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Abstract: This paper proposes a model of interactions between two point pro-
cesses, ruled by a reproduction functionh, which is considered as the intensity of
a Poisson process. In particular, we focus on the context of neuroscience to detect
possible interactions in the cerebral activity associatedwith two neurons. To pro-
vide a mathematical answer to this specific problem of neurobiologists, we address
so the question of testing the nullity of the intensityh. We construct a multiple
testing procedure obtained by the aggregation of single tests based on a wavelet
thresholding method. This test has good theoretical properties: it is possible to
guarantee the level but also the power under some assumptions and its uniform sep-
aration rate over weak Besov bodies is adaptive minimax. Then, some simulations
are provided, showing the good practical behavior and the robustness of our testing
procedure.
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1 Introduction

In neuroscience, an important issue lies in a better understanding of the dynamics of cerebral activity in the
cortex. In practice it is possible to measure, in vivo and fora specific task, the cerebral activity through the
emission of action potentials by several neurons, and the specific interest of the neurobiologists is to understand
how these action potentials appear. During a task, the recording of all arrival times of these action potentials
(or spikes) on a neuron forms a spike train. From this point ofview, the spike train can be modeled by a point
process.

Several years ago it was thought that activities of different neurons during a task were independent (for
example, see Barlow [3]); this explains why in the studies, the spike trains were usually modeled by independent
Poisson processes. Today, thanks to technological advances in terms of recording brain activity, various studies

∗Corresponding author, Tel: (+33) 1 69 15 57 79, Fax: (+33) 1 6915 60 34

1

http://arxiv.org/abs/1301.5802v2


show that this belief is false (for instance, see Gerstein [13] and Lestienne [24]). Thus the recent studies consider
neuronal assemblies instead of the separate neuronal activities. For example, activities of pairs of neurons, that
have been recorded simultaneously, show that there exists aphenomenon called synchronization (for instance,
see Grammont and Riehle [14] and Grünet al.[16]): the presence of a spike on one of the two spike trains can
affect the apparition of a spike, with a delay, on the second spike train. From a biological point of view, such
a phenomenon reflects a reality. Indeed, an action potentialappears if the neuron is sufficiently excited. To
obtain a sufficient excitation, two strategies exist: either the frequency of spikes received by a single neuron
increases, or the receiving neuron receives less spikes butat the same time from different neurons. This second
strategy is precisely the synchronization. From a biological point of view, it is less energy consuming and the
reaction is faster. Therefore, the neurobiologists are interested in detecting the synchronization phenomenon.
More generally, they want to detect whether or not neurons evolve independently of each other, a dependence
being a hint of a functional connection during a task.

To mathematically answer this question, we need a model taking into account the possible interactions
between two neurons. In neuroscience, a possible model is the Hawkes process (for example, see [18] for
theoretical aspects and [5, 23, 27, 28] for its introductionin neuroscience). The complete Hawkes process
being, theoretically speaking, a very complicated model, we consider a modified version which is also realistic
for the possible applications (in neuroscience, in genomics, . . . ) and for which it is possible to carry out
computations. One possible model is the following one. LetNp andNc be two point processes with respective
intensity conditionally on the past

λ̃p : t 7−→ µp and λ̃c : t 7−→ µc +

∫ t

−∞
h(t− u) dNp(u), (1.1)

whereµp > 0, µc > 0, h : R → R with h(t) = 0 for t 6 0 and wheredNp is the point measure associated with
the processNp. The parametersµp andµc describe the spontaneous part (in the context of neuroscience, the
spontaneous apparition of spikes) and the functionh reflects the influence ofNp onNc. The functionλ̃c which
denotes the intensity conditionally on the past ofNc specifically means that the probability that a new point
appears onNc at timet is the combination of the spontaneous partµc and the vote of each point ofNp before
t through the functionh. Moreover,Np is a homogeneous Poisson process (for instance, see [22]) andNc is a
special case of Hawkes process. The biological problem which consists in knowing whetherNp influencesNc

is equivalent to test the null hypothesisH0: "h = 0" against the alternativeH1: "h 6= 0".
The above formulation of the intensitỹλc is an integral form. However it is possible conditionally on

all the points ofNp to have a vision in terms of descendants and no more in terms ofintensity conditionally
on the only past observations. Indeed, givenT a positive real number representing the time of record of the
neuronal activity and givenn a fixed positive integer, conditionally on the event "the number of points of
Np lying in [0;T ] is n", the points of the processNp obey the same law as an-sample of uniform random
variables on[0;T ], denotedU1, . . . , Un and named parents. Thus, conditionally onU1, . . . , Un, we can write
λ̃c(t) = µc +

∑n
i=1 h(t − Ui). This new expression of̃λc can be interpreted as follows. EachUi gives birth

independently to a Poisson processN i
c with intensity the functionh(t − Ui) with respect to the Lebesgue

measure onR, to which is added a homogeneous Poisson processN0
c with constant intensityµc, representing

the orphans. We consequently consider the aggregated process

Nc =

n
∑

i=0

N i
c whose intensity is given by the functionµc +

n
∑

i=1

h(t− Ui) (1.2)

and the points of the processNc are named children. With this interpretation, the goal of the present paper
is to test the "influence or not" of the parents on the children, via the reproduction functionh. This second
writing contains many benefits. First, the assumption that the support ofh is included inR∗

+ is not mandatory.
With respect to the first formulation, this may appear like a minor difference, but in practice the impact is
considerable. Indeed, if we refer to the context of neuroscience, assuming that the support ofh is in R+

means that one favors a sense of interactions, namelyNp affectsNc. However in practice, we do not have this
information a priori. Therefore, when the test does not reject H0, it means thatNp does not seem to influence
Nc, but it may be because in reality it isNc that affectsNp. We must be careful that the initially proposed model
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is not symmetric in terms of neurons and that a support inR+ does not really allow to answer the question of
dependence. The causality is indeed represented by the factthat a child appears after its parent and therefore
h has to be supported inR+. Heuristically, a consequence is the following interpretation: if a parent has a
child before its own birth, it may represent that the child isthe parent and the parent the real child. Looking
at both sides of the support (by consideringR+ and alsoR−) makes the procedure in some sense adaptive
to the causality of parent/child roles but it does not allow to symmetrize the test by inverting the parent/child
roles. Indeed, in our model, one parent can have several children but a child has at most one parent. Another
advantage of this second writing is that it allows applications to other disciplines such as genomics where one
studies for example the favored or avoided distances between patterns on a strand of DNA and where it is not
always possible to know which pattern rules the other. More details about this application to genomics can be
find in Sansonnet [34], where the author proposes an estimation procedure of the functionh, assumed to be well
localized, based on wavelet thesholding methods, in a very similar model to the one studied here. The interested
reader will find other estimation procedures of the functionh in this DNA context, by using a Hawkes’ model
in Gusto and Schbath [17] and Reynaud-Bouret and Schbath [30].

In this paper, givenT a positive real number representing the recording time and given n a fixed positive
integer, we consider an-sample(U1, . . . , Un) of uniform random variables on[0;T ] representing the parents
and we consider the model defined by (1.2) for the children. For the simulation study, parents process(Ui)i is
simulated according to a homogenous Poisson process of intensity µp. Since the null hypothesisH0: "h = 0"
means that conditionally on the total number of points ofNc, the points of the processNc are i.i.d. (independent
and identically distributed) with uniform distribution, afirst rather naive approach is to perform a Kolmogorov-
Smirnov test (for instance, see [8]). But this test is not powerful, as illustrated in the section devoted to simula-
tions. The aim of this paper is then to build a more powerful and nonparametric testΦα with values in{0, 1}
of H0: "h = 0" against the alternativeH1: "h 6= 0", rejectingH0 whenΦα = 1, with prescribed probabilities
of first and second kind errors. The performance of the testΦα is measured by its uniform separation rate (for
example, see [1]).

In neuroscience, parametric methods exist to detect such dependence. For instance, the Unitary Event
(UE) (see [16]) and the Multiple Tests based on a Gaussian Approximation of the UE (MTGAUE) (see [35])
methods answer partially the problem by considering coincidences (see Section 4.4 for more details). In the
one-sample Poisson process model (that is to sayn = 1 andµc = 0 in our model), many papers deal with
different problems of testing the simple hypothesis that anobserved point process is a Poisson process with a
known intensity. We can cite for example the papers of Fazli and Kutoyants [10] where the alternative is also a
Poisson process with a known intensity, Fazli [9] where the alternatives are Poisson processes with one-sided
parametric intensities or Dachian and Kutoyants [7] where the alternatives are self-exciting point processes
(namely, Hawkes processes). In the nonparametric framework, Ingster and Kutoyants [20] propose a goodness-
of-fit test where the alternatives are Poisson processes with nonparametric intensities in a SobolevSδ

2(R) or a
Besov ballBδ

2,q(R) with 1 6 q <∞ and known smoothness parameterδ. They establish its uniform separation
rate over a Sobolev or a Besov ball and show the adaptivity of their testing procedure in a minimax sense.

In some practical cases like the study of the expression of neuronal interactions or the study of favored
or avoided distances between patterns on a strand of DNA, such smooth alternatives (Sobolev or Besov balls)
cannot be considered. Indeed, the intensity of the Poisson processNc in these cases may burst at a particular
position of special interest for the neuroscientist or the biologist. So we have to develop a testing procedure
able to distinguish a constant function (or here a null function) from a function that has some small localized
spikes. These features are not well captured by using classical Besov spaces. Hence we focus in particular
on alternatives based on sparsity rather than on alternatives based on smoothness. For this, we are interested
in the computation of uniform separation rates over weak versions of Besov balls. Such alternatives have
already been considered. For instance, Fromontet al.[11] propose non-asymptotic and nonparametric tests
of the homogeneity of a Poisson process that are adaptive over various Besov bodies simultaneously and in
particular over weak Besov bodies. Another example is Fromont et al.[12] which construct non-asymptotic
and nonparametric multiple tests of the equality of the intensities of two independent Poisson processes, that
are adaptive in the minimax sense over a large variety of classes of alternatives based on classical and weak
Besov bodies in particular.

The testΦα proposed in this paper consists in a multiple testing procedure obtained by aggregating several
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single tests based on a wavelet thresholding method as in Fromont et al.[11, 12] (they also consider model
selection and kernel estimation methods). First, Proposition 2 proves that the multiple test is anα-level test
and Theorem 2 gives a condition on the alternative to ensure that our multiple test has a prescribed second kind
error. This result reveals two regimes as in Sansonnet [34].Indeed our model presents a double asymptotic
through the numbern of parents and the recording timeT (namely, the length of the observations interval),
which is not usual. SinceNp is a homogeneous Poisson process with constant intensityµp, the numbern
of points ofNp falling into [0;T ] is the realization of a Poisson random variable with parameter µpT . As a
consequence with very high probability,T is proportional ton and in this case, the uniform separation rates
of the multiple test over weak Besov bodies are established by Theorem 3. Thus, our testing procedure is near
adaptive in the minimax sense over a class of such alternatives. The proofs of these results are essentially based
on concentration inequalities (see [26]) and on exponential inequalities forU -statistics (see [19]). Secondly,
some simulations are carried out to validate our procedure from a practical point of view, which is compared
with the classical Kolmogrov-Smirnov test, a test of homogeneity due to Fromontet al.[11] and a testing
procedure proposed by Tuleau-Malotet al.[35], which formalized a well-known procedure in neuroscience,
namely the UE method (see Grünet al.[16]).

