Usually, nested tests (namely based on model selectiongech faster rate of separation of ordgDy, /n
(for example, see [1,2]). But these latter tests are nottagapver weak Besov bodies. Consequently, the
separation rate established [by Theorém 2 leads to sharp bppeds for the uniform separation rates over
such particular classes of alternatives and so, our meiltgdting procedure will be proved to be adaptive over
particular classes of alternatives, based on weak Besde$od
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3.3 Uniform separation rates

Given somev, 5 €]0; 1[, ana-level test®,, defined by[(2.4) has previously been built, with a probapitif
second kind error at most equalsaf Condition (3.2) is satisfied. Then, given a clasof alternativesh, it
is natural to measure the performance of the test via it®tmiteparation rate(®, Ss, 3) overS; (seel[1])
defined by

p(Py,Ss,B) =inf ¢ p>0: sup  Pp(®,=0) <S5 ;.
heSs,|[hll2>p
In order to compare our result with known asymptotic rateesfing, we consider the regim& ‘proportional
ton" in this subsection.
We introduce fot > 0, R > 0 the Besov body

B o(R)={fEaR):f= Bpr, Vi=0,> B <R27
A€A kek;

We also consider a weaker version of the above Besov bodigeddorp > 0, R’ > 0 by

W, (R') = {f €sR): f= ZﬂAcp)\, SEESPZIWAPS < R'p} )

AEA el

Whereas the spac@voo(R) constitute an ideal class to measure the regularity of tiseiple alternatives,
the space3V,, (R') constitute an ideal class to measure the sparsity of a waletemposed signal. Indeed,
if f =2 sea Bapr € Wy (R'), then the associated sequerite= (3x)xer satisfiesupcy- 61/1’\61(@) < 00,
where the sequendgs|(,) ). is the non-increasing rearrangementsof| 3|1y = [Bl2) = ... = [Bl@) = - - -
This condition gives a polynomial control of the decreasiaig of the sequendgs|, ).. The smallep is, the
sparser is the signal. There exists an embedding betwe@v RAed weak Besov balls:

B o(R) C W™y (1),

1426

where the radiug of the weak Besov ball depends érand R (more preciselyy = 4°R//220 —1). See
[21,132,[33] for more details and for extensions in a more g@reetting. So, we consider in this paper such
alternatives based on the intersection of Besov and weatvBasdies, namely sparse functions with a small
regularity, see below.
To evaluate the uniform separation rates, we choose thewfoly collection of weights{wy, A € TI'}
defined by
wy =2(In(j + 1) +In(7/V6)) + In|k;], (3.3)

for any A = (j,k) € T', where|K;| is the cardinal ofC; (here,2/*1). With this choice, the collection of
weights satisfies the condition , . e~** < 1. The following theorem gives the uniform separation raies o
8‘25700(}2) NW*, (R'), where the parametérmeasures the regularity and the paramettite sparsity.

142y

Theorem 3. Leta, § be fixed levels if0; 1[. Assume thal” is proportional ton. Let®, be the test function
defined by[(Z}4) with the weights,’s defined by[(3]3). Then, for any> 0, v > 0, R > 0, R’ > 0, if
20 > /(14 27)

:
-
0 BB W (1)) < 0 ()T

142y

with C' a positive constant depending 6y, R, R', «, 3, pie, Ry and Ro.

If § > ~, then the seBg,oo(R) NW*, (R')isreduced tcBQOO(R) (given the above embedding between

142
Besov and weak Besov balls) that onlywmeasures the reguld@ince we are interested in sparse functions
(with a small regularity), this is not the purpose here. Thenrestrain our interpretation to the case> §.
Note tha{ Theoreml3 holds for instance with= 1/4 and for ally > 0. In this casey = 1/4 corresponds
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to the small regularity mentioned previously. Consequetite main indexy, the sparsity index, governs the
rates of convergence.

Considering the regimél™ proportional ton", uniform separation rates of the tekt, given by[Theorem|3
match the minimax separation rates established by Theoreffdomontet al.[11], if 26 > /(1 + 2v) and
alsod < v/2 andv > 1/2. Consequently,_ Theorem 3 illustrates the optimality of msting procedure in
the minimax setting. Furthermore, the upper bound of unifeeparation rates of our tebt, oveng’oo(R) N

W*, (R') has already been obtained, up to a logarithmic term, for @leathresholding estimation method
142
propc;sed by Sansonngt [34] in a very similar context and maeisely, this is equal to the minimax estimation

rates of the maxisets of the thresholding estimation praee(seel[21], 29, 33] for more details). This means
that it is at least as difficult to test as to estimate over stlakses of alternatives. Note that on Sobolev or
classical Besov spaces, testing rates are usually fasteetimation rates.

4 Simulation study

The scope of this section is to study our testing procedwm fa practical point of view. Thus we con-
sider different simulated data sets on which we apply oucqulare and three other methods: the conditional
Kolmogorov-Smirnov KS) test, a test of homogeneityd] developed by Fromorst al.[11] and a Gaussian
Approximation of the Unitary Event§&SAUE) method developed by Tuleau-Makettal.[35]. Then, Sectioh 416
addresses the sensitivity to the maximal resolution lgyel

The programs related on the implementation of our testinggmure have been codeddrilab 5.2
(Scilab Enterprises S.A.S, Orsay, France) and are availgibn request. The other methods have been imple-
mented with programs and softwares previously used by ttialiauthors.

4.1 Description of the data

We create different data sets that are to a certain extefieatien of a neurobiological reality. We consider the
spike trains of two neurond/,, and N, which are modeled by two point processes with respectivelitonal
intensity \,, and \. defined by[(L1L).

For real spike trains it is not reasonable to postulate titésiarity of N, and N, i.e. 1, andy,. are constant
and considering the same functi@non the entire recording periofd; 7’| (see Grunet al.[16]). But this
assumption is quite feasible on smaller time ranges (sem@cat and Riehle [14] and Griin [15]). However,
to date, we have no algorithmic and statistical tool to ¢jeigentify the stationarity ranges. Several methods
(UE and MTGAUE, see [35] for example) propose to perform mi@sys on different small windows of time
and to use a multiple testing procedure (for instance, se@Bgni and Hochberg [4]) to combine them. Hence
those methods can solve, at least in practice, this statiprmmoblem. The aim of this simulation study is not
to show how our testing procedure can be incorporated in gaBeni and Hochberg's approach, which lies
outside the scope of the present paper, but to discuss thetage of our method on one small window of time.
This explains the use of the simulated data described below.

