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Non-parametric likelihood based estimation of linear filters for

point processes

Niels Richard Hansen

Abstract We consider models for multivariate point

processes where the intensity is given non-parametrically

in terms of functions in a reproducing kernel Hilbert
space. The likelihood function involves a time integral

and is consequently not given in terms of a finite num-

ber of kernel evaluations. The main result is a repre-

sentation of the gradient of the log-likelihood, which
we use to derive computable approximations of the log-

likelihood and the gradient by time discretization. These

approximations are then used to minimize the approxi-

mate penalized log-likelihood. For time and memory ef-

ficiency the implementation relies crucially on the use of
sparse matrices. As an illustration we consider neuron

network modeling, and we use this example to investi-

gate how the computational costs of the approximations

depend on the resolution of the time discretization. The
implementation is available in the R package ppstat.

Keywords Multivariate point processes · Penaliza-
tion · Reproducing kernel Hilbert spaces · ppstat

1 Introduction

Reproducing kernel Hilbert spaces have become widely

used in statistics and machine learning, [9], [4], [15],

where they provide a means for non-parametric esti-

mation of non-linear functional relations. The typical
application, using the machine learning terminology, is

the prediction of targets given inputs. The inputs are

embedded via a feature map into a Hilbert space, and

an estimator of the predictor of the targets given the
embedded inputs is obtained by penalized estimation
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in the linear Hilbert space – using the Hilbert space

norm for penalization. With a non-linear feature map

the resulting predictor is non-linear in the original input
space. The major benefit of reproducing kernel Hilbert

spaces is that the kernel implicitly determines a feature

map and thus an embedding, and using the so-called

representer theorem the estimation problem is turned
into a finite dimensional optimization problem given in

terms of a finite number of kernel evaluations, see [12]

for a recent review.

In this paper we show how to use reproducing ker-

nel Hilbert space techniques for non-parametric point
process modeling of e.g. neuron network activity. A net-

work of neurons is a prime example of an interacting dy-

namical system, and the characterization and modeling

of the network activity is a central scientific challenge,
see e.g. [14]. Data consist of a collection of spike times,

which can be measured simultaneously for multiple neu-

rons. The spike times are discrete event times and the

appropriate modeling framework is that of multivariate

point processes. From a machine learning perspective
the aim is to predict the next spike time of a given neu-

ron (the target) as a function of the history of the spike

times for all neurons (the input).

A natural modeling approach is via the conditional
intensity, which specifies how the history affects the im-

mediate intensity – or rate – of the occurrence of an-

other spike. The negative log-likelihood for a point pro-

cess model is given directly in terms of the intensity,

but the representer theorem, Theorem 9 in [12], does
not hold in general, see [8]. This is the main problem

that we address in this paper.

To motivate our general non-parametric model class

we briefly review the classical linear Hawkes process
introduced by Hawkes in 1971, [11]. With (N j

t ) denoting

a counting process of discrete events, e.g. spike times,

for j = 1, . . . , p, the intensity of a new event for the i’th

http://arxiv.org/abs/1304.0503v3
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process is

X i
t =

p
∑

j=1

∫ t−

0

eαij(t−s)+βij dN j
s . (1)

This intensity, or rate, specifies the conditional proba-

bility of observing an event immediately after time t in

the sense that

P (N i
t+δ −N i

t = 1 | Ft) ≃ δX i
t

where Ft denotes the history of all events preceeding
time t, see e.g. [13] or [1]. Note the upper integration

limit, t−, which means that the integral w.r.t. N j
s only

involves events strictly before t. This is an essential re-

quirement for correct likelihood computations, see (3)

below.

It follows from (1) that if σ < t denotes the last

event before t,

X i
t = eαij(t−σ)X i

σ+.

This provides an efficient way of computing the inten-
sity process. In fact, it follows that (X1

t , . . . , X
p
t ) is a p-

dimensional Markov process, and that there is a one-to-

one correspondance between this process and the mul-

tivariate counting process (N1
t , . . . , N

p
t ).

Our interest is to generalize the model given by (1)

to non-exponential integrands, and, in particular, to al-

low those integrands to be estimated non-parametrically.

A consequence is that the Markov property will be lost,
and that the intensity computation will be more de-

manding.

The integral (1) can be understood as a linear filter

of the multivariate counting process (N1
t , . . . , N

p
t ), and

we will consider the generalization of such linear filters

to the case where

X i
t =

p
∑

j=1

∫ t

0

gij(t− s) dN j
s (2)

with gij general functions in a suitable function space.

We will, moreover, allow for non-linear transformations

of X i
t , such that the intensity is given by ϕ(X i

t ) for a
general but fixed function ϕ.

In this paper we are particularly concerned with

efficient computation and minimization of the penal-

ized negative log-likelihood as a function of the non-
parametric components gij , with gij in a reproducing

kernel Hilbert spaceH. We consider algorithms for stan-

dard quadratic penalization
∑

ij ||gij ||
2, with || · || the

Hilbert space norm on H. We will throughout assume
that the gij -functions are variation independent, which

imply that the computation and minimization of the

joint penalized negative log-likelihood can be split into

p separate minimization problems. To ease notation we

will thus subsequently consider the modeling of one

counting process Nt in terms of N1
t , . . . , N

p
t , where Nt

can be any of the p counting processes.

2 Likelihood computations for point processes

specified by linear filters

We assume that we observe a simple counting process

(Ns)0≤s≤t of discrete events on the time interval [0, t].
The jump times of Ns are denoted τ1 < . . . < τNt

. We

let H denote a reproducing kernel Hilbert space of func-

tions on [0, t] with reproducing kernel R : [0, t]× [0, t] →
R, and we let g = (g1, . . . , gp) ∈ Hp. We assume that R

is continuous in which case the functions in H are also
continuous, see Theorem 17 in [3]. With N1, . . . , Np

counting processes with corresponding event times σi
j

we introduce

Xs(g) =

p
∑

i=1

∫ s−

0

gi(s− u) dN i
u

=

p
∑

i=1

∑

j:σi
j
<s

gi(s− σi
j).

As a function of g we note that Xs : Hp → R being a

sum of function evaluations is a continuous linear func-

tional. The process Xs(g) is called the linear predictor

process. We consider the model of N where the inten-

sity is given as λs(g) = ϕ(Xs(g)) with ϕ : R → [0,∞)

a known function. The objective is to estimate the gi-

functions in H. In most applications we will include
a baseline parameter as well, in which case the linear

predictor becomes β0 +Xs(g). In order not to compli-

cate the notation unnecessarily we take β0 = 0 in the

theoretical presentation.

From Corollary II.7.3 in [1] it follows that the nega-

tive log-likelihood w.r.t. the homogeneous Poisson pro-
cess is given as

ℓ(g) =

∫ t

0

ϕ(Xs(g)) ds−
Nt∑

k=1

logϕ(Xτk(g)). (3)

If ϕ is the identity the time integral has a closed form
representation in terms of the antiderivatives of gi, but

in general it has to be computed numerically.

The following proposition gives the gradient of ℓ in

the reproducing kernel Hilbert space. This result is cen-

tral for our development and understanding of a practi-

cally implementable minimization algorithm of the pe-
nalized negative log-likelihood.