The paper is organized as follows. Section 2 deals with the description of our testing procedure. Section
3 is devoted to the general results of the paper. The control of the probability of second kind error is ensured
by Theorem 1 for the single testing procedures and by Theorem2 for the multiple test. The uniform separation
rates of the multiple test over weak Besov bodies are provided in Theorem 3. Section 4 presents the simulation
study. The proofs of our main theoretical results are finallypostponed in Section 6.

2 Description of our testing procedure

In the sequel, the support ofh is supposed to be compact and known. For instance, in neuroscience, there is a
maximal time of synchronization (estimated to 40 ms) duringa task according to the neuroscientists. Without
loss of generality, we suppose now that the support ofh is strictly included in[−1; 1] and that we observe the
Ui’s (the parents) on[0;T ] and realizations of the processNc (the children) on[−1;T + 1]. In addition, we
assume thath belongs to1(R) and∞(R) and consequently, we can consider the decomposition ofh on the
Haar basis denoted by{ϕλ, λ ∈ Λ}:

h =
∑

λ∈Λ

βλϕλ with βλ =

∫

R

h(x)ϕλ(x) dx,

where
Λ = {λ = (j, k) : j > −1, k ∈ Z}

and for anyλ ∈ Λ and anyx ∈ R,

ϕλ(x) =

{

φ(x− k) if λ = (−1, k)

2j/2ψ(2jx− k) if λ = (j, k) with j > 0
,

with
φ = 1[0;1] and ψ = 1] 1

2
;1] − 1[0; 1

2
].

The functionsφ andψ are respectively the father and the mother wavelets. Since the goal is to detect a signal,
more precisely to detect if the functionh is identically null or not, the Haar basis is suitable in our context.
Furthermore from a practical point of view, the use of the Haar basis yields fast algorithms, easy to implement.
Nevertheless the theoretical results of the present paper can be generalized to a biorthogonal wavelet basis (see
[6] for a definition of this particular basis) as in [29, 31, 34]. We precise that we can easily extend our results
to a functionh compactly supported in[−A;A] for anyA > 0 by scaling the data by⌈A⌉+ 1.

By considering this wavelet decomposition ofh, the null hypothesisH0: "h = 0" means that all the
coefficientsβλ are null and the alternative hypothesisH1: "h 6= 0" means that there exists at least one non-zero
coefficient. Sinceh is strictly supported in[−1; 1], if one coefficientβ(−1,k) is non-zero, then there exists at
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least one coefficientβ(j,k) with j > 0 which is also non-zero. Therefore, we focus only on the coefficients
β(j,k) with j > 0 and we introduce the following subsetΓ of Λ

Γ = {λ = (j, k) ∈ Λ : j > 0, k ∈ Kj},

with Kj = {k ∈ Z : −2j 6 k 6 2j − 1} (Kj is the set of integersk such that the intersection of the support of
ϕλ and[−1; 1] is not empty, withλ = (j, k)).

For everyλ in Γ, the coefficientβλ is estimated by

β̂λ =
G(ϕλ)

n
, with G(ϕλ) =

∫

R

n
∑

i=1

[

ϕλ(x− Ui)−
n− 1

n
Eπ(ϕλ(x− U))

]

dNc(x),

whereπ denotes the uniform distribution on[0;T ] andEπ(f(U)) the expectation off(U) whereU ∼ π for
any measurable functionf . These estimates, inspired by those proposed in [34] for a simpler model, namely
with µc = 0, are unbiased:

Proposition 1. For all λ = (j, k) in Γ, β̂λ is an unbiased estimator ofβλ.

The proof of Proposition 1 uses the fact that for allλ in Γ,
∫ 1
−1 ϕλ(t) dt = 0, avoiding boundary effects (see

Section 6.1).
In order to test the null hypothesisH0: "h = 0" againstH1: "h 6= 0", namely "∃λ ∈ Γ, βλ 6= 0", we first

propose to test for allλ ∈ Γ, the null hypothesisH0 against the alternativeHλ
1 : "βλ 6= 0". For eachλ ∈ Γ,

the associated simple test actually consists in testing "βλ = 0" against "βλ 6= 0" or more precisely, in testing
the absence of variation of the functionh on a small interval. Then in a second time, we will aggregate these
simple tests to test the nullity ofh on its complete support.

2.1 The single testing procedures

Let us fix someα ∈]0; 1[ andλ ∈ Γ. We want to construct anα-level test of the null hypothesisH0: "h = 0"
againstHλ

1 : "βλ 6= 0", from the observation of the parentsU1, . . . , Un and the realization of the Poisson process
Nc. We notice first that the null hypothesis entails in particular thatβλ = 0.

We introduce the testing statistiĉTλ defined by

T̂λ = |β̂λ|.

Our single test consists in rejecting the null hypothesis when T̂λ is too large and more precisely, when

T̂λ > q
[U1,...,Un;Nc,tot]
λ (α),

whereNc,tot is the (random) number of points of the processNc falling into [−1;T + 1] and for anym ∈ N
∗,

q
[U1,...,Un;m]
λ (α) is the(1− α)-quantile conditionally onU1, . . . , Un of

T̂ 0
λ,m =

1

n

∣

∣

∣

∣

∣

m
∑

k=1

n
∑

i=1

[

ϕλ(V
0
k − Ui)−

n− 1

n
Eπ

(

ϕλ(V
0
k − U)

)

]

∣

∣

∣

∣

∣

, (2.1)

with (V 0
1 , . . . , V

0
m) am-sample with uniform distribution on[−1;T +1] (namely am-sample of the processNc

underH0). We can easily prove that conditionally onU1, . . . , Un andNc,tot = m, T̂λ andT̂ 0
λ,m have exactly

the same distribution underH0. Thus, the corresponding test function is defined by

Φλ,α = 1
T̂λ>q

[U1,...,Un;Nc,tot]

λ (α)
. (2.2)

5



2.2 The multiple testing procedure

Previously, testing procedures have been built based on each single empirical coefficient̂βλ. We propose in
this subsection to consider a collection of empirical coefficients instead of a single one, and to define a multiple
testing procedure by aggregating the corresponding singletests.

Let {wλ, λ ∈ Γ} be a collection of positive numbers such that
∑

λ∈Γ e
−wλ 6 1. This set allows us to put

weights to empirical coefficients according to their indexλ = (j, k) ∈ Γ. Givenα ∈]0; 1[, we consider the test
which rejectsH0 when there exists at least oneλ in Γ such that

T̂λ > q
[U1,...,Un;Nc,tot]
λ (u

[U1,...,Un;Nc,tot]
α e−wλ),

where

u
[U1,...,Un;Nc,tot]
α

= sup

{

u > 0 : P

(

max
λ∈Γ

(

T̂ 0
λ,Nc,tot

− q
[U1,...,Un;Nc,tot]
λ (ue−wλ)

)

> 0
∣

∣

∣
U1, . . . , Un;Nc,tot

)

6 α

}

.
(2.3)

The corresponding test function is defined by

Φα = 1
maxλ∈Γ

(

T̂λ−q
[U1,...,Un;Nc,tot]

λ (u
[U1,...,Un;Nc,tot]
α e−wλ )

)

>0
. (2.4)

We mention that, since the setΓ is infinite countable, the number of tests to be performed is infinite and this
is not a problem from a theoretical point of view. But in practice, we have to perform a finite number of single
tests and so, we will fix a maximal resolution levelj0 and we will carry out the single testsΦλ,α for λ = (j, k)

in Γ with j 6 j0. The role ofu[U1,...,Un;Nc,tot]
α is crucial in particular to guarantee the level of the multiple test

and consequently, this quantity depends on the chosen maximal resolution levelj0 when we consider a finite
number of single tests.

In the next section, we study the properties of the single testsΦλ,α defined by (2.2) and the multiple testΦα

defined by (2.4), through their probabilities of first and second kind errors.

3 Main theoretical results

3.1 Probability of first kind error

We constructed our single and multiple tests in such a way that the first kind error, which measures the proba-
bility that the test wrongly rejects the null hypothesis, isless thanα.

Proposition 2. Let α be a fixed level in]0; 1[. Then the single testΦλ,α defined by (2.2) for anyλ ∈ Γ and

the multiple testΦα defined by (2.4) are of levelα. Furthermore,u[U1,...,Un;Nc,tot]
α defined by (2.3) satisfies

u
[U1,...,Un;Nc,tot]
α > α.

This result shows that the tests are exactly of levelα, which is required for a test from a non-asymptotic
point of view (namelyn andT are not required to tend to infinity).

3.2 Probability of second kind error

The second kind error, which measures the probability that the test does not wrongly reject the null hypothesis
is not fixed by the testing procedure, unlike the first kind error. We have to control the probability of second
kind error in such a way that it is close to 0, in order to obtainpowerful tests. The following theorem brings out
a condition which guarantees that the single tests have a prescribed second kind error.

We denote byP0 the distribution of the aggregated processNc underH0, Ph the distribution ofNc whose
intensity conditionally onU1, . . . , Un is given by the functionµc+

∑n
i=1 h(t−Ui) for any alternativeh and by

Eh the corresponding expectation. Sinceh belongs to1(R) and∞(R), we introduceR1 andR∞ two positive
real numbers such that‖h‖1 6 R1 and‖h‖∞ 6 R∞.
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Theorem 1. Let α, β be fixed levels in]0; 1[. Let ζ andκ be positive constants depending onβ, µc, R1 and
R∞. For all λ ∈ Γ, letΦλ,α be the test function defined by (2.2). Assume that

|βλ| >
√

2ζ

β

(

1

n
+

1

T
+

2−jn

T 2

)

+ κ

{

√

ln (2/α)

(

1√
n
+

1√
T

+
2−j/2√n

T

)

+ ln (2/α)

(√
j

n
+
j2j/2

n3/2
+

2−j/2

nT

)}

,

(3.1)

for λ = (j, k). Then,

Ph(Φλ,α = 0) 6 β.

Note that the quantity1n + 1
T + 2−jn

T 2 that appears under the square root of the first term of the right hand

side of (3.1) is of the same order as the upper bound of the variance of the estimateŝβλ (see Proposition 1 of
[34]). Consequently, the right hand side of (3.1) can be viewed as a standard deviation term, since the other
terms are not asymptotically larger than the first term if we assume that2j 6 n2/(ln n)2, where asymptotic
meansmin(n, T ) → +∞.

Theorem 1 means that if the coefficientβλ is far enough from 0, then the probability of second kind error
is controlled. This result gives a threshold forβλ from which our associated single testing procedure is able
to detect a signal and shows that its power is larger than1 − β. Furthermore, if we consider the regime "T
proportional ton" in order to compare our result with known asymptotic rates of testing, Condition (3.1) can
be easily obtained for instance ifβ2λ > C/n by assuming that2j 6 n2/(ln n)2, with C a positive constant.