We need therefore to simulate dependence betwéegand N, on [0; 7], with T = 2 s, and to take into
account the major part of the neurobiological reality. Se,simulate processes, and.V. whose intensities
are respectively given by

t
A, =50 and X, =50 +/ h(t — u) AN, (u). (4.1)

— 00

At this stage, we can estimate the level of different proceslwithi = 0 and in order to evaluate the powers of
different procedures, several alternatives are tested fif$t chosen alternative consists in intensities (Echelon
functions) motivated by the context of neuroscience. Tlosmsities are defined by

Echelon functions hg,, = 01,001,

with 6 € {10,30,50,80} andv € {0,0.005}. The parametef represents the influence strengthgf on N:
the larger the parametéris, the higher the influence d¥,, on N, is. The parameter introduces a possible
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minimal delay in the synchronization, i.e.the synchrotiraof the neuronal activity occurs with a delay
uniform on[v;0.01]. To study the robustness of our procedure facing the othéhnads, we consider three
other intensities (Crenel, Bell and Bumps) defined by

Crenel function  hgyena () = 120 (1(0;0.003) () + 1(0.006;0.000] ().
Bell function hpen(@) = 72 x exp (—4 x (S5399) x (1~ (£55902)") 1)1y 9(a)

. i\ "4\ 150
Bumps function hpumps(z) = 110,001 (%) + 3 <Zj gj (1 + |$w§”|) > [0’00?;(’”’,

where the vectorg = (g;);, p = (pj); andw = (w;); are defined for example page 188 lof[[11]. These

alternatives are represented in Figure 1.
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Figure 1: Graphs of alternatives: on GrapA the Echelon functions withsg o in solid line andhs o.005 in dashed
line, on GraphB the Crenel functiothcyener, 0N GraphC the Bell functionh g.;; and on GraphD the Bumps function

hBumps .

We mention that, with these different simulated data se¢shawe in average 100 points for the proca$s
(the number of parents) and the average number of pointegirbcessV, (the children) is given by Tablg 1
according to the different simulations.
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Functionh | Average number of childrefy Functionh | Average number of children
h10,0 111 h10,0.005 104
h30,0 130 h30,0.005 115
hs50,0 150 hs0,0.005 125
hgo,o 180 hg0,0.005 140
h=0 100 heorenel 131
hBell 130 h Bumps 151

Table 1:Average numbers of children according to the choice of thermtive

4.2 The Kolmogorov-Smirnov test and a test of homogeneity

A first naive approach is to perform the classical Kolmoge®mirnov test (see Darlin@|[8]) to convince us that
this commonly used test is not reliable in this context. djeeven if theKS test is not a test of independence,
the KS test may provide an answer to the problem. Since as saidehefioder#, and conditionally on
Ui,...,U, and N ;. = m, the observations aN, are i.i.d. with common law the uniform distribution on
[—1;T + 1], looking for the adequation a¥. with this law could be an idea to detect the rejectiortpf So,
the use of th&S test is relevant.

In the same spirit, we can also compare our procedure to atiagldest of homogeneity based on model
selection, proposed by Fromagttal.[11] which has been shown to be more powerful thke&(see [11]). This
one tests the null hypothesid_'is a constant function on its support (typically 1])" against the alternative
hypothesis X. is not a constant function". Thid test consists in the aggregation of single tests as in our
procedure, based on an estimation of the squardidtance between the target functidp and the set of
constant functions. For a sake of clarity, we briefly give mmary of thisH test. Let{X;,l = 1,...,m}
be the points of the procesm’c, J > 1 andS; the subspaces generated by the sub&ét®,, A\ € A},
with Ay = {(4,k),7 € {0,.. —1}, k € {0,...,27 — 1}}. Focusing on one moded;, they introduce
T; = erA T\, whereT, = C X Zlﬂ, 1 @A(Xl)gpA(Xl/) with C' an absolute positive constant and then
they consider the following test statisti@s, = sup;c (7 — ¢7'(u,)), whereJ is a finite subset oN*,

g (u7,) is the(l — w7} )-quantile of the distribution of’;| Nt = m andu’}, is defined as in [11]. Finally,
the corresponding test functionds, = 17, ~¢.

4.3 The GAUE method adapted to our context

Before comparing the methods, we briefly return to the ppiecdf theGAUE method. The aim of th6&6 AUE
method is to detect the dependence on a single wirldoW]. This method is based on the coincidences with
delay. More precisely for the couple of proces&®s, N.), we compute the number of coincidences with delay
d on[0;T1], i.e.the variableX = f[ 772 Lo—yl<s AN »(2) dN.(y), that represents the number of paitsy)
in N, x N, such thatz — y| < 6. This tuning paramete’i varies on a regular grid df.001;0.04] with a
step 0.001. Let us defing, = N, ([0; T])/T and\. = N.([0;T])/T whereN, ([0 T]) andN.([0; T']) denote
respectively the number of spikes &, and N. among|[0; 7]. The quantltles\ and )\, are estimators oj\
and)..

We reject the null hypothesi®o: "h = 0" when X7 > 1hg + Guy_ /0, Wherermg = AAc(2T6 — §2),
6% = MpAe(2T6 — 62) + MAe <5\p + 5\(;) (26% — L6%) andu;_, is the (1 — a/2)-quantile of a standard
normal. This threshold comes from the theory developed®h §8id is adapted to our context. The quantity
g is a plug-in estimator of the expectation &f- under#, ands? is an estimator of the variance. It can be
shown that under the assumptiorig,"and N, are Poisson processes" and,"and N, are stationary", this test
is asymptotically of levek. Further details about the meaning of those different egbins are given iri [35].

The GAUE method was developed jointly with a neurophysiologist arfits in line the UE method de-
veloped by Griin and coauthors (for example, see [15]and,[iiich is a commonly used method in neuro-
science. One of its main disadvantage is thhas to be chosen beforehand. Part of the aim of this work is to
propose a more adaptive method.
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4.4 Our procedure in practice

From a theoretical point of view, the support of the functigrdenoted— A; A], should be strictly included
in [—1;1]. Furthermore, a theoretical choice of the maximal resofutevel j, is given by the condition:
2/0 < n?/(logn*). However, in practice, a trade-off between the choicgyadnd the value ofd should be
made. For instance, if = 1.4 and if the order of magnitude of is 2= or1— 277, with J > jo + 1, our
procedure does not allow to detect locally the jump.@ft A. To compensate this problem, we could increase
the value ofjy. But, the choice ofj, is restricted by the theoretical upper bound and especiallyreater
jo leads to an increase of the computational time (due in peatido the evaluation of the quantiles which
requires many iterations). Consequently, we propose 1e fita data in order to havé close to 1/2. Since the
considered data sets have been built with a fundtisopported by—0.01; 0.01], the data are multiplied by 50
before being treated with our method.