Point process likelihood inference of linear filters 3

Proposition 1 If ϕ is continuously differentiable the

gradient in H w.r.t. gi is

∇iℓ(g) =
∑

j

∫ t

σi
j

ϕ′(Xs(g))R(s− σi
j , ·) ds

−
∑

j

∑

k:σi
j
<τk

ϕ′(Xτk(g))

ϕ(Xτk(g))
R(τk − σi

j , ·). (4)

The proof of Proposition 1 is given in Section 6.

It is a special case of Proposition 3.6 in [8] if H is a

Sobolev space. However, since we restrict attention to
counting process integrators in this paper, in contrast to

[8] where more general integrator processes are allowed,

we can give a relatively elementary proof for H being

any reproducing kernel Hilbert space with a continuous
kernel.

Computations of ℓ as well as the gradient involve the
computation of Xs(g). Without further assumptions a

direct computation of Xs(g) on a grid of n time points

involves in the order of n
∑p

i=1N
i
t evaluations of the

gi-functions. In comparison, (1) can be computed re-
cursively with the order of np evaluations of the expo-

nential function.

In this paper we consider three techniques for re-

ducing the general costs of computing Xs(g).

– Bounded memory. The filter functions gi are re-
stricted to have support in [0, A] for a fixed A.

– Preevaluations. The filter functions are preevalu-

ated on a grid in [0, A].

– Basis expansions. The filter functions are of the

form g =
∑

k βkBk for fixed basis functions Bk and

Xs(g) =
∑

k

βkXs(Bk).

The linear filters Xs(Bk) are precomputed.

3 Time discretization

In this section we discuss the time discretizations nec-

essary for the practical implementation of an optimiza-

tion algorithm in H. We assume that all filter functions

gi have a prespecified support restricted to [0, A], and

that H is restricted to be a space of functions with sup-
port in [0, A]. We approximate time integrals by left

Riemann sums with functions evaluated in the grid

0 = t0 < t1 < . . . < tn = t

and corresponding interdistances ∆l = tl − tl−1 for
l = 1, . . . , n. We will assume that the collection of event

times is a subset of this grid and denote the correspond-

ing subset of indices by Ijump ⊆ {0, . . . , n}.

We need an implementable representation of the lin-

ear predictor as well as the functional gradient. A pos-

sible representation of gi itself is via the N -dimensional

vector gi of its evaluations in a grid

0 = δ0 < δ1 < . . . < δN = A,

that is, gik = gi(δk) for k = 0, . . . , N − 1. We let g

denote the N × p matrix with columns gi’s for i =

1, . . . , p. Define

hlik = #{j | δk ≤ tl − σi
j < δk+1}1(σ

i
j < tl)

as the number of events for N i in (tl − δk+1, tl − δk].

The indicator 1(σi
j < tl) ensures that if σi

j = tl then

hli0 = 0, which, in turn, ensures that the approxima-
tion of the linear predictor below does not anticipate

events. It is the intention that the grid is chosen such

that the hlik’s take the values 0 and 1 only. The linear

predictor for given gi’s evaluated in the grid points is

approximated as

ξl :=
∑

i,k

hlikgik (5)

≃

p
∑

i=1

∑

j:tl−A≤σi
j
<tl

g(tl − σi
j) (6)

=

p
∑

i=1

∫ tl−

tl−A

gi(tl − u)dN i
u.

To formally handle the lower limit in the integral cor-
rectly, hli(N−1) should be redefined to be 1 if σi

j =

tl − A. Such a redefinition will typically have no de-

tectable consequences, whereas handling the case σi
j =

tl correctly is crucial to avoid making the approxima-

tion anticipating. An approximation of the negative log-
likelihood in g is then obtained as

ℓapprox(g) =
∑

l

ϕ(ξl)∆l −
∑

l∈Ijump

logϕ(ξl). (7)

If we use the same δ-grid for evaluating the kernel R

we get the gradient approximation from Proposition 1

∇iℓ
approx(g) =

∑

k

(
∑

l

ϕ′(ξl)∆lhlik

)

R(δk, ·)

−
∑

k




∑

l∈Ijump

ϕ′(ξl)

ϕ(ξl)
hlik



R(δk, ·). (8)

We observe that

∇iℓ
approx(g) ∈ span{R(δ0, ·), . . . , R(δN−1, ·)}.

The consequence is that any descent algorithm based

on ∇iℓ
approx(g) stays in the finite dimensional subspace

spanned by R(δ0, ·), . . . , R(δN−1, ·) – if we start in this

subspace. As we show below, there is a unique element
in this subspace with evaluations gi, and the discretiza-

tion effectively restricts gi to be a function in this sub-

space.
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3.1 The direct approximation

The N ×N Gram matrix G is given as Gkl = R(δk, δl).
The vector gi can be identified with the unique function

gi =
∑

k β
0
ikR(δk, ·) obtained by solving

gi = Gβ0
i .

This is the minimal norm element whose evaluations
coincide with gi. Since G is positive definite there are

severel possible ways to factorize G such that G =

UUT . For the Cholesky factorization U is lower trian-

gular, and for the spectral decomposition the columns

of U are orthogonal. For any such factorization

gi = U UTβ0
i

︸ ︷︷ ︸

βi

= Uβi.

Note how the β0
i - and thus the βi-parameter represen-

tation of the evaluations ∇iℓ
approx(g)(δk) can be read

of directly from (8). We observe that the squared norm

of gi equals

||gi||
2 = (β0

i )
T
Gβ0

i = ||βi||
2
2

with || · ||2 denoting the ordinary Euclidean norm on

RN . The parametrization in terms of βi is thus an isom-

etry from RN into H. The objective function – the pe-

nalized negative log-likelihood approximation – can be
computed as

ℓapprox(Uβ) + λ
∑

i

||βi||
2
2 (9)

using (7), and the βi-gradient can be computed as

UT∇β
i ℓ

approx(Uβ) + 2λβi

where

∇β
i ℓ

approx(g)k =
∑

l

ϕ′(ξl)∆lhlik

−
∑

l∈Ijump

ϕ′(ξl)

ϕ(ξl)
hlik (10)

The use of (7) and (10) – and (5) – requires the com-

putation of hlik. This can either be done on-the-fly (a

matrix free method) or by precomputing the n× (pr)-
dimensional sparse matrix H = (hlik). For computa-

tional efficiency, an incomplete factorization of G with

U an N × q matrix is used in practice.

3.2 The basis approximation

Choose a set of basis functions B1, . . . , Bq such that

span{B1, . . . , Bq} ⊆ span{R(δ0, ·), . . . , R(δN−1, ·)}.

Precompute the n× q model matrices Zi of basis filters

Zi
lj =

∑

k

hlikBj(δk).

With gi =
∑

j β
0
ijBj , the n-dimensional linear predic-

tor is given as ξ =
∑

i Z
iβ0

i and ℓapprox(β0) can be

computed using (7). The Gram matrix, G, is given by

Gkl = 〈Bk, Bl〉, and we let G = V V T . In terms of the

parametrization βi = V Tβ0
i we find that

||gi||
2 = (β0

i )
T
Gβ0

i = ||βi||
2
2,

thus βi provides an isometric parametrization from R
q

into H. The objective function becomes

ℓapprox(V −1β) + λ
∑

i

||βi||
2
2 (11)

and the gradient is

∑

l

ϕ′(ξl)∆l(Z
i
lV

−1)T −

∑

l∈Ijump

ϕ′(ξl)

ϕ(ξl)
(Zi

lV
−1)T + 2λβi

= (V −1)T





∑

l

ϕ′(ξl)∆l(Z
i
l)

T
−

∑

l∈Ijump

ϕ′(ξl)

ϕ(ξl)
(Zi

l)
T



+ 2λβi

= (V −1)T∇
0
i l

approx
t (V −1β) + 2λβi

where

∇
0
i l

approx
t (β0) =

∑

l

ϕ′(ξl)∆l(Z
i
l)

T
−

∑

l∈Ijump

ϕ′(ξl)

ϕ(ξl)
(Zi

l)
T

is the gradient in the β0
i parametrization.