Now we are interested in the power of the multiple testing procedure and the following theorem gives a
condition on the alternative in order to ensure that our multiple test has a prescribed second kind error.

For an orthonormal basis{ϕλ, λ ∈ L} of a finite dimensional subspaceSL of 2(R), we denote byDL the
dimension ofSL (namely the cardinal ofL) and byhL the orthogonal projection ofh ontoSL.

Theorem 2. Letα, β be fixed levels in]0; 1[. LetΦα be the test function defined by (2.4). Assume that there
exists at least one finite subsetL of Γ such that

‖hL‖22 >
(

C1DL + C2

∑

λ∈L

wλ

)

[

1

n
+

n

T 2

]

+
(

C3DL + C4

∑

λ∈L

wλ + C5

∑

λ∈L

w2
λ

)

[

jL
n2

+
j2L2

jL

n3
+

1

n2T 2

]

,

(3.2)
wherejL = max{j > 0 : (j, k) ∈ L with k ∈ Kj} andC1, C2, C3, C4 andC5 are positive constants
depending onα, β, µc, R1 andR∞. Then,

Ph(Φα = 0) 6 β.

This theorem means that if there exists one subspaceSL of 2(R) such thathL (the orthogonal projection
of h ontoSL) lies outside a small ball around 0, then the probability of second kind error is controlled. This
result gives a threshold for the energy ofhL from which our multiple testing procedure is able to detect asignal
and shows that its power is larger than1 − β. Furthermore, if we consider the regime "T proportional ton"
in order to compare our result with known asymptotic rates oftesting, Condition (3.2) can be easily obtained
for example if‖hL‖22 > C ×

(

DL +
∑

λ∈L wλ +
∑

λ∈L w
2
λ

)

/n by assuming that2jL 6 n2/(ln n)4, with
C a positive constant. Then, the separation rate between the null and the alternative hypotheses is of order
DL/n, and this is typical for testing procedures based on a thresholding approach (for instance, see [11, 12]).
Usually, nested tests (namely based on model selection) achieve a faster rate of separation of order

√
DL/n

(for example, see [1, 2]). But these latter tests are not adaptive over weak Besov bodies. Consequently, the
separation rate established by Theorem 2 leads to sharp upper bounds for the uniform separation rates over
such particular classes of alternatives and so, our multiple testing procedure will be proved to be adaptive over
particular classes of alternatives, based on weak Besov bodies.
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3.3 Uniform separation rates

Given someα, β ∈]0; 1[, anα-level testΦα defined by (2.4) has previously been built, with a probability of
second kind error at most equals toβ if Condition (3.2) is satisfied. Then, given a classSδ of alternativesh, it
is natural to measure the performance of the test via its uniform separation rateρ(Φα,Sδ , β) overSδ (see [1])
defined by

ρ(Φα,Sδ, β) = inf

{

ρ > 0 : sup
h∈Sδ,‖h‖2>ρ

Ph(Φα = 0) 6 β

}

.

In order to compare our result with known asymptotic rates oftesting, we consider the regime "T proportional
to n" in this subsection.

We introduce forδ > 0,R > 0 the Besov body

Bδ
2,∞(R) =







f ∈ 2(R) : f =
∑

λ∈Λ

βλϕλ, ∀j > 0,
∑

k∈Kj

β2(j,k) 6 R22−2jδ







.

We also consider a weaker version of the above Besov bodies defined forp > 0, R′ > 0 by

W∗
p(R

′) =

{

f ∈ 2(R) : f =
∑

λ∈Λ

βλϕλ, sup
s>0

sp
∑

λ∈Γ

1|βλ|>s 6 R′p

}

.

Whereas the spacesBδ
2,∞(R) constitute an ideal class to measure the regularity of the possible alternativesh,

the spacesW∗
p (R

′) constitute an ideal class to measure the sparsity of a wavelet decomposed signalh. Indeed,
if f =

∑

λ∈Λ βλϕλ ∈ W∗
p (R

′), then the associated sequenceβ = (βλ)λ∈Γ satisfiessupℓ∈N∗ ℓ1/p|β|(ℓ) < ∞,
where the sequence(|β|(ℓ))ℓ is the non-increasing rearrangement ofβ: |β|(1) > |β|(2) > . . . > |β|(ℓ) > . . ..
This condition gives a polynomial control of the decreasingrate of the sequence(|β|(ℓ))ℓ. The smallerp is, the
sparser is the signal. There exists an embedding between Besov and weak Besov balls:

Bδ
2,∞(R) ⊂ W∗

2
1+2δ

(r),

where the radiusr of the weak Besov ball depends onδ andR (more precisely,r = 4δR/
√
22δ − 1). See

[21, 32, 33] for more details and for extensions in a more general setting. So, we consider in this paper such
alternatives based on the intersection of Besov and weak Besov bodies, namely sparse functions with a small
regularity, see below.

To evaluate the uniform separation rates, we choose the following collection of weights{wλ, λ ∈ Γ}
defined by

wλ = 2
(

ln (j + 1) + ln (π/
√
6)
)

+ ln |Kj |, (3.3)

for any λ = (j, k) ∈ Γ, where|Kj | is the cardinal ofKj (here,2j+1). With this choice, the collection of
weights satisfies the condition

∑

λ∈Γ e
−wλ 6 1. The following theorem gives the uniform separation rates over

Bδ
2,∞(R) ∩W∗

2
1+2γ

(R′), where the parameterδ measures the regularity and the parameterγ the sparsity.

Theorem 3. Letα, β be fixed levels in]0; 1[. Assume thatT is proportional ton. LetΦα be the test function
defined by (2.4) with the weightswλ’s defined by (3.3). Then, for anyδ > 0, γ > 0, R > 0, R′ > 0, if
2δ > γ/(1 + 2γ)

ρ(Φα,Bδ
2,∞(R) ∩W∗

2
1+2γ

(R′), β) 6 C

(

lnn

n

)
γ

1+2γ

,

withC a positive constant depending onδ, γ, R,R′, α, β, µc,R1 andR∞.

If δ > γ, then the setBδ
2,∞(R) ∩W∗

2
1+2γ

(R′) is reduced toBδ
2,∞(R) (given the above embedding between

Besov and weak Besov balls) that only measures the regularity. Since we are interested in sparse functions
(with a small regularity), this is not the purpose here. Thenwe restrain our interpretation to the caseγ > δ.
Note that Theorem 3 holds for instance withδ = 1/4 and for allγ > 0. In this case,δ = 1/4 corresponds
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to the small regularity mentioned previously. Consequently, the main indexγ, the sparsity index, governs the
rates of convergence.

Considering the regime "T proportional ton", uniform separation rates of the testΦα given by Theorem 3
match the minimax separation rates established by Theorem 1of Fromontet al.[11], if 2δ > γ/(1 + 2γ) and
alsoδ < γ/2 andγ > 1/2. Consequently, Theorem 3 illustrates the optimality of ourtesting procedure in
the minimax setting. Furthermore, the upper bound of uniform separation rates of our testΦα overBδ

2,∞(R) ∩
W∗

2
1+2γ

(R′) has already been obtained, up to a logarithmic term, for a wavelet thresholding estimation method

proposed by Sansonnet [34] in a very similar context and moreprecisely, this is equal to the minimax estimation
rates of the maxisets of the thresholding estimation procedure (see [21, 29, 33] for more details). This means
that it is at least as difficult to test as to estimate over suchclasses of alternatives. Note that on Sobolev or
classical Besov spaces, testing rates are usually faster than estimation rates.

4 Simulation study

The scope of this section is to study our testing procedure from a practical point of view. Thus we con-
sider different simulated data sets on which we apply our procedure and three other methods: the conditional
Kolmogorov-Smirnov (KS) test, a test of homogeneity (H) developed by Fromontet al.[11] and a Gaussian
Approximation of the Unitary Events (GAUE) method developed by Tuleau-Malotet al.[35]. Then, Section 4.6
addresses the sensitivity to the maximal resolution levelj0.

The programs related on the implementation of our testing procedure have been coded inScilab 5.2

(Scilab Enterprises S.A.S, Orsay, France) and are available upon request. The other methods have been imple-
mented with programs and softwares previously used by the initial authors.

4.1 Description of the data

We create different data sets that are to a certain extent a reflection of a neurobiological reality. We consider the
spike trains of two neuronsNp andNc which are modeled by two point processes with respective conditional
intensityλ̃p andλ̃c defined by (1.1).

For real spike trains it is not reasonable to postulate the stationarity ofNp andNc, i.e.µp andµc are constant
and considering the same functionh on the entire recording period[0;T ] (see Grünet al.[16]). But this
assumption is quite feasible on smaller time ranges (see Grammont and Riehle [14] and Grün [15]). However,
to date, we have no algorithmic and statistical tool to clearly identify the stationarity ranges. Several methods
(UE and MTGAUE, see [35] for example) propose to perform manytests on different small windows of time
and to use a multiple testing procedure (for instance, see Benjamini and Hochberg [4]) to combine them. Hence
those methods can solve, at least in practice, this stationarity problem. The aim of this simulation study is not
to show how our testing procedure can be incorporated in a Benjamini and Hochberg’s approach, which lies
outside the scope of the present paper, but to discuss the advantage of our method on one small window of time.
This explains the use of the simulated data described below.

We need therefore to simulate dependence betweenNp andNc on [0;T ], with T = 2 s, and to take into
account the major part of the neurobiological reality. So, we simulate processesNp andNc whose intensities
are respectively given by

λ̃p = 50 and λ̃c = 50 +

∫ t

−∞
h(t− u) dNp(u). (4.1)

At this stage, we can estimate the level of different procedures withh ≡ 0 and in order to evaluate the powers of
different procedures, several alternatives are tested. The first chosen alternative consists in intensities (Echelon
functions) motivated by the context of neuroscience. Thoseintensities are defined by

Echelon functions hθ,ν = θ1[ν;0.01],

with θ ∈ {10, 30, 50, 80} andν ∈ {0, 0.005}. The parameterθ represents the influence strength ofNp onNc:
the larger the parameterθ is, the higher the influence ofNp onNc is. The parameterν introduces a possible
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minimal delay in the synchronization, i.e. the synchronization of the neuronal activity occurs with a delayδ
uniform on [ν; 0.01]. To study the robustness of our procedure facing the other methods, we consider three
other intensities (Crenel, Bell and Bumps) defined by

Crenel function hCrenel(x) = 120
(

1[0;0.003](x) + 1[0.006;0.009](x)
)

,

Bell function hBell(x) = 72× exp
(

−4×
(

x+0.005
0.005

)2 × (1−
(

x+0.005
0.005

)2
)−1
)

1[−1;0](x) ,

Bumps function hBumps(x) =
1
21[0;0.01](x) +

1
2

(

∑

j gj

(

1 +
|x−pj|
wj

)−4
)

1[0;0.01](x)

0.3 ,

where the vectorsg = (gj)j, p = (pj)j andw = (wj)j are defined for example page 188 of [11]. These
alternatives are represented in Figure 1.
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Figure 1: Graphs of alternatives: on GraphA the Echelon functions withh50,0 in solid line andh30,0.005 in dashed
line, on GraphB the Crenel functionhCrenel, on GraphC the Bell functionhBell and on GraphD the Bumps function
hBumps.