Let us recall that our test rejectsy when there exists at least one= (j, k) in I with j < j, such that

2 U 7---7Un;Nc o U 7~~~7Un;Nc o -
T)\>q£\1 ,t t}(u[al ,t t}e ?,l))\)

wherej, > 1 denotes the maximal resolution IeveLUl"“’U";Nc""t] is defined by[(2.13) and the,’s are given
by (3.3). Hence, for each observation of the proc¥ssvhose number of points is denoted By 1, = m,
given the points ofvV,, denoted’/y, ..., U,,, we estimatmL!Ul""’U";m] and the quantile@[AUl""’U";m] by classical
Monte Carlo methods based on the simulationdg3dhdependent sequencé¥® 1 < b < B}, whereV? =
(VE,..., Vb)Y is am-sample of uniform variables da-1; T + 1] (i.e. the law of N, under,, conditionally on
Ui,...,UpandNg o = m). We fix B = 20000 in the sequel since for larger values®f the gain in precision

for the estimates og V™ andq[AUl""’U";m] becomes negligible. We define for ainy= (j, k) in T with
Jj<jo,forl <b< B:

n—1

[‘P)\(Vlgb -U;) — EW(QD)\(V;CI) — U))] ' .

50,0 3

We compute thesg,, ’s with a cascade algorithm (see Mallat [25]).

Half of the m-samples is used to estimate the quantiles by putting inndsag order théff’f;’s for any

A. The other half is used to approximate the conditional poditi@s occurring in[(2.B). ThemLUl’“"U”;m] is

obtained by dichotomy, such that the estimated conditipnatbability occurring in[(Z.13) is less than but as
close as possible to.

For the comparison of our testing procedure to the three otle¢hods, we have arbitrarily chosgn= 3.
With such a choice, our procedure considers 15 single &gtsinvolving wavelets whose support length is
respectively 0.125, 0.25, 0.5 and 1. This allows us to matextiens at the positions. x 272 (m.in {0,...,7})
with a range o272, Due to the scaling of the data in our procedure, we need idalihe positions and the
range of the possible detections by 50. Consequently, imghktime, the positions and the range become
m x 0.0025 (m in {0,...,7}) and0.0025.

45 Results

We compare our testing procedure and the other methods afifteeent simulated data sets. First, we focus
on the empirical rate of the type | error which is an approxioraof the level of the tests. Thus, we simulate
5000 independent realizations bf (4.1) with= 0, simulations on which we perform the present method and
the other ones with level = 0.05. On those data, we evaluate the empirical rate of type |.efioose results
are summarized in Tablé 2: all the testing methods seem ®dawrrect level in practice. This means that the
number of wrong rejections Gf is well controlled.

Secondly, we want to see if the number of wrong rejectiori ofs also controlled. We consider the power
of the tests which is the proportion of correct rejectiong{gf To evaluate the power of the tests, we simulate
1000 independent realizations bf (4.1) with differentralédives (Echelon, Crenel, Bell and Bumps functions).
The results of the empirical power are given by Table 3.
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our procedure GAUE H KS
0.047 0.0446/0.0510/0.0548 0.0638| 0.051

Table 2: Empirical rate of type | error associated with our procedwrd the other method<GAUE, H and KS).
The theoretical level isx = 0.05. Since theGAUE method depends on the tuning parametethe given value is the
minimum/median/maximum of the empirical rate over allthe

Alternatives| our procedure GAUE H KS
h1o,0 0.134 0.068/0.1085/0.168 0.062 | 0.040
h10,0.005 0.076 0.047/0.0575/0.077 0.074| 0.054
h30,0 0.656 0.154/0.3795/0.707 0.095| 0.051
hs30,0.005 0.341 0.050/0.1415/0.277 0.073| 0.059
hso.0 0.939 0.278/0.6645/0.953 0.179| 0.087
hs0,0.005 0.712 0.053/0.2825/0.589 0.091 | 0.053
hgo.0 0.995 0.451/0.9160/0.998 0.362| 0.113
hgo,0.005 0.975 0.048/0.4900/0.879 0.135| 0.073
herenel 0.949 0.255/0.437/0.993| 0.112 | 0.069
hBen 0.672 0.046/0.3275/0.742 0.085| 0.053
hBumps 0.948 0.139/0.701/0.967| 0.159 | 0.082

Table 3: Empirical power associated with our procedure and the ottmathods GAUE, H and KS), evaluated for
various alternatives. The theoretical levekis= 0.05. Since the&GAUE method depends on the tuning paramétethe
given value is the minimum/median/maximum of the empiratalover all the).

The power of theKS test is very low, as expected. The test of homogenditgeveloped by Fromont et
al. [11] has a higher power, but this one remains smaller tharpower of the two other methods. Thus, tests
of homogeneity are not sufficient to detect dependence axtagh

Our procedure and theAUE method are comparable in terms of power, even though thd@chenctions
he o are particularly adapted to tf@AUE method. However for the Echelon functiohg oo5, our method
seems to have better performance since the power is higheorsidering the empirical power values of Table
[3, it seems that both methods can be used to detect dependence

Moreover, if both methods are comparable in terms of perémira, it remains that the testing procedure
proposed in this paper has an advantage oveGHWEE method. In fact, our method is statistically adaptive.
Indeed, the parametérwhich appears in th6&AUE method is not calibrated in practice. In our method, we
aggregate the single tests oygrk). So on one hand, we do not need to specify this parameterdijupper
boundj,, the maximal resolution level: the method through weidgBi8); adapts to this unspecified parameter
(4, k). But on the other hand, by looking at the single talsts, that have supported the rejection, we are able
to partially recover an important information for the pifiaher: the position £277) and the range2(*/) of
the influence. In fact, by looking only at this single testipmpcedure, we get an upper value o1 and a
lower value forv on the range of delay of synchronization. To obtain more precise estimationfiefstupport
of h, we can consider an estimate/gffor example the one proposed by Sansonnet [34]. The cgpeaitur
method to get an information anis due to the fact that for a resolution levelve consider different positions
k. This is not possible with th€ AUE method. This explains why the results on the Echelon funstig ¢ o5
are better with our method.