4 Results

We have implemented both the direct approximation

and the basis expansion using cubic B-spline basis func-

tions and applied them to a test data set of neuron spike

times. The data set consisted of multichannel measure-
ments of spinal neurons from a turtle. The measure-

ments were replicated 5 times and each time the spike

activity was recorded over a period of 40 seconds. A 10

seconds stimulation was given within the observation

window. We used the spike times for 3 neurons during
the stimulation period, see Figure 1

The likelihood and gradient algorithms are imple-

mented in the R package ppstat, which supports op-

timization of the objective function via the R function
optim using the BFGS-algorithm. The ppstat package

offers a formula based model specification with an in-

terface familiar from glm. The direct approximation is
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Fig. 1 Left: Data example consisting of three spike tracks from five independent multichannel measurements of turtle spinal
neurons during a stimulation period. Middel: Estimates of the hi’s in the model of v2.2 using the direct approximation to
minimize (9) with n = 20609, N = 200 and q = 33. The value of λ = 0.016 was chosen data adaptively. The baseline estimate

is β̂0 = 3.83. Right: Similar estimates of the hi’s using a B-spline basis expansion to minimize (11) with q = 33, and with

λ = 0.088 chosen data adaptively. The baseline estimate is β̂0 = 3.85. The point-wise approximate 95% confidence intervals
were obtained using a sandwich estimator of the asymptotic variance.

implemented via the ppKernel function and the basis

expansion is implemented via the ppSmooth function.
A typical call has the form

ppKernel(v2.2 ~ k(v13.2) + k(v2.2) + k(v5.1),

data = spikeData,

family = Hawkes("logaffine"),

support = 0.2

)

which will include a baseline parameter in addition to

the three non-parametric filter functions. The data set
contained in the object spikeData must be of class

MarkedPointProcess from the supporting R package

processdata. The grid of n time points is currently

determined when the MarkedPointProcess object is

constructed. The choice of ϕ is specified by the “in-
verse link function” – being "logaffine" in the call

above. This function will be used throughout, and it is

given as

ϕ(x) =

{
ex for x ≤ 0

x+ 1 for x > 0.

It maps R into (0,∞) and is continuously differentiable.
The benefit of using this ϕ over the exponential func-

tion is that the exponential function tends to produce

models that are unstable or even explodes in finite time.

We will not pursue the details. See [6] for details on sta-

bility.
Figure 1 shows the estimated hi’s obtained using ei-

ther the direct approximation with the Sobolev kernel

or the basis expansion with a B-spline basis. The esti-

mates were computed by minimizing (9) and (11), re-
spectively. The Sobolev kernel is the reproducing kernel

for the Sobolev Hilbert space consisting of twice weakly

differentiable functions with the second derivative being

square integrable. Its precise form depends on which in-

ner product is chosen, but for common choices R(δk, ·)
is a cubic spline.

The choice of the penalization parameter was made
data adaptively by minimizing a TIC-criterion, see [7].

We will not pursue the details of the model selection

procedure here, but focus on the efficiency of the com-

putations of the likelihood and gradient. The resulting

model shows that a v2.2 spike results in a depression of
the v2.2-intensity in the first 0.1 seconds after the spike

followed by an elevation of the v2.2-intensity. A v13.2

spike appears to result in a small but significant eleva-

tion of the v2.2-intensity, whereas a v5.1 spike appears
to have no significant effect on the v2.2-intensity.

We investigated the memory usage and the com-

putation times of both approximations. The memory
usage was obtained using the R function object.size

and the computation times were computed as the aver-

age of 40 replicated likelihood or gradient evaluations.

The interest was on how they scale with the numbers n,
N and q that determine the resolution of the time dis-

cretization and the dimension of the actual parameter

space. For the basis expansion the number of B-spline

basis functions was chosen explicitly to be either q = 33

or q = 100, and the choice of N only affects the precom-
putation of the model matrices and not the likelihood

and gradient computations. For the direct approxima-

tion the implementation uses the spectral decomposi-

tion, and q is determined by a threshold on the size of
the eigenvalues for G relative to the largest eigenvalue.

The choice of threshold was tuned to result in q = 33

or q = 100. The implementation relies on precomputa-
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Fig. 2 Top: Memory usage for storing the H-matrix for the direct approximation ( ) and the Z-matrix for basis expansion
( ) for N = 100, 400 and q = 33, 100. Middel: Log-likelihood computation time. Bottom: Gradient computation time.

tion of the H or Z matrices, which are stored as sparse

matrices as implemented in the R package Matrix.

Figure 2 shows that basis expansion used more mem-

ory for storing Z and that the memory usage as a func-

tion of n had a somewhat larger slope than for the di-

rect approximation. We should note that the memory
usage for neither of the methods showed a noticeable

dependence upon N or q. Storing the matrices as non-

sparse matrices the Z-matrix required 119 MB and the

H-matrix required 465 MB for n = 50000,N = 400 and
q = 100. In comparison, the sparse versions required 8

MB and 1.5 MB, respectively.

Figure 2 shows, furthermore, that likelihood and

gradient computations were generally faster when the

basis expansion was used. More importantly, Figure 2

shows that computation time for the direct approxi-
mation depended upon N as well as q, and that the

computation times for the basis expansion, using the

B-spline basis, were remarkedly independent of q.

5 Discussion

The two approximations considered in this paper differ

in terms of what is precomputed. Computing the matrix

H upfront as in the direct approximation should require
only a fraction of the memory required for storing the

Z-matrices. This was confirmed by our implementation.

We also showed that the storage requirements for the

direct approximation did not depend noticeably on the
number N of δ-grid points when H is stored as a sparse

matrix. The tradeoff is an increased computation time,

which depends on the resolution determined by N and

q.

The storage requirements for Z can easily become

prohibitively large. A choice of basis functions with lo-

cal support, such as B-splines used here, can compen-
sate partly for this. It is unlikely that it is useful to

precompute ZiV −1, as this will destroy the computa-

tional benefits of the basis with local support.
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For the basis expansion it is possible to precompute

the model matrix in a sligthly different and more direct

way. Instead of precomputing the q ×N basis function

evaluations Bj(δk) we can compute Zi
lj directly as

Zi
lj =

∑

k:tl−A<σi
k
<ti

Bj(tl − σi
k).

This may be more accurate but since n≫ N in typical
applications this comes at the cost of many more basis

function evaluations. Whether this is critical in terms

of the time to compute Zi depends upon how costly a

single basis function evaluation is relative to the com-

putation of the hlik’s. We have not presented data on
the computational costs of the precomputations, but

they were observed to be small compared to the costs

of the actual optimization.

We observed that the fitted models obtained by ei-

ther the direct approximation using the Sobolev kernel

or the B-spline basis expansion were almost identical.