We mention that, with these different simulated data sets, we have in average 100 points for the processNp

(the number of parents) and the average number of points of the processNc (the children) is given by Table 1
according to the different simulations.
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Functionh Average number of children Functionh Average number of children
h10,0 111 h10,0.005 104
h30,0 130 h30,0.005 115
h50,0 150 h50,0.005 125
h80,0 180 h80,0.005 140
h ≡ 0 100 hCrenel 131
hBell 130 hBumps 151

Table 1:Average numbers of children according to the choice of the alternative.

4.2 The Kolmogorov-Smirnov test and a test of homogeneity

A first naive approach is to perform the classical Kolmogorov-Smirnov test (see Darling [8]) to convince us that
this commonly used test is not reliable in this context. Indeed, even if theKS test is not a test of independence,
the KS test may provide an answer to the problem. Since as said before, underH0 and conditionally on
U1, . . . , Un andNc,tot = m, the observations ofNc are i.i.d. with common law the uniform distribution on
[−1;T + 1], looking for the adequation ofNc with this law could be an idea to detect the rejection ofH0. So,
the use of theKS test is relevant.

In the same spirit, we can also compare our procedure to an adaptive test of homogeneity based on model
selection, proposed by Fromontet al.[11] which has been shown to be more powerful thanKS (see [11]). This
one tests the null hypothesis "λ̃c is a constant function on its support (typically[0; 1])" against the alternative
hypothesis "̃λc is not a constant function". TheH test consists in the aggregation of single tests as in our
procedure, based on an estimation of the squared2-distance between the target functionλ̃c and the set of
constant functions. For a sake of clarity, we briefly give a summary of thisH test. Let{Xl, l = 1, . . . ,m}
be the points of the processNc, J > 1 andSJ the subspaces generated by the subsets{φ,ϕλ, λ ∈ ΛJ},
with ΛJ = {(j, k), j ∈ {0, . . . , J − 1}, k ∈ {0, . . . , 2j − 1}}. Focusing on one modelSJ , they introduce
TJ =

∑

λ∈ΛJ
T̃λ, whereT̃λ = C ×

∑m
l 6=l′=1 ϕλ(Xl)ϕλ(Xl′) with C an absolute positive constant and then

they consider the following test statisticsTα = supJ∈J (TJ − qmJ (umJ,α)), whereJ is a finite subset ofN∗,
qmJ (umJ,α) is the(1− umJ,α)-quantile of the distribution ofTJ |Nc,tot = m andumJ,α is defined as in [11]. Finally,
the corresponding test function isΦα = 1Tα>0.

4.3 The GAUE method adapted to our context

Before comparing the methods, we briefly return to the principle of theGAUE method. The aim of theGAUE
method is to detect the dependence on a single window[0;T ]. This method is based on the coincidences with
delay. More precisely for the couple of processes(Np, Nc), we compute the number of coincidences with delay
δ on [0;T ], i.e. the variableXT =

∫

[0;T ]2 1|x−y|6δ dNp(x) dNc(y), that represents the number of pairs(x, y)

in Np × Nc such that|x − y| 6 δ. This tuning parameterδ varies on a regular grid of[0.001; 0.04] with a
step 0.001. Let us definêλp = Np([0;T ])/T andλ̂c = Nc([0;T ])/T whereNp([0;T ]) andNc([0;T ]) denote
respectively the number of spikes ofNp andNc among[0;T ]. The quantitieŝλp andλ̂c are estimators of̃λp
andλ̃c.

We reject the null hypothesisH0: "h = 0" whenXT > m̂0 + σ̂u1−α/2, wherem̂0 = λ̂pλ̂c(2Tδ − δ2),

σ̂2 = λ̂pλ̂c(2Tδ − δ2) + λ̂pλ̂c

(

λ̂p + λ̂c

)

(

2
3δ

3 − 1
T δ

4
)

andu1−α/2 is the(1 − α/2)-quantile of a standard

normal. This threshold comes from the theory developed in [35] and is adapted to our context. The quantity
m̂0 is a plug-in estimator of the expectation ofXT underH0 andσ̂2 is an estimator of the variance. It can be
shown that under the assumptions "Np andNc are Poisson processes" and "Np andNc are stationary", this test
is asymptotically of levelα. Further details about the meaning of those different estimators are given in [35].

The GAUE method was developed jointly with a neurophysiologist and it fits in line the UE method de-
veloped by Grün and coauthors (for example, see [15] and [16]), which is a commonly used method in neuro-
science. One of its main disadvantage is thatδ has to be chosen beforehand. Part of the aim of this work is to
propose a more adaptive method.
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4.4 Our procedure in practice

From a theoretical point of view, the support of the functionh, denoted[−A;A], should be strictly included
in [−1; 1]. Furthermore, a theoretical choice of the maximal resolution level j0 is given by the condition:
2j0 6 n2/(log n4). However, in practice, a trade-off between the choice ofj0 and the value ofA should be
made. For instance, ifh = 1[0;A] and if the order of magnitude ofA is 2−J or 1 − 2−J , with J > j0 + 1, our
procedure does not allow to detect locally the jump ofh atA. To compensate this problem, we could increase
the value ofj0. But, the choice ofj0 is restricted by the theoretical upper bound and especially, a greater
j0 leads to an increase of the computational time (due in particular to the evaluation of the quantiles which
requires many iterations). Consequently, we propose to scale the data in order to haveA close to 1/2. Since the
considered data sets have been built with a functionh supported by[−0.01; 0.01], the data are multiplied by 50
before being treated with our method.

Let us recall that our test rejectsH0 when there exists at least oneλ = (j, k) in Γ with j 6 j0 such that

T̂λ > q
[U1,...,Un;Nc,tot]
λ (u

[U1,...,Un;Nc,tot]
α e−wλ),

wherej0 > 1 denotes the maximal resolution level,u[U1,...,Un;Nc,tot]
α is defined by (2.3) and thewλ’s are given

by (3.3). Hence, for each observation of the processNc whose number of points is denoted byNc,tot = m,

given the points ofNp denotedU1, . . . , Un, we estimateu[U1,...,Un;m]
α and the quantilesq[U1,...,Un;m]

λ by classical
Monte Carlo methods based on the simulations ofB independent sequences{V b, 1 6 b 6 B}, whereV b =
(V b

1 , . . . , V
b
m) is am-sample of uniform variables on[−1;T +1] (i.e. the law ofNc underH0, conditionally on

U1, . . . , Un andNc,tot = m). We fixB = 20000 in the sequel since for larger values ofB, the gain in precision

for the estimates ofu[U1,...,Un;m]
α andq[U1,...,Un;m]

λ becomes negligible. We define for anyλ = (j, k) in Γ with
j 6 j0, for 1 6 b 6 B:

T̂ 0,b
λ,m =

1

n

∣

∣

∣

∣

∣

m
∑

k=1

n
∑

i=1

[

ϕλ(V
b
k − Ui)−

n− 1

n
Eπ

(

ϕλ(V
b
k − U)

)

]

∣

∣

∣

∣

∣

.

We compute thesêT 0,b
λ,m’s with a cascade algorithm (see Mallat [25]).

Half of them-samples is used to estimate the quantiles by putting in ascending order theT̂ 0,b
λ,m’s for any

λ. The other half is used to approximate the conditional probabilities occurring in (2.3). Then,u[U1,...,Un;m]
α is

obtained by dichotomy, such that the estimated conditionalprobability occurring in (2.3) is less thanα, but as
close as possible toα.

For the comparison of our testing procedure to the three other methods, we have arbitrarily chosenj0 = 3.
With such a choice, our procedure considers 15 single testsΦλ,α involving wavelets whose support length is
respectively 0.125, 0.25, 0.5 and 1. This allows us to make detections at the positionsm×2−3 (m in {0, . . . , 7})
with a range of2−3. Due to the scaling of the data in our procedure, we need to divide the positions and the
range of the possible detections by 50. Consequently, in thereal time, the positions and the range become
m× 0.0025 (m in {0, . . . , 7}) and0.0025.

4.5 Results

We compare our testing procedure and the other methods on thedifferent simulated data sets. First, we focus
on the empirical rate of the type I error which is an approximation of the level of the tests. Thus, we simulate
5000 independent realizations of (4.1) withh ≡ 0, simulations on which we perform the present method and
the other ones with levelα = 0.05. On those data, we evaluate the empirical rate of type I error. Those results
are summarized in Table 2: all the testing methods seem to have a correct level in practice. This means that the
number of wrong rejections ofH0 is well controlled.

Secondly, we want to see if the number of wrong rejections ofH1 is also controlled. We consider the power
of the tests which is the proportion of correct rejections ofH0. To evaluate the power of the tests, we simulate
1000 independent realizations of (4.1) with different alternatives (Echelon, Crenel, Bell and Bumps functions).
The results of the empirical power are given by Table 3.
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our procedure GAUE H KS
0.047 0.0446/0.0510/0.0548 0.0638 0.051

Table 2: Empirical rate of type I error associated with our procedureand the other methods (GAUE, H and KS).
The theoretical level isα = 0.05. Since theGAUE method depends on the tuning parameterδ, the given value is the
minimum/median/maximum of the empirical rate over all theδ.

Alternatives our procedure GAUE H KS
h10,0 0.134 0.068/0.1085/0.168 0.062 0.040
h10,0.005 0.076 0.047/0.0575/0.077 0.074 0.054
h30,0 0.656 0.154/0.3795/0.707 0.095 0.051
h30,0.005 0.341 0.050/0.1415/0.277 0.073 0.059
h50,0 0.939 0.278/0.6645/0.953 0.179 0.087
h50,0.005 0.712 0.053/0.2825/0.589 0.091 0.053
h80,0 0.995 0.451/0.9160/0.998 0.362 0.113
h80,0.005 0.975 0.048/0.4900/0.879 0.135 0.073
hCrenel 0.949 0.255/0.437/0.993 0.112 0.069
hBell 0.672 0.046/0.3275/0.742 0.085 0.053
hBumps 0.948 0.139/0.701/0.967 0.159 0.082

Table 3: Empirical power associated with our procedure and the othermethods (GAUE, H and KS), evaluated for
various alternatives. The theoretical level isα = 0.05. Since theGAUE method depends on the tuning parameterδ, the
given value is the minimum/median/maximum of the empiricalrate over all theδ.

The power of theKS test is very low, as expected. The test of homogeneityH developed by Fromont et
al. [11] has a higher power, but this one remains smaller thanthe power of the two other methods. Thus, tests
of homogeneity are not sufficient to detect dependence as expected.

Our procedure and theGAUE method are comparable in terms of power, even though the Echelon functions
hθ,0 are particularly adapted to theGAUE method. However for the Echelon functionshθ,0.005, our method
seems to have better performance since the power is higher. By considering the empirical power values of Table
3, it seems that both methods can be used to detect dependence.