4.6 Sensitivity to the maximal resolution levelj,

For the comparison of our testing procedure to the other odsthwe have chosen arbitrarily the maximal
resolution levelj, = 3. In this subsection, we propose to study the influence of tiwéce of this maximal
resolution levelj, on our testing procedure.
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Since mentioned before, when we consider a finite numbengfestestsu[aUl""’U”;Nc’t"d, defined byl(2.B),

depends on the chosen maximal resolution lgyelThe automatic calibration oi([lUl""’U”;NC’“’d during the
practical procedure allows to guarantee a global levidr the multiple test as it is illustrated in Talile 4. We

. . w.esUn;Ne tot] - . s » Ut,..,Un;Ne,to
mention that the callbratedlUl’ Unileot practice satisfigs Propositio Q(LUI Un;Ne,tor] > a.

o 1 2 3 4 5
Empirical rate of type || 0.0508| 0.0488| 0.047 | 0.0474| 0.0438

Table 4: Empirical rate of type | error associated with our proceduvéh different maximal resolution levejg. The
theoretical level isy = 0.05.

We are also interested in the influencejgfon the power of our tes{. Figur¢ 2 displays the behavior of
the power of our procedure according to the maximal resmiugvel j, for different alternatives. We can first
observe a stabilization of the power froijm = 3. Indeed, since the),’s defined by[(3.3) are not all identical
and allocate different weights according to the index (j, k), weights decrease when the resolution level
increases. Considering a higher maximal resolution Igyellocates a very small weight for the new tests of
the procedure. Furthermore, conforming to the real remwidevel of the function which we want to test its
nullity, we observe different behaviors for the first maximesolution levelsj, = 1 andj, = 2. For instance,
the power of our procedure associated with the Crenel fonds increasing with respect g, whereas the
power associated with the Echelon functibg  is decreasing, but always with a kind of stabilization from

Jo = 3.
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Figure 2: Empirical power associated with our procedure accordingigdor the alternativesisg o in o — o, hgo o in
A — A, herenet IN+ — 4, hpey IN X — x andhpymps iN © — o. The theoretical level i& = 0.05.

In light of this analysis of the influence of the maximal redimn level j, on our testing procedure, the
choice ofjy = 3 seems to be convenient, in order to obtain a suitable tréfdetwveen power and computation
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time (we recall that the evaluation of the quantiles recuirany iterations).

5 Conclusion

In our paper, we have investigated the influence of a pointge® on another one. We have built a multiple
testing procedure based on wavelet thresholding. The reauits of the paper have revealed the optimality of
the procedure. Furthermore, our test is adaptive in themaRrisense over classes of alternatives essentially
based on weak Besov bodies. Then, from a practical pointe,vour method answers several practical
guestions. However, a number of challenges remain befgigiag our method on real data. To overcome the
problem of stationarity, we could use a Benjamini and Hoalfbeapproach as for the GAUE method. Finally,
we could consider a more sophisticated model that takeso@ount the phenomenon of self-excitation (as for
the complete Hawkes model). But this model raises seridtisutiies from the theoretical point of view. This

is an exciting challenge.

6 Proofs

All along the proofs, we introduce some positive constastsoted byC' (¢, . . .) meaning that they may depend
on¢, .... They do not depend oi n andT (which drive the asymptotic). Furthermore, the values ek¢h
constants may vary from line to line.

We recall thaf{ ¢y, A € A} is the Haar basis and consequently, we have:

loallh =272, Jloalle =1 and [oalleo = 272,

In the case of a biorthogonal wavelet badig, |1, ||¢all2 @nd||¢a ||~ are of the same order as above, up to a
positive constant respectively depending|af|:, ||¥||2 and||¥ ||, wherew is the mother wavelet associated
with the considered biorthogonal wavelet basis. Consdtyud¢he same proofs potentially lead to the results
on a biorthogonal wavelet basis as well ag in [34] for the Wwatwbresholding estimation.

6.1 Proof of[Proposition 1

We first notice that for any in T, for anyw € [0; 71,
T+1
/ oa(t —u)dt = 0. (6.1)
—1
Let A € T be fixed. By considering the aggregated process (1.2), wevdan
G(px) = G%(or) + G(on), (6.2)
with

n

o = [ 3 [oate ~ 1)~ " Ealioate ~ )] i)

and

G(pr) = /RZ [LPA(HC -Ui) - n; 1E7r(<PA(9€ - U))} > dNi(x).
i=1 =1

On the one hand, we notice thafy, ) is the same quantity as the one defined by equation (2.2) bf T8ds,
by applying the first part of Proposition 1 of [34], we obtain

E(G(en)) = n/chA(x)h(m) dz.
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On the other hand, we have

n

G(3) = / (@ — U dNO(2) + 3 / loa(e — Us) — Ex(pa(z — U))] dNO(z).

i=2 VR
Thus,

T+1 T+1
N ARY <x—U1ucdx+Z/ (@ — U) — Ex(oa(@ — U))] poda

and by using[{6]1), we obtain

T+1
B @) =Y [ Elor— U~ Exlote — U)o d =0

Finally,

which prove§ PFoposition 1.
6.2 Proof of[Proposition 2

Let « be a fixed level in0; 1[. Let A € T be fixed. First, the probability that the single test defingd2)
wrongly detects a signal is

U7 7U7L7N(‘ o
Po(®ra = 1) = By (T3 > a0 Mo () ).