This is not surprising given the fact that R(δk, ·) is a
cubic spline. In the actual implementation there are mi-

nor differences – for the B-spline expansion the linear

part is, for instance, not penalized whereas all parts of

the kernel fit is penalized. In conclusion, the B-spline
basis expansion is currently to be preferred if the stor-

age requirements can be met. The implementation of

the direct approximation does, however, offer an easy

way to use alternative kernels and thus alternative re-

producing kernel Hilbert spaces.

We illustrated the general methods and the imple-

menation using neuron network data. Neuron network
activity is just one example of a multivariate interact-

ing dynamical system that is driven by discrete events.

Other examples include high-frequency trading of mul-

tiple financial assets, see [10], and chemical reaction

networks as discussed in [2] and [5]. The Markovian lin-
ear Hawkes model (1) was also considered in Chapter

7 in [10], and the typical models of chemical reactions

are Markovian multitype birth-death processes. Marko-

vian models are often computationally advantageous, as
they offer more efficient intensity and thus likelihood

computations. With the implementation in the R pack-

age ppstat we have made more flexible yet computa-

tionally tractable non-parametric and non-Markovian

models available.

6 Proof of Proposition 1

First note that since function evaluations are repre-

sented in terms of the kernel by inner products we have

that

Xs(g) =

p
∑

i=1

∑

j:σi
j
<s

〈R(s− σi
j , ·), gi〉

=

p
∑

i=1

〈
∑

j:σi
j
<s

R(s− σi
j , ·), gi

〉

. (12)

If ψ is a continuous differentiable function we find

that

ψ(Xs(g + εh))− ψ(Xs(g))

ε

=
ψ(Xs(g) + εXs(h))− ψ(Xs(g))

ε
−→ ψ′(Xs(g))Xs(h)

for ε→ 0. This is clearly a continuous linear functional.

Using (12) and differentiating only w.r.t. the i’th coor-
dinate of g we find that the corresponding gradient in

H is

∇iψ(Xs(g)) = ψ′(Xs(g))
∑

j:σi
j
<s

R(s− σi
j , ·).

Taking ψ = logϕ this yields the gradient of the second

term in the negative log-likelihood,
∑Nt

k=1 logϕ(Xτk(g)),

directly. For the first term we take ψ = ϕ, but we need

to ensure that we can interchange the order of integra-
tion and differentiation. To this end the following norm

bound on ∇iϕ(Xs(g)) is useful

||∇iϕ(Xs(g))|| ≤ |ϕ′(Xs(g))|
∑

j:σi
j
<s

||R(s− σi
j , ·)||

≤ CtN
i
t sup
s∈[0,t]

√

R(s, s) <∞.

Here Ct = sups∈[0,t] |ϕ
′(Xs(g))| is finite because Xs(g)

is continuous in s and ϕ′ is assumed continuous. We

have also used that ||R(s− σi
j , ·)||

2 = R(s− σi
j , s− σi

j)

and the fact that R is continuous to conclude that the

bound is finite. The bound shows that

∑

j

∫ t

σi
j

ϕ′(Xs(g))R(s− σi
j , ·) ds

is an element in H and the required interchange of in-
tegration and differentiation is justified by the bound.

This completes the proof. ⊓⊔
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Nonparametric likelihood based estimation of linear filters for

point processes

Niels Richard Hansen

Abstract We consider models for multivariate point

processes where the intensity is given nonparametri-

cally in terms of functions in a reproducing kernel Hilbert
space. The likelihood function involves a time integral

and is consequently not given in terms of a finite num-

ber of kernel evaluations. The main result is a repre-

sentation of the gradient of the log-likelihood, which
we use to derive computable approximations of the log-

likelihood and the gradient by time discretization. These

approximations are then used to minimize the approxi-

mate penalized log-likelihood. For time and memory ef-

ficiency the implementation relies crucially on the use of
sparse matrices. As an illustration we consider neuron

network modeling, and we use this example to investi-

gate how the computational costs of the approximations

depend on the resolution of the time discretization. The
implementation is available in the R package ppstat.

Keywords Multivariate point processes · Penaliza-
tion · Reproducing kernel Hilbert spaces · ppstat

1 Introduction

Reproducing kernel Hilbert spaces have become widely
used in statistics and machine learning, [4], [11], [17],

where they provide a means for nonparametric estima-

tion of nonlinear functional relations. They have a long

history in the statistical literature, with noteworthy re-
lations to splines and other basis expansion techniques,

as well as Gaussian process theory, see [3], [19]. A typ-

ical application is to estimation of a mean value that

Niels Richard Hansen
University of Copenhagen, Department of Mathematical Sci-
ences, Universitetsparken 5, 2100 Copenhagen, Denmark.
Tel.: +45 - 35 32 07 83
E-mail: Niels.R.Hansen@math.ku.dk

depends on one or more predictor variables. As a func-

tion of the predictor variables the mean is assumed to

be in a Hilbert space, and the estimator is obtained by
penalized estimation in the linear Hilbert space – us-

ing the Hilbert space norm for penalization. If we use

the squared error loss, the so-called representer theorem

states that for a reproducing kernel Hilbert space the
estimation problem is, in fact, a finite dimensional opti-

mization problem. The optimization problem is given in

terms of a finite number of kernel evaluations, see [14]

for a recent review. The representer theorem holds for

any loss function, which is a function of a finite number
of continuous linear functionals.

In this paper we show how to use reproducing kernel

Hilbert space techniques for nonparametric point pro-

cess modeling of e.g. neuron network activity. A net-

work of neurons is a prime example of an interacting

dynamical system, and the characterization and mod-
eling of the network activity is a central scientific chal-

lenge, see e.g. [16]. Data consist of a collection of spike

times, which can be measured simultaneously for mul-

tiple neurons. The spike times are discrete event times
and the appropriate modeling framework is that of mul-

tivariate point processes. From a prediction viewpoint

the objective is to predict the next spike time of a given

neuron as a function of the history of the spike times

for all neurons.

A natural modeling approach is via the conditional

intensity, which specifies how the history affects the im-
mediate intensity – or rate – of the occurrence of an-

other spike. The negative log-likelihood for a point pro-

cess model is given directly in terms of the intensity,

but the representer theorem, Theorem 9 in [14], does
not hold in general, see [10]. The reason is that the log-

likelihood involves a time-integral, see (4) below, and

the log-likelihood is consequently not a function of a fi-

http://arxiv.org/abs/1304.0503v3


2 Niels Richard Hansen

nite number of continuous linear functionals in general.

This is the main problem that we address in this paper.

To motivate our general nonparametric model class

we briefly review the classical linear Hawkes process

introduced by Hawkes in 1971, [13]. We consider in
the following p different counting processes of discrete

events, e.g. spike times. We let (N j
t ) denote the j’th

of the counting processes, for j = 1, . . . , p, and we as-

sume first that the intensity of a new event for the i’th
process is Y i

t =
∑p

j=1 Y
ij
t where

Y
ij
t =

∫ t−

0

eαij(t−s)+βij dN j
s . (1)

The intensity process Y i jumps by eβij whenever an

event occurs in the j’th process, and the αij -parameters

control the smooth exponential behavior in between
jumps. The intensity specifies the conditional proba-

bility of observing an event immediately after time t in

the sense that

P (N i
t+δ −N i

t = 1 | Ft) ≃ δY i
t ,

where Ft denotes the history of all events preceding

time t, see e.g. [15] or [1]. Note the upper integration
limit, t−, which means that the integral w.r.t. N j

s only

involves events strictly before t. This is an essential re-

quirement for correct likelihood computations, see (4)

below.