Moreover, if both methods are comparable in terms of performance, it remains that the testing procedure
proposed in this paper has an advantage over theGAUE method. In fact, our method is statistically adaptive.
Indeed, the parameterδ which appears in theGAUE method is not calibrated in practice. In our method, we
aggregate the single tests over(j, k). So on one hand, we do not need to specify this parameter but just an upper
boundj0, the maximal resolution level: the method through weights (3.3), adapts to this unspecified parameter
(j, k). But on the other hand, by looking at the single testsΦλ,α that have supported the rejection, we are able
to partially recover an important information for the practitioner: the position (k2−j ) and the range (2−j) of
the influence. In fact, by looking only at this single testingprocedure, we get an upper value for0.01 and a
lower value forν on the range of delayδ of synchronization. To obtain more precise estimations of the support
of h, we can consider an estimate ofh, for example the one proposed by Sansonnet [34]. The capacity of our
method to get an information onν is due to the fact that for a resolution levelj we consider different positions
k. This is not possible with theGAUE method. This explains why the results on the Echelon functionshθ,0.005
are better with our method.

4.6 Sensitivity to the maximal resolution levelj0

For the comparison of our testing procedure to the other methods, we have chosen arbitrarily the maximal
resolution levelj0 = 3. In this subsection, we propose to study the influence of the choice of this maximal
resolution levelj0 on our testing procedure.
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Since mentioned before, when we consider a finite number of single tests,u[U1,...,Un;Nc,tot]
α , defined by (2.3),

depends on the chosen maximal resolution levelj0. The automatic calibration ofu[U1,...,Un;Nc,tot]
α during the

practical procedure allows to guarantee a global levelα for the multiple test as it is illustrated in Table 4. We

mention that the calibratedu[U1,...,Un;Nc,tot]
α in practice satisfies Proposition 2:u[U1,...,Un;Nc,tot]

α > α.

j0 1 2 3 4 5
Empirical rate of type I 0.0508 0.0488 0.047 0.0474 0.0438

Table 4: Empirical rate of type I error associated with our procedurewith different maximal resolution levelsj0. The
theoretical level isα = 0.05.

We are also interested in the influence ofj0 on the power of our test. Figure 2 displays the behavior of
the power of our procedure according to the maximal resolution levelj0 for different alternatives. We can first
observe a stabilization of the power fromj0 = 3. Indeed, since thewλ’s defined by (3.3) are not all identical
and allocate different weights according to the indexλ = (j, k), weights decrease when the resolution levelj
increases. Considering a higher maximal resolution levelj0 allocates a very small weight for the new tests of
the procedure. Furthermore, conforming to the real resolution level of the function which we want to test its
nullity, we observe different behaviors for the first maximal resolution levelsj0 = 1 andj0 = 2. For instance,
the power of our procedure associated with the Crenel function is increasing with respect toj0, whereas the
power associated with the Echelon functionh30,0 is decreasing, but always with a kind of stabilization from
j0 = 3.
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Figure 2: Empirical power associated with our procedure according toj0 for the alternativesh30,0 in ◦ − ◦, h80,0 in
△ − △, hCrenel in +−+, hBell in ×−× andhBumps in ⋄ − ⋄. The theoretical level isα = 0.05.

In light of this analysis of the influence of the maximal resolution levelj0 on our testing procedure, the
choice ofj0 = 3 seems to be convenient, in order to obtain a suitable trade-off between power and computation
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time (we recall that the evaluation of the quantiles requires many iterations).

5 Conclusion

In our paper, we have investigated the influence of a point process on another one. We have built a multiple
testing procedure based on wavelet thresholding. The main results of the paper have revealed the optimality of
the procedure. Furthermore, our test is adaptive in the minimax sense over classes of alternatives essentially
based on weak Besov bodies. Then, from a practical point of view, our method answers several practical
questions. However, a number of challenges remain before applying our method on real data. To overcome the
problem of stationarity, we could use a Benjamini and Hochberg’s approach as for the GAUE method. Finally,
we could consider a more sophisticated model that takes intoaccount the phenomenon of self-excitation (as for
the complete Hawkes model). But this model raises serious difficulties from the theoretical point of view. This
is an exciting challenge.

6 Proofs

All along the proofs, we introduce some positive constants denoted byC(ξ, . . .) meaning that they may depend
on ξ, . . . . They do not depend onj, n andT (which drive the asymptotic). Furthermore, the values of these
constants may vary from line to line.

We recall that{ϕλ, λ ∈ Λ} is the Haar basis and consequently, we have:

‖ϕλ‖1 = 2−j/2, ‖ϕλ‖2 = 1 and ‖ϕλ‖∞ = 2j/2.

In the case of a biorthogonal wavelet basis,‖ϕλ‖1, ‖ϕλ‖2 and‖ϕλ‖∞ are of the same order as above, up to a
positive constant respectively depending on‖ψ‖1, ‖ψ‖2 and‖ψ‖∞, whereψ is the mother wavelet associated
with the considered biorthogonal wavelet basis. Consequently, the same proofs potentially lead to the results
on a biorthogonal wavelet basis as well as in [34] for the wavelet thresholding estimation.

6.1 Proof of Proposition 1

We first notice that for anyλ in Γ, for anyu ∈ [0;T ],

∫ T+1

−1
ϕλ(t− u) dt = 0. (6.1)

Let λ ∈ Γ be fixed. By considering the aggregated process (1.2), we canwrite

G(ϕλ) = G0(ϕλ) +G(ϕλ), (6.2)

with

G0(ϕλ) =

∫

R

n
∑

i=1

[

ϕλ(x− Ui)−
n− 1

n
Eπ(ϕλ(x− U))

]

dN0
c (x)

and

G(ϕλ) =

∫

R

n
∑

i=1

[

ϕλ(x− Ui)−
n− 1

n
Eπ(ϕλ(x− U))

] n
∑

j=1

dN j
c (x).

On the one hand, we notice thatG(ϕλ) is the same quantity as the one defined by equation (2.2) of [34]. Thus,
by applying the first part of Proposition 1 of [34], we obtain

E(G(ϕλ)) = n

∫

R

ϕλ(x)h(x) dx.
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On the other hand, we have

G0(ϕλ) =

∫

R

ϕλ(x− U1) dN
0
c (x) +

n
∑

i=2

∫

R

[ϕλ(x− Ui)− Eπ(ϕλ(x− U))] dN0
c (x).

Thus,

E(G0(ϕλ)|U1, . . . , Un) =

∫ T+1

−1
ϕλ(x− U1)µc dx+

n
∑

i=2

∫ T+1

−1
[ϕλ(x− Ui)− Eπ(ϕλ(x− U))]µc dx

and by using (6.1), we obtain

E(G0(ϕλ)) =

n
∑

i=2

∫ T+1

−1
E
[

ϕλ(x− Ui)− Eπ(ϕλ(x− U))
]

µc dx = 0.

Finally,

E(β̂λ) = E

(G(ϕλ)

n

)

=

∫

R

ϕλ(x)h(x) dx = βλ,

which proves Proposition 1.

6.2 Proof of Proposition 2

Let α be a fixed level in]0; 1[. Let λ ∈ Γ be fixed. First, the probability that the single test defined by (2.2)
wrongly detects a signal is

P0(Φλ,α = 1) = P0

(

T̂λ > q
[U1,...,Un;Nc,tot]
λ (α)

)

.

Since conditionally onU1, . . . , Un andNc,tot, T̂λ and T̂ 0
λ,Nc,tot

have exactly the same distribution underH0,

q
[U1,...,Un;Nc,tot]
λ (α) is also the(1 − α)-quantile ofT̂λ

∣

∣U1, . . . , Un;Nc,tot underH0. Thus,

P0(Φλ,α = 1) 6 α

and the level of the single test isα.
Then, the probability that the multiple test defined by (2.4)wrongly detects a signal is

P0(Φα = 1) = P0

(

max
λ∈Γ

(

T̂λ − q
[U1,...,Un;Nc,tot]
λ (u

[U1,...,Un;Nc,tot]
α e−wλ)

)

> 0

)

.

By definition (2.3) ofu[U1,...,Un;Nc,tot]
α ,

P0

(

max
λ∈Γ

(

T̂λ − q
[U1,...,Un;Nc,tot]
λ (u

[U1,...,Un;Nc,tot]
α e−wλ)

)

> 0
∣

∣

∣
U1, . . . , Un;Nc,tot

)

6 α,

because conditionally onU1, . . . , Un andNc,tot, T̂λ andT̂ 0
λ,Nc,tot

have exactly the same distribution underH0.
By taking the expectation overU1, . . . , Un andNc,tot, we obtain that

P0(Φα = 1) 6 α

and the level of the multiple test isα.
Furthermore, by Bonferroni’s inequality we have

P

(

max
λ∈Γ

(

T̂ 0
λ,Nc,tot

− q
[U1,...,Un;Nc,tot]
λ (αe−wλ)

)

> 0
∣

∣

∣U1, . . . , Un;Nc,tot

)

6
∑

λ∈Γ

P

(

T̂ 0
λ,Nc,tot

− q
[U1,...,Un;Nc,tot]
λ (αe−wλ) > 0

∣

∣

∣U1, . . . , Un;Nc,tot

)

6
∑

λ∈Γ

αe−wλ

6 α

and consequentlyu[U1,...,Un;Nc,tot]
α > α by definition (2.3) ofu[U1,...,Un;Nc,tot]

α , which concludes the proof of
Proposition 2.
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6.3 Proof of Theorem 1

Let λ ∈ Γ be fixed. Here we want to find a condition which will guarantee that

Ph(Φλ,α = 0) 6 β,

givenβ ∈]0; 1[.
Let us introduceqα1−β/2 the (1 − β/2)-quantile of the conditional quantileq[U1,...,Un;Nc,tot]

λ (α). Then for
anyh,

Ph(Φλ,α = 0) = Ph

(

T̂λ 6 q
[U1,...,Un;Nc,tot]
λ (α) , q

[U1,...,Un;Nc,tot]
λ (α) 6 qα1−β/2

)

+ Ph

(

T̂λ 6 q
[U1,...,Un;Nc,tot]
λ (α) , q

[U1,...,Un;Nc,tot]
λ (α) > qα1−β/2

)

6 Ph(T̂λ 6 qα1−β/2) + β/2

and a condition which guaranteesPh(T̂λ 6 qα1−β/2) 6 β/2 will be enough to ensure that

Ph(Φλ,α = 0) 6 β.

The following lemma gives such a condition.

Lemma 6.1. Letα, β be fixed levels in]0; 1[. For anyλ = (j, k) ∈ Γ, if

Eh(T̂λ) >

√

2ζQj,n,T

β
+ qα1−β/2 (6.3)

for a particular ζ which is a positive constant depending onµc,R1 andR∞, where

Qj,n,T =
1

n
+

1

T
+

2−jn

T 2
,

then
Ph(T̂λ 6 qα1−β/2) 6 β/2,

so that
Ph(Φλ,α = 0) 6 β.