Since conditionally oy, ..., U, and N o, TA and TQNC rot have exactly the same distribution undes,
q[AUl""’U";NC’“"] («) is also the1 — a)-quantile ofTA\Ul, .., Up; Ne tor Underty. Thus,
Po(@ra=1) <a

and the level of the single testds
Then, the probability that the multiple test defined by l(2vdngly detects a signal is

PO((I)a _ 1) — P, (Iilaff (T)\ _ q[U1, Un;Ne, tot}( [OéUly...,UnQNc,tot}e—w/\)> > 0> )
S

By definition [Z3) ofulltUnilNetet]
P, (Iilalz( <T)\ . q[Ul, Un;Ne, tot]( ([XUly..qUn;Nc,tot]e*w)\)) > O‘Ul, o Un; Nc,tot) < a,
€

because conditionally ofiy, . .., U, and N, i, TA andTA0 N vor have exactly the same distribution undés.
By taking the expectation ovéfi, ..., U, andN. ., we obtain that

PQ(‘I)Q == 1) <«
and the level of the multiple test is
Furthermore, by Bonferroni's inequality we have

U7 7U7L7N(‘ o -
P(%}gff (T)\thot _qg\ 1 t t]( wk)) >O‘U1,---7Un;Nc,tot>

~0 U1,...,Un;Ne to —
S ZP <TA,NC,M - q[A ' “aemm) > O‘Ul’ w2 Uni Nc’t"t)
Ael

< Z ae” W

el
<«

and consequentlya[Ul’ Uniletord 5 by definition [2.3) ofu Ut UnilNetor] \yhich concludes the proof of

Proposition P.
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6.3 Proof of[Theorem 1

Let A € T" be fixed. Here we want to find a condition which will guarantest t
Pp(®x0 =0) < B,

givenj €]0; 1[.

Let us introducey;” 5, the (1 — 3/2)-quantile of the conditional quantil@[AUl""’U”;Nc’“’d(a). Then for
anyh,

. UtyoUniNeoto Uty UniNeoto
Ph(Pra =0) =P (TA < Q[A ! ' d(a)a Q[A ' ' d(a) < Cﬁ-ﬁ/z)

' U 7---7Un;Nc o U 7---7Un§Nc, o
+ By (T < g 0N g ) > gp )

SPu(Th < 559) +B/2
and a condition which guaranteBg (7}, < qf‘iﬁﬂ) < (/2 will be enough to ensure that
Pp(®ya = 0) < B.
The following lemma gives such a condition.
Lemma 6.1. Letq, 8 be fixed levels if0; 1[. Forany\ = (j,k) € T, if

En(T) > 4 %QTMT +47 g2 (6.3)

for a particular ¢ which is a positive constant dependingon R, and R, where

1 1 27n
Qjn1r = o + T + T3
then
Py(Th < 45 570) < B/2,
so that

Ph(®ra =0) < 6.
The proof of this lemma is postponed in Section 6.6.1.

In order to have an idea of the order of the right hand side_8J)(6ve are now interested in the control of
g9 the(1—3/2)-quantile ofq&Ul"“’U”;Nc’m](a). A sharp upper bound fa_; , is given by the following
lemma.

Lemma 6.2. Let «, 5 be fixed levels if0; 1[. For any A = (j,k) € T, there exists some positive constant
depending orf, u. and R; such that

N 1 1 2792 /n Vi g2 9mil?
qlB/zén{ ln(2/a) <%+W+T\/_>—Hn(2/a) (74- n3/2 +7”L—T .
The proof of this lemma is postponed in Section 6.6.2.
Now, observe that if Conditio_(3.1) bf Theorein 1 is satisfieahely

[2CQjn, 1 1 2732, /n N/ VeI
1B > T]T+f€{ In(2/a) <%+ﬁ+T>+ln(2/a) (7%-”3/2%- T )
then by Lemma®]2,
2CQ ;i n o
Bal > [ B gy

We notice by Jensen’s inequality thit,| = |E(5x)| < En(|8r]) = Ex(Th). Thus, Condition[(6]3) of
is satisfied and by Lemmal6.1,

Pp(®yra =0) <,

which concludes the proof 6f Theorern 1.
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6.4 Proof of[Theorem 2
[tUnilestor] 5 (sed Proposition|2) and by setting = ae™**, we have
]P)h(q)a — 0) ]P)h <v)\ c :[1 T)\ [U17 7Un Nc tot}( ([J{Ulw-wUn;Nc,tot}e—w)\))

Sinceuy,

Ph <V)\ cT T)\ [U17 SUniNe, tot}(a)\)>

< r)\ninPh (TA < qg\Ul,...,Un;Nc,tot](aA))
er

IN

I§1 n]P’h(CI))\ ay — O)
B,
as soon as there existdn I' such thatP, (@5 o, = 0) < 3.
First, let us give the precise values of the constants thagapn Condition[(3]2) 2:

N

Ch = 8(% + 3x%1In (2/a)>, Cy = 24K*, C3=12k*In%(2/a), Cy = 24k*In (2/a) andCs = 12x2,
where( andk are the constants defined respectively by Lemmi 6.1 and LeffindVe recall thal); ,,. 7 =
142 +2 J" and we denot&; ,, r = % + Jn3 + 7122752

Let us assume that there exists one finite subsetl” such that Conditior{ (312) 2 is satisfied.
Thus,

IhLll3 > 8 <<% +3k%In (2/a)>DL + 3K7 ZU}A> [% + %}

AeL

21,2 2 2 2 Jr | Jr2 1
+ (12/@ In* (2/a)Dy, + 24k° In (2/«) E wy + 12k g w>\> [ﬁ + + —] .

n3 n2T?
el AeL
Sinceln (2/a) + wy = In (2/ay),

ZﬁA>Z{ ( 1 3k2 ln(2/o¢)\)> [1+T2] 1267 12 (2/ ) [%gﬁff +#H

AEL AEL
and it implies that there exists one coefficient (j, k) in I" such that

- 2 ¥
2 ¢ 2 1 21,2 J | JY 1
Seeing that); ,r < 2 [% + 7] andR; , 7 < |:n2 + Jn3 + n2T2} we have:
,8)\ > 42623‘7”77“ + 12k% In (2/0&)\)@]‘7”77“ + 122 In? (Q/QA)Rj,n,T-

Since(va + Vb + /¢)? < 3(a + b+ ¢) for all a, b, ¢ nonnegative real numbers,

, 2 N2
¢ 2 1 1 279”yn 212 \/3 j2/2 27
BQM,T*"M In (2/cu) %+ﬁ+T +4r7In" (2/ay) T T T

and then,

82 > (1 /Q_BCQ]%T + m{ In (2/0@(% + % + 2“#) +1In (2/a )<\7/3 + 323]//22 + Qn]T/z) }>

Finally, it is equivalent to

N iz 9=i/2
|Bx] > \/ %Qj,n,T‘FK{ In(2/ay) (7 + % 2 T\/_> +1n(2/ay) (i + 323/2 + 2nT )},

which is exactly Conditior {311) 6f Thearem 1 and we concltiaeproof of Theoremli2 by applyiig Theorein 1.