It follows from (1) that if σj < t denotes the last of

the j’th events before t,

Y
ij
t = eαij(t−σj)Y

ij
σj+.

This provides an efficient way of computing the inten-

sity process. In fact, it follows that (Y ij
t )i,j=1,...,p is

a p2-dimensional Markov process, and that there is a
one-to-one correspondence between this process and the

multivariate counting process (N1
t , . . . , N

p
t ).

Our interest is to generalize the model given in terms

of (1) to non-exponential integrands, and, in particular,

to allow those integrands to be estimated nonparamet-
rically. A consequence is that the Markov property will

be lost, and that the intensity computation will be more

demanding.

The integral (1) can be understood as a linear filter
of the multivariate counting process (N1

t , . . . , N
p
t ), and

we will consider the generalization of such linear filters

to processes of the form

X i
t =

p
∑

j=1

∫ t

0

gij(t− s) dN j
s (2)

with gij general functions in a suitable function space.

The positive Y i process is a special case with gij(s) =

eαijs+βij . If we allow for negative integrands in (2) the

linear filter can take negative values, in which case it

cannot be an intensity. We therefore consider transfor-

mations of X i
t , such that the intensity is given by ϕ(X i

t)

for a general but fixed function ϕ : R → [0,∞).
In this paper we are particularly concerned with

efficient computation and minimization of the penal-

ized negative log-likelihood as a function of the non-

parametric components gij , with gij in a reproducing
kernel Hilbert spaceH. We consider algorithms for stan-

dard quadratic penalization
∑

ij ||gij ||
2, with || · || the

Hilbert space norm on H. We will throughout assume

that the gij-functions are variation independent, which

imply that the computation and minimization of the
joint penalized negative log-likelihood can be split into

p separate minimization problems. To ease notation we

will thus subsequently consider the modeling of one

counting process Nt in terms of N1
t , . . . , N

p
t , where Nt

can be any of the p counting processes. All computa-

tions presented were carried out in R using the ppstat

package. It implements the models of multivariate point

processes through linear filters that are treated in this

paper.

2 Likelihood computations for point processes

specified by linear filters

We assume that we observe a simple counting process
(Ns)0≤s≤t of discrete events on the time interval [0, t].

The jump times of Ns are denoted τ1 < . . . < τNt
. We

let H denote a reproducing kernel Hilbert space of func-

tions on [0, t] with reproducing kernel R : [0, t]× [0, t] →
R, and we let g = (g1, . . . , gp) ∈ Hp. We assume that R

is continuous in which case the functions in H are also

continuous, see Theorem 17 in [3]. With N1, . . . , Np

counting processes with corresponding event times σi
j

we introduce

Xs(g) =

p
∑

i=1

∫ s−

0

gi(s− u) dN i
u

=

p
∑

i=1

∑

j:σi
j
<s

gi(s− σi
j).

As a function of g we note that Xs : Hp → R be-

ing a sum of function evaluations is a continuous linear

functional. Indeed, we can express Xs in terms of inner
products with the kernel as

Xs(g) =

p
∑

i=1

∑

j:σi
j
<s

〈R(s− σi
j , ·), gi〉. (3)

The processXs(g) is called the linear predictor process.

We consider the model of (Ns)0≤s≤t where the inten-

sity is given as λs(g) = ϕ(Xs(g)) with ϕ : R → [0,∞)
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a known function. The objective is to estimate the gi-

functions in H. In most applications we will include

a baseline parameter as well, in which case the linear

predictor becomes β0 +Xs(g). In order not to compli-

cate the notation unnecessarily we take β0 = 0 in the
theoretical presentation.

From Corollary II.7.3 in [1] it follows that the nega-

tive log-likelihood w.r.t. the homogeneous Poisson pro-

cess is given as

ℓ(g) =

∫ t

0

ϕ(Xs(g)) ds−
Nt∑

k=1

logϕ(Xτk(g)). (4)

If ϕ is the identity the time integral has a closed form
representation in terms of the antiderivatives of gi, but

in general it has to be computed numerically. We should

note that ℓ is convex as a function of g if ϕ is convex

and log-concave.
The following proposition gives the gradient of ℓ in

the reproducing kernel Hilbert space. This result is cen-

tral for our development and understanding of a practi-

cally implementable minimization algorithm of the pe-

nalized negative log-likelihood.

Proposition 1 If ϕ is continuously differentiable the

gradient in H w.r.t. gi is

∇iℓ(g) =
∑

j

∫ t

σi
j

ϕ′(Xs(g))R(s− σi
j , ·) ds

−
∑

j

∑

k:σi
j
<τk

ϕ′(Xτk(g))

ϕ(Xτk(g))
R(τk − σi

j , ·). (5)

The proof of Proposition 1 is given in Section 7.

It is a special case of Proposition 3.6 in [10] if H is a

Sobolev space. However, since we restrict attention to
counting process integrators in this paper, in contrast

to [10] where more general integrator processes are al-

lowed, we can give a relatively elementary proof for H
being any reproducing kernel Hilbert space with a con-
tinuous kernel.

Computations of ℓ as well as the gradient involve the

computation of Xs(g). Without further assumptions a

direct computation of Xs(g) on a grid of n time points

involves in the order of n
∑p

i=1N
i
t evaluations of the

gi-functions. In comparison, (1) can be computed re-

cursively with the order of np evaluations of the expo-

nential function.

In this paper we consider three techniques for re-
ducing the general costs of computing Xs(g).

– Bounded memory. The filter functions gi are re-
stricted to have support in [0, A] for a fixed A.

– Preevaluations. The filter functions are preevalu-

ated on a grid in [0, A].

– Basis expansions. The filter functions are of the

form g =
∑

k βkBk for fixed basis functions Bk, and

Xs(g) =
∑

k

βkXs(Bk).

The linear filters Xs(Bk) are precomputed.

3 Time discretization

In this section we discuss the time discretizations nec-

essary for the practical implementation of an optimiza-

tion algorithm in H. We assume that all filter functions

gi have a prespecified support restricted to [0, A], and
that H is restricted to be a space of functions with sup-

port in [0, A]. We approximate time integrals by right

Riemann sums with functions evaluated in the grid

0 = t0 < t1 < . . . < tn = t

and corresponding interdistances ∆l = tl − tl−1 for
l = 1, . . . , n. We will assume that the collection of event

times is a subset of this grid and denote the correspond-

ing subset of indices by Ijump ⊆ {0, . . . , n}.
We need an implementable representation of the lin-

ear predictor as well as the functional gradient given by
(5). A possible representation of gi itself is via the N -

dimensional vector gi of its evaluations in a grid

0 = δ0 < δ1 < . . . < δN = A,

that is, gik = gi(δk) for k = 0, . . . , N − 1. We let g

denote the N × p matrix with columns gi’s for i =
1, . . . , p. Define

hlik = #{j | δk ≤ tl − σi
j < δk+1}1(σ

i
j < tl)

as the number of events for N i in (tl − δk+1, tl − δk].