The proof of this lemma is postponed in Section 6.6.1.
In order to have an idea of the order of the right hand side of (6.3), we are now interested in the control of

qα1−β/2, the(1−β/2)-quantile ofq[U1,...,Un;Nc,tot]
λ (α). A sharp upper bound forqα1−β/2 is given by the following

lemma.

Lemma 6.2. Let α, β be fixed levels in]0; 1[. For anyλ = (j, k) ∈ Γ, there exists some positive constantκ
depending onβ, µc andR1 such that

qα1−β/2 6 κ

{

√

ln (2/α)

(

1√
n
+

1√
T

+
2−j/2√n

T

)

+ ln (2/α)

(√
j

n
+
j2j/2

n3/2
+

2−j/2

nT

)}

.

The proof of this lemma is postponed in Section 6.6.2.
Now, observe that if Condition (3.1) of Theorem 1 is satisfied, namely

|βλ| >
√

2ζQj,n,T

β
+ κ

{

√

ln (2/α)

(

1√
n
+

1√
T

+
2−j/2√n

T

)

+ ln (2/α)

(√
j

n
+
j2j/2

n3/2
+

2−j/2

nT

)}

,

then by Lemma 6.2,

|βλ| >
√

2ζQj,n,T

β
+ qα1−β/2.

We notice by Jensen’s inequality that|βλ| = |Eh(β̂λ)| 6 Eh(|β̂λ|) = Eh(T̂λ). Thus, Condition (6.3) of
Lemma 6.1 is satisfied and by Lemma 6.1,

Ph(Φλ,α = 0) 6 β,

which concludes the proof of Theorem 1.
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6.4 Proof of Theorem 2

Sinceu[U1,...,Un;Nc,tot]
α > α (see Proposition 2) and by settingαλ = αe−wλ , we have

Ph(Φα = 0) = Ph

(

∀λ ∈ Γ, T̂λ 6 q
[U1,...,Un;Nc,tot]
λ (u

[U1,...,Un;Nc,tot]
α e−wλ)

)

6 Ph

(

∀λ ∈ Γ, T̂λ 6 q
[U1,...,Un;Nc,tot]
λ (αλ)

)

6 min
λ∈Γ

Ph

(

T̂λ 6 q
[U1,...,Un;Nc,tot]
λ (αλ)

)

6 min
λ∈Γ

Ph(Φλ,αλ
= 0)

6 β,

as soon as there existsλ in Γ such thatPh(Φλ,αλ
= 0) 6 β.

First, let us give the precise values of the constants that appear in Condition (3.2) of Theorem 2:

C1 = 8

(

ζ

β
+ 3κ2 ln (2/α)

)

, C2 = 24κ2, C3 = 12κ2 ln2 (2/α), C4 = 24κ2 ln (2/α) andC5 = 12κ2,

whereζ andκ are the constants defined respectively by Lemma 6.1 and Lemma6.2. We recall thatQj,n,T =
1
n + 1

T + 2−jn
T 2 and we denoteRj,n,T = j

n2 + j22j

n3 + 2−j

n2T 2 .
Let us assume that there exists one finite subsetL of Γ such that Condition (3.2) of Theorem 2 is satisfied.

Thus,

‖hL‖22 > 8

(

(

ζ

β
+ 3κ2 ln (2/α)

)

DL + 3κ2
∑

λ∈L

wλ

)

[

1

n
+

n

T 2

]

+

(

12κ2 ln2 (2/α)DL + 24κ2 ln (2/α)
∑

λ∈L

wλ + 12κ2
∑

λ∈L

w2
λ

)

[

jL
n2

+
j2L2

jL

n3
+

1

n2T 2

]

.

Sinceln (2/α) + wλ = ln (2/αλ),

∑

λ∈L

β2λ >
∑

λ∈L

{

8

(

ζ

β
+ 3κ2 ln (2/αλ)

)[

1

n
+

n

T 2

]

+ 12κ2 ln2 (2/αλ)

[

jL
n2

+
j2L2

jL

n3
+

1

n2T 2

]}

and it implies that there exists one coefficientλ = (j, k) in Γ such that

β2λ > 8

(

ζ

β
+ 3κ2 ln (2/αλ)

)[

1

n
+

n

T 2

]

+ 12κ2 ln2 (2/αλ)

[

j

n2
+
j22j

n3
+

1

n2T 2

]

.

Seeing thatQj,n,T 6 2
[

1
n + n

T 2

]

andRj,n,T 6

[

j
n2 + j22j

n3 + 1
n2T 2

]

, we have:

β2λ > 4
ζ

β
Qj,n,T + 12κ2 ln (2/αλ)Qj,n,T + 12κ2 ln2 (2/αλ)Rj,n,T .

Since(
√
a+

√
b+

√
c)2 6 3(a+ b+ c) for all a, b, c nonnegative real numbers,

β2λ > 4
ζ

β
Qj,n,T + 4κ2 ln (2/αλ)

(

1√
n
+

1√
T

+
2−j/2√n

T

)2

+ 4κ2 ln2 (2/αλ)

(√
j

n
+
j2j/2

n3/2
+

2−j/2

nT

)2

and then,

β2λ >

(
√

2ζ

β
Qj,n,T + κ

{

√

ln (2/αλ)
( 1√

n
+

1√
T

+
2−j/2√n

T

)

+ ln (2/αλ)
(

√
j

n
+
j2j/2

n3/2
+

2−j/2

nT

)

}

)2

.

Finally, it is equivalent to

|βλ| >
√

2ζ

β
Qj,n,T + κ

{

√

ln (2/αλ)

(

1√
n
+

1√
T

+
2−j/2√n

T

)

+ ln (2/αλ)

(√
j

n
+
j2j/2

n3/2
+

2−j/2

nT

)}

,

which is exactly Condition (3.1) of Theorem 1 and we concludethe proof of Theorem 2 by applying Theorem 1.
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6.5 Proof of Theorem 3

With T proportional ton, Condition (3.2) of Theorem 2 is satisfied if there exists onefinite subsetL of Γ such
that

‖h‖22 > ‖h−hL‖22+C(α, β, µc, R1, R∞)

{

(

DL+
∑

λ∈L

wλ

) 1

n
+
(

DL+
∑

λ∈L

wλ+
∑

λ∈L

w2
λ

)

[

jL
n2

+
j2L2

jL

n3

]}

,

with jL = max{j > 0 : (j, k) ∈ L},
∑

λ∈Lwλ 6 C × (jL + 1)DL and
∑

λ∈L w
2
λ 6 C × (jL + 1)2DL.

Consequently, Condition (3.2) is satisfied if there exists one finite subsetL of Γ such that

‖h‖22 > ‖h− hL‖22 + C(α, β, µc, R1, R∞)
(jL + 1)

n
DL, (6.4)

with the maximal resolution leveljL such that2jL 6 n2/(lnn)4.
Let J > 1 that will be chosen later. We consider the following finite subsetΓJ of Γ

ΓJ = {λ = (j, k) ∈ Γ : 0 6 j 6 J, k ∈ Kj}.

We introduce for all integerD 6 |ΓJ | the subsetL of ΓJ such that{βλ, λ ∈ L} is the set of theD largest
coefficients among{βλ, λ ∈ ΓJ}. We can notice that

‖h − hL‖22 = ‖h− hΓJ
‖22 + ‖hΓJ

− hL‖22.

On the one hand, sinceh belongs toBδ
2,∞(R),

‖h− hΓJ
‖22 =

∑

j>J

∑

k∈Kj

β2(j,k) 6 C(δ)R22−2Jδ.

On the other hand, using equivalent definitions of weak Besovballs given by Lemma 2.2 of [21] and using for
instance page 211 of [11], we obtain:

‖hΓJ
− hL‖22 6 C(γ)R′′2+4γD−2γ ,

sinceh belongs toW∗
2

1+2γ

(R′), withR′′ an absolute positive constant depending eventually onγ andR′.

Taking

J = ⌊log2 (nε)⌋+ 1

for some0 < ε < 2, we obtain that the right hand side of (6.4) is upper bounded by

C(δ, γ,R,R′, α, β, µc, R1, R∞)

(

n−2εδ +D−2γ +
εD lnn

n

)

.

TakingD =
⌊

(n/ lnn)1/(1+2γ)
⌋

andε > γ/(δ(1 + 2γ)), we obtain that the right hand side of (6.4) is upper
bounded by

C(δ, γ,R,R′, α, β, µc, R1, R∞)
( n

lnn

)
−2γ
1+2γ

when2δ > γ/(1 + 2γ) and so,

ρ(Φα,Bδ
2,∞(R) ∩W∗

2
1+2γ

(R′), β) 6 C(δ, γ,R,R′, α, β, µc, R1, R∞)
( n

lnn

)
−γ

1+2γ
,

which concludes the proof of Theorem 3.
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6.6 Proof of lemmas

6.6.1 Proof of Lemma 6.1

Let λ ∈ Γ be fixed. From Markov’s inequality, we have that for anyx > 0,

Ph

(∣

∣

∣
T̂λ − Eh(T̂λ)

∣

∣

∣
> x

)

6
Var(T̂λ)

x2
. (6.5)

Let us controlVar(T̂λ) = Eh(T̂
2
λ ) − E

2
h(T̂λ). We easily obtain by Jensen’s inequality and by consideringthe

decomposition (6.2) ofG(ϕλ):

Var(T̂λ) 6 Var(β̂λ)

6
1

n2
Var(G0(ϕλ) +G(ϕλ))

6
2

n2
[

Var(G0(ϕλ)) + Var(G(ϕλ))
]

,

with

Var(G(ϕλ)) 6 C(R1, R∞)

{

n+
n2

T
+

2−jn3

T 2

}

,

by applying the second part of Proposition 1 of [34]. It remains to computeVar(G0(ϕλ)). For this purpose,
we apply the same methodology developed in Section 6.1.2 of [34]. We have the following decomposition of
Var(G0(ϕλ)) into two terms:

Var(G0(ϕλ)) = E(Var(G0(ϕλ)|U1, . . . , Un)) + Var(E(G0(ϕλ)|U1, . . . , Un)). (6.6)

We start by dealing with the first term of (6.6). We have

Var(G0(ϕλ)|U1, . . . , Un)

=

∫ T+1

−1

(

n
∑

i=1

[

ϕλ(x− Ui)−
n− 1

n
Eπ(ϕλ(x− U))

]

)2

µc dx

= µc

∫ T+1

−1

(

ϕλ(x− U1) +
n
∑

i=2

[ϕλ(x− Ui)− Eπ(ϕλ(x− U))]

)2

dx

= µc

∫ T+1

−1
ϕ2
λ(x− U1) dx+ 2µc

∫ T+1

−1
ϕλ(x− U1)

n
∑

i=2

[ϕλ(x− Ui)− Eπ(ϕλ(x− U))] dx

+ µc

∫ T+1

−1

n
∑

i=2

n
∑

k=2

[ϕλ(x− Ui)− Eπ(ϕλ(x− U))] [ϕλ(x− Uk)− Eπ(ϕλ(x− U))] dx.