B >4
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6.5 Proof offTheorem 3

With T proportional ton, Condition [3.2) of Theorem] 2 is satisfied if there exists finige subsetZ of I" such
that

1 jr | Ji2r
hl|2 > ||h=hl|2+C e, R1, Roo (D E >— <D E E 2) — L
H HQ H LH2 (Oé?ﬂnu'v 1, ){ L+>\€Lw)\ n+ L+)\€Lw)\+)\€Lw)\ n2+ ng )

with j;, = max{j > 0: (j,k) € L}, > ,cpwr < C x (jp + 1)Dp andy", ., w3 < C x (ji + 1)2Dy.
Consequently, Conditiof (3.2) is satisfied if there exists finite subseL of I" such that

i, + 1
112 > [1h = hol3+ Cla B e, R, Rog) YT

Dy, (6.4)

with the maximal resolution level, such tha2’/z < n?/(Inn)*.
Let J > 1 that will be chosen later. We consider the following finitdsetI” ; of I'

T;={A=(ik)eT:0<j<Jkek;}

We introduce for all integeD < |I';| the subset. of T'; such that{5,,\ € L} is the set of theD largest
coefficients amondgy, A € I';}. We can notice that

lh = helf3 = lIh = hr, |13 + e, = hel3.

On the one hand, singebelongs toBgm(R),
lh=hr, |3 =" > Bl < COR?27.
3>J kEK;

On the other hand, using equivalent definitions of weak Bésdig given by Lemma 2.2 of [21] and using for
instance page 211 of [11], we obtain:

lhe, = hel3 < C(R™ZTD™,

sinceh belongs toV* , (R'), with R” an absolute positive constant depending eventually and R’
142y

Taking
J = |log, (n)] +1

for somel < ¢ < 2, we obtain that the right hand side bf (6.4) is upper bounded b

Dl
C((S”Y’R7 RlvavﬁvulevRoo) <n_2€6 + D_Q’y + 2 nn) .

n

Taking D = |(n/Inn)Y/(+2) | ande > ~/(5(1 + 2v)), we obtain that the right hand side B (6.4) is upper
bounded by

-2
n 0l

C((;’ry’ R’ R/’ «, ﬁa Hes Rl; Roo) <—> o

Inn

when2§ > /(1 4 2v) and so,

it
P(®a, BS oo (R) W2 (R'),8) < C(6,7, R, R, B, te, R, Roo) (i) .

T2y Inn

which concludes the proof 6f Theorern 3.
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6.6 Proof of lemmas
6.6.1 Proof of Lemma 6.1

Let A € T be fixed. From Markov's inequality, we have that for any 0,

B ([T~ Eu(D)| > ¢) < Var(Th) (6.5)

2

Let us controlVar(Ty) = E,(T3) — E2(Ty). We easily obtain by Jensen’s inequality and by considettieg
decomposition[{612) of () ):

with

by applying the second part of Proposition 1[0fI[34]. It rensaio computéVar(G®(y,)). For this purpose,
we apply the same methodology developed in Section 6.1243f We have the following decomposition of
Var(G°(,)) into two terms:

Var(G°(¢y)) = E(Var(G?(ox)|Ut, - .., Up)) + Var(E(G(ox)|Ud, . .., Uyp)). (6.6)
We start by dealing with the first term i (6.6). We have

Var(GO(gpA)]Ul,...,Un)
T+1 (1 n—1 ?
= / <Z {%\(90 = Ui) = ——Ex(paz - U))D fre dzx
i=1

-1

T+1 n 2

= Mc/ (@A(ﬂﬂ —U)+ Y lea(@ = Us) — Er(oa(w — U))]) da

-1 =2
T+1 T+1 n

e [ Aa-Udre [ o U)Y leale - U) ~ Ealpa(o V) da

-1 i=2

T+1 n_ 7

fiie [ oo — ) ~ Enloae — U] [eata = U) — Eaipa (o — 0)]
- =2 k=2

since[","! @3 (x — U1) dz = [|pa |3,

T4+1 7
E(Var(G%(ox)|U1, ..., Un)) = pclloall +Mc/ ZE [pa(z — Us) — Ex(pa(z — U))]2> dx
) T+1
— pelleall + (0~ D / Var (pa(e ~ U) da
-1

RSP

< Hellealla + (= Dpe(T +2) =

< C(pe)n, (6.7)

by using [6.1) and Lemma 6.1 of [34].
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Now, we deal with the second term 6f (6.6). We have

T+1 n T+1
Bl Un) = [ eala = Unedz+ Y [ foale = Vi) = Enlion(o — U)] o da
-1 i=2 71

n

T+1
—u> [  loale = V)~ Bxlpa(a = V)] da,
1=2

by using [6.11). Therefore,

T+1
Var(E(G° (o) |U1, . .., Uyn)) = pVar (Z/ [or(@ = Uy) — Ex(or(z — U))] dx)

—2n = 1)var | T lora — U2~ Ex(pr(a— 1)) iz )

-1

< p(n— DE [(/T+ oale - U1>|dx>2]

< pi(n —1)|eal?
< Clp)2 . (6.8)

Finally, by combining inequalitie$ (6.6}, (6.7) ad (6.8 obtain:

Var(G%(¢x)) < C(pe)n.

Thus, ‘
Var(Ty) < W {n—i— %2 + %ﬂg} < CQjm,1,
with A
Qj,n,T:%"i‘%-i-%

and( a positive constant depending pp, R; and R..
Takingz = /2¢Q;»,r/f in (€.8) and using the previous inequality leads to

Py, (‘T,\ —Eh(TA)‘ > \/M) g

Therefore, ifE; (1)) > V20Qjn1/B+ a7 5/2,then

~

Pi(Th < 45 55) = Pu(Tx —Ba(Th) < g/ — En(Th))
<Py (‘T)\ - Eh(T)\)‘ > Bu(T)) — Q?75/2>
<Py (‘TA - Eh(TA)‘ 2/ 2CQj,n,T/5>
< B/2

and so
Pp(®ra =0) < B,

which concludes the proof 6f Lemmab.1.
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6.6.2 Proof ofLemma 6.2

We focus first on the control of the conditional quana;illél""’
q[AUl""’U";m] («) is the smallest real number such that