The indicator 1(σi
j < tl) ensures that if σi

j = tl then

hli0 = 0, which, in turn, ensures that the approxima-

tion of the linear predictor below does not anticipate
events. It is the intention that the grid is chosen such

that the hlik’s take the values 0 and 1 only. The linear

predictor for given gi’s evaluated in the grid points is

approximated as

ξl :=
∑

i,k

hlikgik (6)

≃

p
∑

i=1

∑

j:tl−A≤σi
j
<tl

g(tl − σi
j) (7)

=

p
∑

i=1

∫ tl−

tl−A

gi(tl − u)dN i
u.

To formally handle the lower limit in the integral cor-

rectly, hli(N−1) should be redefined to be 1 if σi
j =
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tl − A. Such a redefinition will typically have no de-

tectable consequences, whereas handling the case σi
j =

tl correctly is crucial to avoid making the approxima-

tion anticipating. An approximation of the negative log-

likelihood in g is then obtained as

ℓapprox(g) =
∑

l

ϕ(ξl)∆l −
∑

l∈Ijump

logϕ(ξl). (8)

If we use the same δ-grid for evaluating the kernel R,

we get the gradient approximation from Proposition 1

∇iℓ
approx(g) =

∑

k

(
∑

l

ϕ′(ξl)∆lhlik

)

R(δk, ·)

−
∑

k




∑

l∈Ijump

ϕ′(ξl)

ϕ(ξl)
hlik



R(δk, ·). (9)

We observe that

∇iℓ
approx(g) ∈ span{R(δ0, ·), . . . , R(δN−1, ·)}.

The consequence is that any descent algorithm based

on ∇iℓ
approx(g) stays in the finite dimensional subspace

spanned by R(δ0, ·), . . . , R(δN−1, ·) – if it starts in this

subspace. As we show below, there is a unique element

in this subspace with evaluations gi, and the discretiza-
tion effectively restricts gi to be a function in this sub-

space.

3.1 The direct approximation

The N ×N Gram matrix G is given as Gkl = R(δk, δl).
The vector gi can be identified with the unique function

gi =
∑

k β
0
ikR(δk, ·) obtained by solving

gi = Gβ0
i .

This is the minimal norm element whose evaluations co-
incide with gi. Since G is positive definite there are sev-

eral possible ways to factorize G such that G = UUT .

For the Cholesky factorization U is lower triangular,

and for the spectral decomposition the columns of U

are orthogonal. For any such factorization

gi = U UTβ0
i

︸ ︷︷ ︸

βi

= Uβi.

Note how the β0
i - and thus the βi-parameter represen-

tation of the evaluations ∇iℓ
approx(g)(δk) can be read

of directly from (9). We observe that the squared norm

of gi equals

||gi||
2 = (β0

i )
T
Gβ0

i = ||βi||
2
2

with || · ||2 denoting the ordinary Euclidean norm on

RN . The parametrization in terms of βi is thus an isom-

etry from RN into H. The objective function – the pe-

nalized negative log-likelihood approximation – can be

computed as

ℓapprox(Uβ) + λ
∑

i

||βi||
2
2 (10)

using (8), and the βi-gradient can be computed as

UT∇β
i ℓ

approx(Uβ) + 2λβi,

where

∇β
i ℓ

approx(g)k =
∑

l

ϕ′(ξl)∆lhlik

−
∑

l∈Ijump

ϕ′(ξl)

ϕ(ξl)
hlik. (11)

The use of (8) and (11) – and (6) – requires the com-

putation of hlik. This can either be done on-the-fly (a

matrix free method) or by precomputing the n× (pr)-
dimensional sparse matrix H = (hlik). In practice, an

incomplete factorization of G with U an N×q matrix is

used. This reduces the number of computations a little,

and the transition between the gi vectors of evalua-

tions and the βi-parameters becomes numerically more
stable. The implementation in ppstat uses the spec-

tral decomposition, and q is determined by a thresh-

old on the size of the eigenvalues for G relative to the

largest eigenvalue. The default choice on the threshold
in ppstat is 10−8.

3.2 The basis approximation

Choose a set of basis functions B1, . . . , Bq such that

span{B1, . . . , Bq} ⊆ span{R(δ0, ·), . . . , R(δN−1, ·)}.

Precompute the n× q model matrices Zi of basis filters

Zi
lj =

∑

k

hlikBj(δk).

With gi =
∑

j β
0
ijBj , the n-dimensional linear predic-

tor is given as ξ =
∑

i Z
iβ0

i , and ℓapprox(β0) can be

computed using (8). The Gram matrix, G, is given by

Gkl = 〈Bk, Bl〉, and we let G = V V T . In terms of the

parametrization βi = V Tβ0
i we find that

||gi||
2 = (β0

i )
T
Gβ0

i = ||βi||
2
2,

thus βi provides an isometric parametrization from Rq

into H. The objective function becomes

ℓapprox(V −1β) + λ
∑

i

||βi||
2
2, (12)
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and the gradient is
∑

l

ϕ′(ξl)∆l(Z
i
lV

−1)T −

∑

l∈Ijump

ϕ′(ξl)

ϕ(ξl)
(Zi

lV
−1)T + 2λβi

= (V −1)T





∑

l

ϕ′(ξl)∆l(Z
i
l)

T
−

∑

l∈Ijump

ϕ′(ξl)

ϕ(ξl)
(Zi

l)
T



+ 2λβi

= (V −1)T∇
0
i l

approx
t (V −1β) + 2λβi,

where

∇
0
i l

approx
t (β0) =

∑

l

ϕ′(ξl)∆l(Z
i
l)

T
−

∑

l∈Ijump

ϕ′(ξl)

ϕ(ξl)
(Zi

l)
T

is the gradient in the β0
i parametrization.

4 Statistical theory

In the preceding sections we reduced the infinite di-

mensional optimization problem to an approximate fi-

nite dimensional one, and we introduced isometric para-

metrizations in terms of a finite dimensional param-
eter β. In this section we discuss the statistical the-

ory for the case where Xs(g) = XT
s β for a vector pro-

cess Xs, and the estimator of β is obtained by penal-

ized maximum-likelihood estimation using the penalty
λ||β||22. If ϕ(X

T
s β) is the intensity of the counting pro-

cess, the process Ms = Ns −
∫ s

0
ϕ(XT

u β) du is a local

martingale. The derivative of the negative log-likelihood

can be expressed as a stochastic integral w.r.t. M ,

Dβℓ(β) =

∫ t

0

ϕ′(XT
s β)X

T
s ds−

∫ t

0

ϕ′(XT
s β)

ϕ(XT
s β)

XT
s dNs

= −

∫ t

0

ϕ′(XT
s β)

ϕ(XT
s β)

XT
s dMs. (13)

Since the angle bracket of the local martingale M is

〈M〉t =
∫ t

0 ϕ(X
T
s β) ds, cf. (2.4.2) in [1], it follows from

(2.3.7) in [1] that the angle bracket of the vector process

(13) is
∫ t

0

XsX
T
s

ϕ′(XT
s β)

2

ϕ(XT
s β)

2
d〈Ms〉 =

∫ t

0

XsX
T
s

ϕ′(XT
s β)

2

ϕ(XT
s β)

ds.