Since
∫ T+1
−1 ϕ2

λ(x− U1) dx = ‖ϕλ‖22,

E(Var(G0(ϕλ)|U1, . . . , Un)) = µc‖ϕλ‖22 + µc

∫ T+1

−1

n
∑

i=2

E

(

[ϕλ(x− Ui)− Eπ(ϕλ(x− U))]2
)

dx

= µc‖ϕλ‖22 + (n− 1)µc

∫ T+1

−1
Varπ(ϕλ(x− U)) dx

6 µc‖ϕλ‖22 + (n− 1)µc(T + 2)
‖ϕλ‖22
T

6 C(µc)n, (6.7)

by using (6.1) and Lemma 6.1 of [34].
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Now, we deal with the second term of (6.6). We have

E(G0(ϕλ)|U1, . . . , Un) =

∫ T+1

−1
ϕλ(x− U1)µc dx+

n
∑

i=2

∫ T+1

−1
[ϕλ(x− Ui)− Eπ(ϕλ(x− U))]µc dx

= µc

n
∑

i=2

∫ T+1

−1
[ϕλ(x− Ui)− Eπ(ϕλ(x− U))] dx,

by using (6.1). Therefore,

Var(E(G0(ϕλ)|U1, . . . , Un)) = µ2cVar

(

n
∑

i=2

∫ T+1

−1
[ϕλ(x− Ui)− Eπ(ϕλ(x− U))] dx

)

= µ2c(n − 1)Var

(∫ T+1

−1
[ϕλ(x− U1)− Eπ(ϕλ(x− U))] dx

)

6 µ2c(n − 1)E

[

(∫ T+1

−1
|ϕλ(x− U1)| dx

)2
]

6 µ2c(n − 1)‖ϕλ‖21
6 C(µc)2

−jn. (6.8)

Finally, by combining inequalities (6.6), (6.7) and (6.8),we obtain:

Var(G0(ϕλ)) 6 C(µc)n.

Thus,

Var(T̂λ) 6
C(µc, R1, R∞)

n2

{

n+
n2

T
+

2−jn3

T 2

}

6 ζQj,n,T ,

with

Qj,n,T =
1

n
+

1

T
+

2−jn

T 2

andζ a positive constant depending onµc, R1 andR∞.
Takingx =

√

2ζQj,n,T/β in (6.5) and using the previous inequality leads to

Ph

(

∣

∣

∣
T̂λ − Eh(T̂λ)

∣

∣

∣
>

√

2ζQj,n,T/β

)

6
β

2
.

Therefore, ifEh(T̂λ) >
√

2ζQj,n,T/β + qα1−β/2, then

Ph(T̂λ 6 qα1−β/2) = Ph

(

T̂λ − Eh(T̂λ) 6 qα1−β/2 − Eh(T̂λ)
)

6 Ph

(∣

∣

∣T̂λ − Eh(T̂λ)
∣

∣

∣ > Eh(T̂λ)− qα1−β/2

)

6 Ph

(

∣

∣

∣T̂λ − Eh(T̂λ)
∣

∣

∣ >

√

2ζQj,n,T/β

)

6 β/2

and so

Ph(Φλ,α = 0) 6 β,

which concludes the proof of Lemma 6.1.
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6.6.2 Proof of Lemma 6.2

We focus first on the control of the conditional quantileq[U1,...,Un;Nc,tot]
λ (α). For allm ∈ N

∗, the(1−α)-quantile

q
[U1,...,Un;m]
λ (α) is the smallest real number such that

P

(

T̂ 0
λ,m > q

[U1,...,Un;m]
λ (α)

∣

∣

∣

∣

U1, . . . , Un;Nc,tot = m

)

6 α,

whereT̂ 0
λ,m is defined by (2.1). Letm ∈ N

∗ be fixed. We write

T̂ 0
λ,m =

1

n

∣

∣

∣

∣

∣

m
∑

k=1

S(ϕλ)(V
0
k )

∣

∣

∣

∣

∣

,

where(V 0
1 , . . . , V

0
m) is am-sample with uniform distribution on[−1;T + 1] and for anyv ∈ [−1;T + 1],

S(ϕλ)(v) =

n
∑

i=1

[

ϕλ(v − Ui)−
n− 1

n
Eπ(ϕλ(v − U))

]

.

SinceE(ϕλ(V − U)|U) = 0 for independent random variablesU andV uniformly distributed on[0;T ] and
[−1;T +1] respectively, theS(ϕλ)(V

0
k )’s are centered and independent conditionally onU1, . . . , Un. Then we

apply Bernstein’s inequality (for instance, see Proposition 2.9 of [26]) to get that for allω > 0, with probability
larger than1− 2e−ω,

∣

∣

∣

∣

∣

m
∑

k=1

S(ϕλ)(V
0
k )

∣

∣

∣

∣

∣

6

√

2mVar(S(ϕλ)(V
0
1 )|U1, . . . , Un)ω +

ω

3
sup

v∈[−1;T+1]

∣

∣S(ϕλ)(v)
∣

∣.

Thus, with probability larger than1− α,

T̂ 0
λ,m 6 f(U1, . . . , Un;m),

with

f(U1, . . . , Un;m) =
1

n

{

√

2m ln (2/α)VS +
ln (2/α)

3
BS

}

, (6.9)

where
VS = Var(S(ϕλ)(V

0
1 )|U1, . . . , Un) and BS = sup

v∈[−1;T+1]
|S(ϕλ)(v)|.

Therefore we haveq[U1,...,Un;m]
λ (α) 6 f(U1, . . . , Un;m) by definition of the quantileq[U1,...,Un;m]

λ (α).

Let us now provide a control in probability off(U1, . . . , Un;m). We control firstVS .

VS = Var

(

n
∑

i=1

ϕλ(V
0
1 − Ui)− (n− 1)Eπ

(

ϕλ(V
0
1 − U)

)

∣

∣

∣U1, . . . , Un

)

6 E

[

(

n
∑

i=1

ϕλ(V
0
1 − Ui)− (n− 1)Eπ(ϕλ(V

0
1 − U))

)2∣
∣

∣U1, . . . , Un

]

6
1

T + 2

∫ T+1

v=−1

(

n
∑

i=1

ϕλ(v − Ui)− (n− 1)Eπ(ϕλ(v − U))

)2

dv

6
2

T + 2

∫ T+1

v=−1





∑

16i,k6n

ϕλ(v − Ui)ϕλ(v − Uk) + (n− 1)2E2
π(ϕλ(v − U))



 dv

6
2

T + 2

{

∫ T+1

v=−1

n
∑

i=1

ϕ2
λ(v − Ui) dv +

∫ T+1

v=−1

∑

16i 6=k6n

ϕλ(v − Ui)ϕλ(v − Uk) dv

22



+
(n− 1)2

T 2

∫ T+1

v=−1

(
∫ T

0
|ϕλ|(v − u) du

)2

dv

}

6
2

T + 2







n‖ϕλ‖22 +
∫ T+1

v=−1

∑

16i 6=k6n

ϕλ(v − Ui)ϕλ(v − Uk) dv +
(n− 1)2

T 2
(T + 2)‖ϕλ‖21







6
C

T







n+
∑

16i 6=k6n

∫ T+1

v=−1
ϕλ(v − Ui)ϕλ(v − Uk) dv +

2−jn2

T







, (6.10)

with C an absolute positive constant. We have a decomposition of the second term in a sum of degenerate
U -statistics of order 0, 1 and 2. Indeed

∑

16i 6=k6n

∫ T+1

v=−1
ϕλ(v − Ui)ϕλ(v − Uk) dv =W0 + 2W1 +W2,

with

W2 =
∑

16i 6=k6n

∫ T+1

v=−1
[ϕλ(v − Ui)− Eπ(ϕλ(v − U))][ϕλ(v − Uk)− Eπ(ϕλ(v − U))] dv,

W1 =
∑

16i 6=k6n

∫ T+1

v=−1
ϕλ(v − Ui)Eπ(ϕλ(v − U)) dv

and

W0 = −
∑

16i 6=k6n

∫ T+1

v=−1
E
2
π(ϕλ(v − U)) dv.

First we controlW0:

|W0| 6
n(n− 1)(T + 2)

T 2
‖ϕλ‖21

6 C
2−jn2

T
, (6.11)

with C an absolute positive constant. Next we deal with the controlof W1. We notice that

W1 = (n− 1)

n
∑

i=1

∫ T+1

v=−1
ϕλ(v − Ui)Eπ(ϕλ(v − U)) dv

and consequently we have by using Lemma 6.3 of [34]

|W1| 6 (n− 1)

n
∑

i=1

∫ T+1

v=−1
|ϕλ|(v − Ui) dv

‖ϕλ‖1
T

6 C
2−jn2

T
, (6.12)

with C an absolute positive constant.
Now it remains to controlW2, with

W2 =
∑

16i<k6n

g(Ui, Uk),

where

g(Ui, Uk) = 2

∫ T+1

v=−1
[ϕλ(v − Ui)− Eπ(ϕλ(v − U))][ϕλ(v − Uk)− Eπ(ϕλ(v − U))] dv.
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One can apply Theorem 3.4 of [19] toW2 and−W2. It implies that there exist absolute positive constantsc1,
c2, c3 andc4 such that with probability larger than1− 2× 2.77e−ω ,

|W2| 6 c1C
√
ω + c2Dω + c3Bω

3/2 + c4Aω
2

for all ω > 0, where

• A = ‖g‖∞ 6 8‖ϕλ‖1‖ϕλ‖∞ 6 8;

• C2 = E(W 2
2 ) and we have

C2

=
∑

16i<k6n

E(g2(Ui, Uk))

6 4n(n − 1)E

[

(∫ T+1

v=−1
[ϕλ(v − U1)− Eπ(ϕλ(v − U))][ϕλ(v − U2)− Eπ(ϕλ(v − U))] dv

)2
]

6 4n(n − 1)EU,U ′

[

(
∫ T+1

v=−1

[

ϕ
(
λv − U)− Eπ(ϕλ(v − U))

][

ϕλ(v − U ′)− Eπ(ϕλ(v − U ′))
]

dv

)2
]

6 4n2EU,U ′

[(

∫ T+1

v=−1
ϕλ(v − U)ϕλ(v − U ′) dv − EU ′

(
∫ T+1

v=−1
ϕλ(v − U)ϕλ(v − U ′) dv

)

− EU

(∫ T+1

v=−1
ϕλ(v − U)ϕλ(v − U ′) dv

)

+ EU,U ′

(∫ T+1

v=−1
ϕλ(v − U)ϕλ(v − U ′) dv

)

)2]

6 Cn2

{

EU,U ′

[

(∫ T+1

v=−1
|ϕU

λ |(v)|ϕU ′

λ |(v) dv
)2
]

+

[

E(U,U ′)∼π⊗π

(∫ T+1

v=−1
|ϕU

λ |(v)|ϕU ′

λ |(v) dv
)]2

}

,

with C an absolute positive constant. But,

EU,U ′

[

(∫ T+1

v=−1
|ϕλ|(v − U)|ϕλ|(v − U ′) dv

)2
]

6 EU,U ′

(
∫ T+1

v=−1
|ϕλ|2(v − U)|ϕλ|(v − U ′) dv

∫ T+1

v=−1
|ϕλ|(v − U ′) dv

)

= EU,U ′

(∫ T+1

v=−1
|ϕλ|2(v − U)|ϕλ|(v − U ′) dv

)

‖ϕλ‖1

6 ‖ϕλ‖22
‖ϕλ‖21
T

and

EU,U ′

(∫ T+1

v=−1
|ϕλ|(v − U)|ϕλ|(v − U ′) dv

)

=

∫ T+1

v=−1
Eπ(|ϕλ|(v − U))Eπ(|ϕλ|(v − U ′)) dv

6 (T + 2)
‖ϕλ‖21
T 2

,

by using Lemma 6.3 of [34]. So,

C2
6 Cn2

{

2−j

T
+

2−2j

T 2

}

,

with C an absolute positive constant;
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• D = sup







E





∑

16k<i6n

g(Ui, Uk)ai(Ui)bk(Uk)



 : E

(

n
∑

i=2

ai(Ui)
2

)

6 1,E

(

n−1
∑

k=1

bk(Uk)
2

)

6 1







.