Uniletotl (). Forallm € N*, the(1—a)-quantile

2 U7 7U7L7
P(TRm>q&1 " (a)

U17' . -7Un§Nc,tot = m) < «,

Wherefgm is defined by[(211). Letn € N* be fixed. We write

Z (¢x) Vk

where(V, ..., V.Y is am-sample with uniform distribution op-1; 7 + 1] and for anyv € [~1; T + 1],

S0
T)\,m -

S|

n

SONCESS [w Ui -

=1

n—1

Brlia(o ~ U)]

SinceE(pA(V — U)|U) = 0 for independent random variablésand V" uniformly distributed on0; 7] and
[—1; T + 1] respectively, theS(,)(V,Y)’s are centered and independent conditionallygn. . ., U,. Then we
apply Bernstein’s inequality (for instance, see Proposifi.9 of [26]) to get that for alb > 0, with probability
larger thanl — 2e~%,

Z (P)\ Vk
k=1

Thus, with probability larger thaih — «,

< \/ZmVar(S(cpA)(Vlo)\Ul, oo Up)w + g sup | S(pa)(v)].
vE[—1;T+1]

T)(\)7m < f(Ula .. 'aUn;m)a

with ) In (2
f(Ul,...,Un;m):—{ 2mln(2/a)Vg+w35}, (6.9)

3

where
Vs = Var(S(p\) (VO|UL,...,U,) and Bg= sup |S(pr)(v)].
ve[—1;T+1]
Therefore we havq[Ul’ Ui }( ) < f(Un,...,Up;m) by definition of the quantllq[Ul’ ’U“’m]( ).

Let us now provide a control in probability gi(U, ..., U,; m). We control firstVs.

Vg = Var (Z ox(VP = U;) = (n — 1)E7r(90)\(V10 -0)) ‘Ul, cey Un>

i=1

(Zw —U) =~ (= DER(er (V) — 0) [0, .. U

1 T+1 [ N 2
< T12 ) (Z oA(v =Us) = (n = 1)Ex(pa(v - U))) dv
V== i=1

) T+1

< —
T+2

v=—1

2 T+1 ™ T+1
ST 5 T4+2 / Z@i U_ dv+/ Z QD)\(U—Ui)gD)\(U—Uk)dU

=—l1gitk<n

( Y eaw=Uea(v = Up) + (n = 1°Ex (oa(v — U))) dv
1<i,k<n
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([ el du)2 dv}

T+1 1 2
ST “HSO/\HQJF/ > el U—U)@A(U—Uk)dUJF%(TJFQ)H%H%
1<27ék<n
T+1 9—ip?2
g = — ) A
nt > /_1 Ui)ea(v = Up) dv + = (6.10)

1<i#k<n

with C an absolute positive constant. We have a decompositioneo$¢lsond term in a sum of degenerate
U-statistics of order 0, 1 and 2. Indeed

T+1
Z / U)or(v — Ug) dv = Wy + 2W71 + W,
1<izth<n V=
with
T+1
Wo= ) / [pa(v = Ui) = Er(oa(v = U))][pa(v — Ug) — Ex(pa(v = U))] dv,
1<i#k<n v=-1
T+1
Wi= Y [ e OB - U)o
1<i#k<n v=-1
and

T+1
Z /+E2 (pa(v —U)) dv.

1<i#k<n” V=

First we controli?:

n(n—1)(T +2) 9

2 SLITPNG
2-In?2
T )

[Wo| <

<C

(6.11)

with C' an absolute positive constant. Next we deal with the coofrdl;. We notice that
no T4l
Wi=m-0Y [ orlo= UEalpao - D))o
i=17v="1
and consequently we have by using Lemma 6.3 of [34]
n_o T4l
Wil<m-0Y [ jale-oyal2h
i=1vV="
27In?
T b

<C

(6.12)

with C an absolute positive constant.
Now it remains to control¥s, with

where

T+1
(UL U =2 / lox(v — Us) — Ex(pa(v — U)]ga(v — Up) — Ex(ga(v — U))] do.

v=—1
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One can apply Theorem 3.4 6f [19] W, and —W5. It implies that there exist absolute positive constants
s, c3 andey such that with probability larger thanh— 2 x 2.77¢~%,

[Ws| < c1Cv/w + coDw + c3Bw? + ey Aw?
for all w > 0, where
* A= gl <8lleallllerlloc <8;
e C? = E(W2) and we have
CZ
= Y E(@(UiU)

1<i<k<n

<dn(n—1)E

T+1 2
( [ a0 = 00) = Eelin(v = UDllpa(w ~ V) — Enloalv — 0) dv) ]

=—1

<dn(n —1)Ey o
-1

T+1 2
</ (oS0 = U) = Ex(pr(v = U))] [pa(v = U") = Ex(pr(v — U"))] dv) ]

T+1 T+1
< An’Ey </ orx(v —U)or(v —U")dv — Epr </ ox(v—=U)er(v—-U") dv)
v=—1 v=—1
T+1 T+1 2
—Ey </ <p>\(v—U)<p,\(v—U')dv> +Ep o </ apA(v—U)apA(v—U')dv>
v=—1 v=—1
, T+1 , 2 T+1 . - 2
<Cn {EU,U/ ([ 10 1000 |+ [Ewwnmer ([ 11008 100 )] b

with C an absolute positive constant. But,

</T+ ol = U)lal(v = U7) dv> ]

T+1
<Buo ([ P Ulaale-v)a [

T+1 5
_Euy ( | lePo-0lale - dv) ™0

Eu,ur

T+1

-0 ao)

loalld
< H%H%Tl

and

T+1 T+1
B ([ lealo =Dl =0 do) = [ Bellol(o - U)E(oallo - U)o

lpall}
T2

< (T+2)

by using Lemma 6.3 of [34]. So,

with C an absolute positive constant;
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1<k<i<n =2
But, with the conditions on the;’s and theb,’s, we have:

n n—1
e D =sup {E ( Z Q(Ui,Uk)ai(Uz')bk(Uk)) (B <Z ai(Ui)2> <LE (Z bk(Uk)2> < 1}-
k=1

E( > g(Ui7Uk)ai(Ui)bk(Uk))