Under sufficient integrability conditions, see e.g. Propo-

sition 4.6.2 in [15], the mean of the angle bracket equals
the covariance matrix K of (13), which is the Fisher in-

formation matrix. This suggests the estimator

K̂ =

∫ t

0

XsX
T
s

ϕ′(XT
s β̂)

2

ϕ(XT
s β̂)

ds

of the Fisher information, which can be computed us-

ing the same time discretization as otherwise used for

likelihood and gradient computations.
From (13) we find the penalized likelihood estimat-

ing equation in the β-parametrization

Ψ(β) := −

∫ t

0

ϕ′(XT
s β)

ϕ(XT
s β)

XT
s dMs + 2λβT = 0. (14)

The covariance matrix of Ψ(β) defined above coincides

with the Fisher information matrix K, and the mean

of its derivative is

J := EDβΨ(β) = K + 2λI.

A corresponding estimator of J is Ĵ = K̂ + 2λI. If β̂λ
solves (14), a Taylor expansion of Ψ(β̂λ) around β yields

0 = Ψ(β̂λ) ≃ Ψ(β) +DβΨ(β)(β̂λ − β),

which implies the approximation

β̂λ − β ≃ −DβΨ(β)
−1Ψ(β) ≃ −J−1Dβℓ(β)− 2λJ−1β.

If, moreover, the distributional approximation

Dβℓ(β)
approx
∼ N (0,K)

can be justified, these heuristic derivations suggest that

β̂λ
approx
∼ N (β − 2λJ−1β, J−1KJ−1).

We will not attempt to establish sufficient technical

conditions in an asymptotic framework to rigorously
justify this approximation of the distribution of β̂λ, but

see [18] for a treatment of standard asymptotic theory,

and Chapter VI in [1] for a treatment in a counting

process framework. We use the distributional approxi-
mation to compute pointwise confidence intervals based

on the sandwich estimator

Ĵ−1K̂Ĵ−1

of the approximate covariance matrix of β̂λ.

With ℓ(β̂λ) the negative log-likelihood in the penal-

ized estimator we also introduce Takeuchi’s information

criterion

TIC = ℓ(β̂λ) + tr(Ĵ−1K̂),

see Chapter 2 in [8]. The penalization parameter λ can

be chosen by minimizing TIC.

5 Results

We investigated the use of both the direct approxima-
tion and the basis expansion using cubic B-spline ba-

sis functions on a test data set of neuron spike times.

The data set consisted of multichannel measurements

of spinal neurons from a turtle. The measurements were

replicated 5 times and each time the spike activity was
recorded over a period of 40 seconds. A 10 seconds stim-

ulation was given within the observation window. We

used the spike times for 3 neurons labeled v2.2, v13.2

and v5.1 during the stimulation period, see Figure 1
The likelihood and gradient algorithms are imple-

mented in the R package ppstat, which supports op-

timization of the objective function via the R function
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Fig. 1 Left: Data example consisting of three spike tracks from five independent multichannel measurements of turtle spinal
neurons during a stimulation period. Middle: Estimates of the hi’s in the model of v2.2 using the direct approximation to
minimize (10) with n = 20, 609, N = 200 and q = 33. The value of λ = 0.125 was chosen by minimizing TIC. The baseline

estimate is β̂0 = 1.04. Right: Similar estimates of the hi’s using a B-spline basis expansion to minimize (12) with q = 33,

and with λ = 2 chosen by minimizing TIC. The baseline estimate is β̂0 = 1.05. The point-wise approximate 95% confidence
intervals were obtained using a sandwich estimator of the asymptotic variance.

optim using the BFGS-algorithm. The ppstat package

offers a formula based model specification with an in-
terface familiar from glm. The direct approximation is

implemented via the ppKernel function, and the basis

expansion is implemented via the ppSmooth function.

A typical call has the form

ppKernel(v2.2 ~ k(v13.2) + k(v2.2) + k(v5.1),

data = spikeData,

family = Hawkes("log"),

support = 0.4,

lambda = 0.125

)

which will include a baseline parameter in addition to
the three nonparametric filter functions. The data set

contained in the object spikeData must be of class

MarkedPointProcess from the supporting R package

processdata. The grid of n time points is determined

when the MarkedPointProcess object is constructed.
The choice of ϕ is specified as an “inverse link func-

tion” – being "log" in the call above. That is, in the

call above, ϕ(x) = ex.

Figure 1 shows the estimated hi’s obtained with
ϕ(x) = ex, A = 0.4, n = 20, 609, N = 200 and q =

33 and using either the direct approximation with the

Sobolev kernel or the basis expansion with a B-spline

basis. The estimates were computed by minimizing (10)

and (12), respectively. The Sobolev kernel is the repro-
ducing kernel for the Sobolev Hilbert space consisting

of twice weakly differentiable functions with the sec-

ond derivative being square integrable. Its precise form

depends on which inner product is chosen, but for com-
mon choices R(δk, ·) is a cubic spline. The resulting

model shows that a v2.2 spike results in a depression of

the v2.2-intensity in the first 0.1 seconds after the spike

followed by an elevation of the v2.2-intensity. A v13.2

spike appears to result in a small but significant eleva-
tion of the v2.2-intensity, whereas a v5.1 spike appears

to have no significant effect on the v2.2-intensity.

The ppstat package supports a number of different

choices of ϕ. In addition to some familiar link functions

it supports two parametrized classes of functions. The
root class is given as

ϕ(x) =

{
xc+1 for x ≤ 0

0 for x > 0,

which for c = 0 (the default value) amounts to ϕ(x) =
max{x, 0}. The logaffine class is given as

ϕ(x) =

{
ex for x ≤ c

ec(x− c+ 1) for x > c.

They all map R continuously into [0,∞). Moreover, for

the logaffine class the ϕ function is continuously dif-

ferentiable, whereas for the root class this is only true
for c > 1.

The appropriate choice of ϕ is not straight forward,

and there are several considerations that need to be

taken into account. One possibility, that we have used,

is to optimize the model fit to data. However, one must

pay attention to the fact that not all combinations of
ϕ and linear filters will result in non-exploding point

processes, see [9]. This will be particularly problematic

if we were to simulate data from the model. It is diffi-

cult to give theoretical results on the non-explosion or
stability of a point process if ϕ grows super linearly, see

e.g. [6] where ϕ is assumed to be Lipschitz to establish

results on stability of point processes.
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Fig. 2 Top: Average negative log-likelihood on the training data for the direct approximation ( ) and for the basis expansion
( ) for N = 400, A = 0.2, 0.4, 0.6 and q = 33, 100. Bottom: Cross-validated negative log-likelihood.

We chose to consider the logaffine class and to

optimize over c to achieve the best model fit. Since the

optimal choice of the penalization parameter λ may be
affected by the choice of c, we minimized TIC over a

grid of c and λ values. When the memory bound on the

linear filters was chosen as A = 0.4, the optimal choice

of c was effectively +∞, meaning that ϕ(x) = ex was
optimal.

We then investigated how several of the other model

and approximation choices affected the model fit. The

data set consists of five replications, and we used cross-

validation to iteratively fit the model on four of the

five replications (the training data) and validate it on
the last. We did this for different combinations of A,

n and q that determine the memory bound, the res-

olution of the time discretization and the dimension

of the actual parameter space. We fixed N = 400 for
these computations. For the basis expansion the num-

ber of B-spline basis functions was chosen explicitly to

be either q = 33 or q = 100. For the direct approx-

imation the choice of threshold on the spectrum was

tuned to result in q = 33 or q = 100. The negative
log-likelihood per replication was used as a measure of

model fit, and it was in all cases computed using the

finest time discretization (largest n). Figure 2 shows

that the fit generally improved on the training data as
n increased, but above n = 20, 000 the improvement

was small. The cross-validated negative log-likelihood

was, however, almost unaffected by the choice of n used

for fitting the model. Only the coarsest discretization

resulted in a slightly worse fit. Figure 2 also shows that

among the three choices of A, A = 0.4 was best both
in terms of model fit on the training data and in the

cross-validation. Finally, the choice of q did not play

a role for the direct approximation in terms of model

fit, whereas for the basis expansion the use of more ba-
sis functions resulted in a slightly better model fit, in

particular for A = 0.6.