But, with the conditions on theai’s and thebk’s, we have:

E





∑

16k<i6n

g(Ui, Uk)ai(Ui)bk(Uk)





= 2E

(

n
∑

i=2

i−1
∑

k=1

∫ T+1

v=−1
[ϕλ(v − Ui)− Eπ(ϕλ(v − U))][ϕλ(v − Uk)− Eπ(ϕλ(v − U))] dvai(Ui)bk(Uk)

)

6 2

∫ T+1

v=−1
E

( n
∑

i=2

∣

∣ϕλ(v − Ui)− Eπ(ϕ
U
λ (v))

∣

∣|ai(Ui)|
)

E

( n−1
∑

k=1

∣

∣ϕλ(v − Uk)− Eπ(ϕ
U
λ (v))

∣

∣|bk(Uk)|
)

dv

6 2

∫ T+1

v=−1

√

(n− 1)Varπ(ϕλ(v − U))E

( n−1
∑

k=1

∣

∣ϕλ(v − Uk)− Eπ(ϕλ(v − U))
∣

∣|bk(Uk)|
)

dv

6 2

√

(n− 1)
‖ϕλ‖22
T

E

(

n−1
∑

k=1

∫ T+1

v=−1

∣

∣ϕλ(v − Uk)− Eπ(ϕλ(v − U))
∣

∣|bk(Uk)| dv
)

6 2

√

n− 1

T
‖ϕλ‖2E

(

2‖ϕλ‖1
n−1
∑

k=1

|bk(Uk)|
)

6 4

√

n− 1

T
‖ϕλ‖2‖ϕλ‖1

√
n− 1

6 4
n − 1√
T

‖ϕλ‖1‖ϕλ‖2,

by using Lemma 6.1 of [34]. Then,

D 6 C
2−j/2n√

T
,

with C an absolute positive constant;

• B2 = sup
u

(

n−1
∑

k=1

E(g2(u,Uk))

)

, with

E(g2(u,Uk))

= 4E

[

(∫ T+1

v=−1
[ϕλ(v − u)− Eπ(ϕλ(v − U))][ϕλ(v − Uk)− Eπ(ϕλ(v − U))] dv

)2
]

6 4E

[∫ T+1

v=−1

[

ϕu
λ(v)− Eπ(ϕ

U
λ (v))

]2∣
∣ϕUk

λ (v)− Eπ(ϕ
U
λ (v))

∣

∣ dv

∫ T+1

v=−1

∣

∣ϕUk

λ (v)− Eπ(ϕ
U
λ (v))

∣

∣ dv

]

6 8E

[∫ T+1

v=−1

[

ϕλ(v − u)− Eπ(ϕλ(v − U))
]2∣
∣ϕλ(v − Uk)− Eπ(ϕλ(v − U))

∣

∣ dv

]

‖ϕλ‖1

6
16

T

∫ T+1

v=−1

[

ϕλ(v − u)− Eπ(ϕλ(v − U))
]2
dv‖ϕλ‖21

6
64

T
‖ϕλ‖21‖ϕλ‖22,

by using Lemma 6.3 of [34]. Hence,

B2
6 C

2−jn

T
,

with C an absolute positive constant.
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Finally, we obtain for allω > 0, with probability larger than1− 2× 2.77e−ω ,

|W2| 6 C

{

2−j/2n√
T

√
ω +

2−jn

T

√
ω +

2−j/2n√
T

ω +
2−j/2√n√

T
ω3/2 + ω2

}

, (6.13)

with C an absolute positive constant.
Thus, by inequalities (6.10), (6.11), (6.12) and (6.13), for all ω > 0, with probability larger than1 − 2 ×

2.77e−ω ,

VS 6
C(ω)

T

{

n+
2−jn2

T
+

2−j/2n√
T

}

. (6.14)

Then it remains to computeBS. We recall that

BS = sup
v∈[−1;T+1]

∣

∣

∣

∣

∣

n
∑

i=1

[

ϕλ(v − Ui)−
n− 1

n
Eπ(ϕλ(v − U))

]

∣

∣

∣

∣

∣

6 B̃S +
‖ϕλ‖1
T

,

with B̃S = sup
v∈[−1;T+1]

∣

∣

∣

∣

∣

n
∑

i=1

[

ϕλ(v − Ui)− Eπ(ϕλ(v − U))
]

∣

∣

∣

∣

∣

. Since the Haar basis is considered here, we can

write for anyx ∈ R:

ϕλ(x) = 2j/2
(

1(2k+1)2−(j+1)<x6(k+1)2−j − 1k2−j6x6(2k+1)2−(j+1)

)

,

with λ = (j, k). Thus,

B̃S 6 2j/2
(

B̃1
S + B̃2

S

)

,

where

B̃1
S = sup

v∈[−1;T+1]

∣

∣

∣

∣

∣

n
∑

i=1

[

1k2−j6v−Ui6(2k+1)2−(j+1) − Eπ(1k2−j6v−U6(2k+1)2−(j+1))
]

∣

∣

∣

∣

∣

and

B̃2
S = sup

v∈[−1;T+1]

∣

∣

∣

∣

∣

n
∑

i=1

[

1(2k+1)2−(j+1)<v−Ui6(k+1)2−j − Eπ(1(2k+1)2−(j+1)<v−U6(k+1)2−j )
]

∣

∣

∣

∣

∣

.

We observe that

B̃1
S 6 sup

Bv,v∈R

∣

∣

∣

∣

∣

n
∑

i=1

[

1Bv (Ui)− Eπ

(

1Bv (U)
)]

∣

∣

∣

∣

∣

,

where for anyv ∈ R, Bv = [v − (2k + 1)2−(j+1); v − k2−j ]. We setB = {Bv, v ∈ R} and for every integer
n,mn(B) = sup

A⊂R,|A|=n
|{A ∩Bv, v ∈ R}|. It is easy to see that

mn(B) 6 1 +
n(n+ 1)

2

and so, the VC-dimensionV of B defined bysup{n > 0,mn(B) = 2n} is bounded by 2 (see Definition 6.2

of [26]). Let us defineσ2 = max
{

2−(j+1),K2V
(

1 + j+1
2 ln 2

)

/n
}

with K the absolute constant given by

Lemma 6.4 of [26]. The quantityσ2 satisfies in particular the two following assertions:

∀B ∈ B,Pπ[U ∈ B] 6 σ2 and σ > K
√

V(1 + ln (σ−1 ∨ 1))/n.
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Indeed, ifσ2 = 2−(j+1), we haveK2V(1 + ln (σ−1 ∨ 1))/n 6 K2V(1 + ln (2(j+1)/2))/n 6 σ2, or else if
σ2 = K2V

(

1 + j+1
2 ln 2

)

/n, we haveσ−1 6 2(j+1)/2 and so,

K2V(1 + ln (σ−1 ∨ 1))/n 6 K2V(1 + ln (2(j+1)/2))/n = σ2.

By applying Lemma 6.4 of [26], we obtain:

E(B̃1
S) 6

K

2
σ
√

V(1 + | lnσ|)

6
K

2
2−(j+1)/2

√

V
(

1 +
j + 1

2
ln 2

)

+
K

2
KV

(

1 +
j + 1

2
ln 2

)

/
√
n

6 C

{

2−j/2
√

j +
j√
n

}

,

with C a positive absolute constant. So, with a similar argument for B̃2
S, we obtain for anyλ in Γ

E(B̃S) 6 C

{

√

j +
j2j/2√
n

}

.

Consequently,

E(BS) 6 C

{

√

j +
j2j/2√
n

+
2−j/2

T

}

,

with C an absolute positive constant and from Markov’s inequality, we have that for allω > 0

P

(

BS > C(ω)

{

√

j +
j2j/2√
n

+
2−j/2

T

})

6 e−ω. (6.15)

Thus, by combining inequalities (6.9), (6.14) and (6.15), we obtain for allω > 0, with probability larger
than1− (1 + 2× 2.77)e−ω ,

f(U1, . . . , Un;m)

6
C(ω)

n

{

√

m ln (2/α)

(

n

T
+

2−jn2

T 2
+

2−j/2n

T 3/2

)

+ ln (2/α)

(

√

j +
j2j/2√
n

+
2−j/2

T

)}

.

Furthermore,N[−1;T+1] ∼ P((T + 2)µc + n‖h‖1). Hence,

E(N[−1;T+1]) 6 C(µc, R1)(n+ T ).

From Markov’s inequality, we have that for allω > 0

P
(

N[−1;T+1] > C(ω, µc, R1)(n + T )
)

6 e−ω.

Then, we chooseω such that this quantity(2 × 2.77 + 2)e−ω is equal toβ/2. So, with probability larger
than1− β/2,

f(U1, . . . , Un;m)

6
C(β, µc, R1)

n

{

√

ln (2/α)

√

(n+ T )

(

n

T
+

2−jn2

T 2
+

2−j/2n

T 3/2

)

+ ln (2/α)

(

√

j +
j2j/2√
n

+
2−j/2

T

)}

6
C(β, µc, R1)

n

{

√

ln (2/α)

√

n+
n2

T
+

2−jn3

T 2
+ ln (2/α)

(

√

j +
j2j/2√
n

+
2−j/2

T

)}
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6 C(β, µc, R1)

{

√

ln (2/α)

(

1√
n
+

1√
T

+
2−j/2√n

T

)

+ ln (2/α)

(√
j

n
+
j2j/2

n3/2
+

2−j/2

nT

)}

.

Therefore by definition ofqα1−β/2,

qα1−β/2 6 C(β, µc, R1)

{

√

ln (2/α)

(

1√
n
+

1√
T

+
2−j/2√n

T

)

+ ln (2/α)

(√
j

n
+
j2j/2

n3/2
+

2−j/2

nT

)}

,

which concludes the proof of Lemma 6.2.
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