1<k<i<n

n i—1 i
=2E <Z > /Uzl[sox(v = Ui) = Ex(pa(v = U))llpa(v = Uy) = Ex(oa(v = U))] dvai(Uz)bk(Uk)>

n

T+1 n—1
< E(Z lor (v = U3) — En (¥ <v>>uai<Ui>r)E(Z lor (0 = Uy) — En (¥ <v>>ubk<Uk>r) o
k=1

v=—1 i=2
T+1 n—1
<2 Vs DVanla- U))E(Z loa(v— Ux) — En(gr(v — U>>||bk<Uk>|) o
V== k=1

leal3 - (= [T
<2/ -DI2BE (Y [ foro - 1)~ Baloalo - V) I (U0) o
T k=1"v="1
n_1 n—1
<2/ 5 lleallE <2||80A||1Z|bk(Uk)|>
k=1
n—1
<4/ lerlallprliva—T

n—1
<4 T lloalllleallz,

by using Lemma 6.1 of [34]. Then,
2-1/2p

with C' an absolute positive constant;
n—1
e B2 =sup <Z E(¢?(u, Uk))> , With
v \g=1

E(92 (ua Uk))

T+1 2
— 15| ([ a0 = 1) = Bxlis(o ~ UlIoao = ) = Enlialo - )] o ]

r rr+1 U 2 U U T+1 U U
< | [ o0 - Eale{ 0] 0) - EnlH ol v [ [e0) ~ Enlef (0] o]

r rr+1
<8 | [ [oato =)~ Bnlealo ~ U] lioato — U ~ Extior(v = 0))] o]

16 T+1

<% [oA(v = u) = Ex(px(v — U))] dv]lor)?

v=—1

64 9 9
< T )
7 lleallillenll2

by using Lemma 6.3 of [34]. Hence,

with C an absolute positive constant.
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Finally, we obtain for allv > 0, with probability larger than — 2 x 2.77e%,

—j/2 —Jj —j/2 —j/2
A <C{2\/fn\/(;+2Tn\/5+2\/an+2 \/T\/ﬁwg/2+w2}, (6.13)

with C an absolute positive constant.
Thus, by inequalitied (6.10), (6.11), (6112) ahd (6.13),dbw > 0, with probability larger tharl — 2 x

2.77e7 v,
C(w) 27in? 2792
Vo < —-(n+ + . 6.14
s { i T (6.14)

Then it remains to computBs. We recall that

n

Bs = sup Z {@A(v -U;) —

vel-L,T+1] |2

Hle
T

n—1

Ex(pa(v — U))} ‘

< Bg +

n

> [eaw = Ui) = Ex(oa(v = U))]

i=1

with B¢ =  sup
vE[=1;T+1]
write for anyx € R:

. Since the Haar basis is considered here, we can

/2
pa(z) = 29/ < (2k+1)2-U+D) <@ (k+1)2- = Lio- I<e<(2k+1)2- <J+1))

with A = (5, k). Thus,
Bg < 21/ (B; + Bg) ,

where
n
1
Bg = sup Z [1192%gv—Ui<(2k+1)2—<J'+1) - Eﬂ(lkrﬂ'gv—U<(2k+1)2—<J'+1>)]
vel-L,T+1] |5
and
n
S0
Bg = sup Z [1(2k+1)2_(j+1)<’U_Ui<(k'+1)27j - EW(1(2k+1)2—(1+1)<v—U<(k+1)2*j)] :
vel-LT+1] |, 5

We observe that

n

By< sup > [1p,(U) — Ex(15,(U))]
By, veER i=1

)

where for any € R, B, = [v — (2k + 1)2-0+1: 4 — k277]. We setB = {B,,v € R} and for every integer

n,m,(B) = sup [{ANB,,v R} Itiseasy to see that
ACR,|A|=n
1
mn(B) <1+ @

and so, the VC-dimension of B defined bysup{n > 0,m, (B) = 2"} is bounded by 2 (see Definition 6.2
of [26]). Let us definer? = max {2*(j+1)7[(2v(1 + % In 2) /n} with K the absolute constant given by
Lemma 6.4 of([25]. The quantity? satisfies in particular the two following assertions:

VB € B,P.[U e B|<c¢? and o> K\/V(1+In(c-1V1)/n.
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Indeed, ifo? = (j+1), we haveK?V(1 +1In(o~' v 1))/n < K2V + In (20HD/2)) /n < o2, or else if
o = K*V(1 + &y 2)/n, we haver—! < 20+1)/2 and so,

K2V(1+In(c7'v1)/n < K2V +In(2V)/2)) /n = o2,

By applying Lemma 6.4 of [26], we obtain:
~ K
E(BL) < ?U\/V(l + |Ino)|)
< %20“)/2\/12 (1 + % ln2> + %KV (1 + % ln2> N
< 9-3/2. /5 L
C{ Vi + N8

with C a positive absolute constant. So, with a similar argumenf?@g we obtain for any\ in T’

secf )

Consequently,
- j2i/2 27i/?
<
C {\[7 + 0 + 0
with C an absolute positive constant and from Markov’s inequaliy have that for alb > 0
7/2 —j/2
P (Bs > C(w {\/+ J2 2T }) <e™™, (6.15)

Thus, by combining inequalitie§ (6.9). (6114) ahd (6.159, abtain for alkw > 0, with probability larger
thanl — (1 +2 x 2.77)e~

fUy,...,Up;m)

w n —in? —i/2n j21/2 il
< %{\/mln@/a) <T+ 2T2 + 2T3/2 )—l—ln(?/a) (\/3_’_]\2/5 + 2T ) }

Furthermore N|_y,7, 1) ~ P((T + 2) e + n||hl]1). Hence,

E(N-1r41) < Cpte, R1)(n + T).
From Markov’s inequality, we have that for all > 0
P (N[—l;T—i—l] > C(w, He,y Rl)(n + T)) <e Y.

Then, we choose such that this quantity2 x 2.77 + 2)e™“ is equal tog/2. So, with probability larger
thanl — 3/2,

fUy,...,Up;m)

CB, pe; R 2-in2  2-7/2 2i/2  9-i/2
<7(BZ 1){ 1n(2/a)\/(n+T) (%—F Tf + T3/2n> +1n(2/a) <\/+J = )}
C(B, pe, 1) \/ n? 27ip3 2J/2 2_3/2

27




iz i i
S C(ﬁvﬁ‘cle){ In (2/a) (% +LT +¥> +1n (2/c) (%5 +j§3/2 + 2n—T>}

Therefore by definition oz[zf‘fﬁ/Q,

-

@2 < C(B, pe, 1) { In (2/a) (

which concludes the proof 6f Lemmab.2.
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