We then investigated the memory usage and the
computation times of the direct approximation and the

basis expansion. The memory usage was obtained us-

ing the R function object.size and the computation

times were computed as the average of 80 replicated
likelihood or gradient evaluations. The interest was on

how they scale with the numbers n, N and q. The im-

plementation relies on precomputation of the H or Z

matrices, which are stored as sparse matrices as imple-

mented in the R package Matrix. Note that for the basis
approximation the choice of N only affects the precom-

putation of the model matrix and not the likelihood

and gradient computations.

Figure 3 shows that the basis expansion used more

memory for storing Z, and that the memory usage as a

function of n had a somewhat larger slope than for the

direct approximation. We should note that the memory
usage for neither of the methods showed a noticeable

dependence upon N or q. Storing the matrices as non-

sparse matrices the Z-matrix required 119 MB and the
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Fig. 3 Top: Memory usage for storing the H-matrix for the direct approximation ( ) and the Z-matrix for basis expansion
( ) for N = 100, 400 and q = 33, 100. Middle: Log-likelihood computation time. Bottom: Gradient computation time.

H-matrix required 465 MB for n = 50, 000, N = 400

and q = 100. In comparison, the sparse versions re-

quired 8 MB and 1.5 MB, respectively.

Figure 3 shows, furthermore, that likelihood and

gradient computations were generally faster when the

basis expansion was used. More importantly, Figure 3
shows that computation time for the direct approxi-

mation depended upon N as well as q, and that the

computation times for the basis expansion, using the

B-spline basis, were remarkably independent of q. Note

also that the slope on the computation times, as a func-
tion of n, is slightly smaller for the direct approximation

than for the basis expansion. The dominating contribu-

tion to the computations are the matrix-vector prod-

ucts H(Uβ) and Z(V −1β). The former scales approxi-
mately like aNpn+p2Nq and the latter like bqpn+p2q2,

where a and b are the fraction of non-zero entries in the

matrices. Our results reflect that aN < bq.

6 Discussion

The two approximations considered in this paper differ

in terms of what is precomputed. Computing the matrix

H upfront as in the direct approximation should require
only a fraction of the memory required for storing the

Z-matrices. This was confirmed by our implementation.

We also showed that the storage requirements for the

direct approximation did not depend noticeably on the
number N of δ-grid points when H is stored as a sparse

matrix. The tradeoff is an increased computation time,

which depends on the resolution determined by N and

q.

The storage requirements for Z can easily become

prohibitively large. A choice of basis functions with lo-

cal support, such as B-splines used here, can compen-
sate partly for this. It is unlikely that it is useful to

precompute ZiV −1, as this will destroy the computa-

tional benefits of the basis with local support.
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For the basis expansion it is possible to precompute

the model matrix in a slightly different and more direct

way. Instead of precomputing the q ×N basis function

evaluations Bj(δk) we can compute Zi
lj directly as

Zi
lj =

∑

k:tl−A<σi
k
<ti

Bj(tl − σi
k).

This may be more accurate but since n≫ N in typical

applications this comes at the cost of many more basis

function evaluations. Whether this is critical in terms

of the time to compute Zi depends upon how costly a
single basis function evaluation is relative to the com-

putation of the hlik’s. We have not presented data on

the computational costs of the precomputations, but

they were observed to be small compared to the costs

of the actual optimization.

We observed that the fitted models obtained by ei-

ther the direct approximation using the Sobolev kernel
or the B-spline basis expansion were almost identical.

This is not surprising given the fact that R(δk, ·) is a

cubic spline. In the actual implementation there are mi-

nor differences – for the B-spline expansion the linear
part is, for instance, not penalized whereas all parts of

the kernel fit is penalized. In conclusion, the B-spline

basis expansion is currently to be preferred if the stor-

age requirements can be met. The implementation of

the direct approximation does, however, offer an easy
way to use alternative kernels and thus alternative re-

producing kernel Hilbert spaces.

We illustrated the general methods and the imple-

mentation using neuron network data. In practice, there

are many model choices to be made besides the choice of

appropriate discretizations. We have shown how some

of these choices, e.g. the choice of ϕ and the choice of λ,
can be made by minimizing TIC. The choice of A can

be made on a data driven basis in a similar way. Neuron

network activity is just one example of a multivariate

interacting dynamical system that is driven by discrete
events. Other examples include high-frequency trading

of multiple financial assets, see [12], and chemical reac-

tion networks as discussed in [2] and [5]. The Markovian

linear Hawkes model (1) was also considered in Chapter

7 in [12], and the typical models of chemical reactions
are Markovian multitype birth-death processes. Marko-

vian models are often computationally advantageous,

as they offer more efficient intensity and thus likeli-

hood computations. With the implementation in the R
package ppstat we have made more flexible yet compu-

tationally tractable nonparametric and non-Markovian

models available.

7 Proof of Proposition 1

Function evaluations are represented in terms of the
kernel by inner products as given by (3). This gives

that

Xs(g) =

p
∑

i=1

〈
∑

j:σi
j
<s

R(s− σi
j , ·), gi

〉

. (15)

If ψ is a continuously differentiable function we find
that

ψ(Xs(g + εh))− ψ(Xs(g))

ε

=
ψ(Xs(g) + εXs(h))− ψ(Xs(g))

ε
−→ ψ′(Xs(g))Xs(h)

for ε→ 0. This is clearly a continuous linear functional.

Using (15) and differentiating only w.r.t. the i’th coor-

dinate of g we find that the corresponding gradient in

H is

∇iψ(Xs(g)) = ψ′(Xs(g))
∑

j:σi
j
<s

R(s− σi
j , ·).

Taking ψ = logϕ this yields the gradient of the second

term in the negative log-likelihood,
∑Nt

k=1 logϕ(Xτk(g)),

directly. For the first term we take ψ = ϕ, but we need

to ensure that we can interchange the order of integra-

tion and differentiation. To this end the following norm
bound on ∇iϕ(Xs(g)) is useful

||∇iϕ(Xs(g))|| ≤ |ϕ′(Xs(g))|
∑

j:σi
j
<s

||R(s− σi
j , ·)||

≤ CtN
i
t sup
s∈[0,t]

√

R(s, s) <∞.

Here Ct = sups∈[0,t] |ϕ
′(Xs(g))| is finite because Xs(g)

is continuous in s and ϕ′ is assumed continuous. We
have also used that ||R(s− σi

j , ·)||
2 = R(s− σi

j , s− σi
j)

and the fact that R is continuous to conclude that the

bound is finite. The bound shows that

∑

j

∫ t

σi
j

ϕ′(Xs(g))R(s− σi
j , ·) ds

is an element in H, and the required interchange of

integration and differentiation is justified by the bound.

This completes the proof. ⊓⊔
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