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Abstract

Recently-proposed particle MCMC methods provide a flexible way of perform-
ing Bayesian inference for parameters governing stochastic kinetic models defined as
Markov (jump) processes (MJPs). Each iteration of the scheme requires an estimate
of the marginal likelihood calculated from the output of a sequential Monte Carlo
scheme (also known as a particle filter). Consequently, the method can be extremely
computationally intensive. We therefore aim to avoid most instances of the expen-
sive likelihood calculation through use of a fast approximation. We consider two
approximations: the chemical Langevin equation diffusion approximation (CLE) and
the linear noise approximation (LNA). Either an estimate of the marginal likelihood
under the CLE, or the tractable marginal likelihood under the LNA can be used
to calculate a first step acceptance probability. Only if a proposal is accepted un-
der the approximation do we then run a sequential Monte Carlo scheme to compute
an estimate of the marginal likelihood under the true MJP and construct a second
stage acceptance probability that permits exact (simulation based) inference for the
MJP. We therefore avoid expensive calculations for proposals that are likely to be
rejected. We illustrate the method by considering inference for parameters governing
a Lotka-Volterra system, a model of gene expression and a simple epidemic process.
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1 Introduction

Stochastic kinetic models describe a probabilistic mechanism for the joint evolution of

species in a dynamical system. They can be used to model a wide variety of real-world

phenomena and are increasingly applied in computational systems biology (Kitano, 2002),

motivated by a need for models that incorporate intrinsic stochasticity (Elowitz et al., 2002;

Swain et al., 2002; Wilkinson, 2009). Other areas of application include (but are not limited

to) predator-prey population models (Boys et al., 2008; Ferm et al., 2008; Golightly and Wilkinson,

2011) and epidemic models (O’Neill and Roberts, 1999; Boys and Giles, 2007; Ball and Neal,

2008; Jewell et al., 2009). Underpinned by a reaction network in which reaction events

change species numbers by an integer amount, a stochastic kinetic model is most naturally

represented by a continuous time Markov jump process (MJP). Our goal is to perform

inference for the rate constants that govern the MJP using time course data that may be

incomplete and/or subject to measurement error.

Exact (simulation based) Bayesian inference for the MJP was the subject of Boys et al.

(2008). The authors proposed two MCMC schemes that targeted the joint posterior of

the rate constants and latent reaction events but found the statistical efficiency of their

method to be relatively poor. It was shown in Golightly and Wilkinson (2011) how a re-

cently proposed particle MCMC algorithm (Andrieu et al., 2010) can be applied to this

class of models. In particular, the particle marginal Metropolis-Hastings (PMMH) scheme

allows a joint update of the rate constants and (latent) process which can alleviate common

mixing problems when sampling high dimensional target densities that may exhibit strong

correlations. The proposal mechanism involves drawing a new parameter value from an

arbitrary proposal kernel and drawing new values of each latent state from a sequential

Monte Carlo (SMC) approximation to the distribution of latent states conditional on the

proposed new parameter value. The acceptance probability requires computation of a real-

isation of an unbiased estimator of marginal likelihood which can be readily obtained from

the output of the SMC scheme. Consequently, at each iteration of the MH scheme, an SMC

algorithm must be implemented. The method can be extremely computationally intensive,

as the SMC algorithm typically must generate many realisations of the MJP, with each

realisation obtained from an algorithm such as the stochastic simulation algorithm (SSA)

of Gillespie (1977). By using a computationally cheaper approximation to the marginal

likelihood we avoid running the computationally more expensive SMC algorithm at most

iterations of the MH scheme, but we still maintain the posterior under the MJP as the

target distribution of the MH scheme.

The simplest approximation of the MJP is the macroscopic rate equation (MRE) which

ignores the discreteness and stochasticity of the MJP by modelling specie dynamics with

a set of coupled ordinary differential equations (van Kampen, 2001). The diffusion ap-

proximation or chemical Langevin equation (CLE) (Gillespie, 2000) on the other hand,

ignores discreteness but not stochasticity by modelling the reaction network with a set
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of coupled stochastic differential equations (SDEs). Whilst inference for the parameters

governing nonlinear multivariate SDEs is possible (Golightly and Wilkinson, 2008), the

marginal likelihood under this model is intractable. Despite this, Golightly and Wilkinson

(2011) show that inference is possible under this model using a PMMH algorithm, and this

approach can result in computational savings when compared to a similar scheme targeting

the posterior under the MJP.

Further computational savings can be made by considering a linear noise approximation

(LNA) (van Kampen, 2001; Komorowski et al., 2009; Fearnhead et al., 2014) which is given

by the MRE plus a stochastic term accounting for random fluctuations about the MRE.

Under the LNA the latent process follows a multivariate Gaussian distribution and, under

an assumption of Gaussian measurement error, the marginal likelihood is tractable.

Christen and Fox (2005) describe a delayed-acceptance Metropolis-Hastings scheme in

which the single MH accept-reject step is replaced by an initial ‘screening’ stage which

substitutes a computationally cheap approximate posterior for the true posterior in the

MH acceptance probability formula, but then adds a second accept-reject stage which

ensures that detailed balance is still satisfied with respect to the true posterior. This

second, computationally expensive, stage is only applied to proposals which pass the first

stage.

Our novel contribution is to exploit the tractability of the LNA by proposing a parti-

cle analogue of this scheme for performing exact, simulation based inference for the MJP

parameters. Essentially, to avoid calculating an estimate of marginal likelihood under the

MJP for proposals that are likely to be rejected, proposed parameter draws are initially

screened using a computationally cheap approximation to the posterior, such as that based

on the marginal likelihood computed under the LNA. A related approach has been pro-

posed independently by Smith (2011) for performing inference for the parameters governing

nonlinear, discrete time economic models. A simple stochastic volatility model and a Real

Business Cycle model are considered, with approximations based on a linear Gaussian state

space model and an unscented Kalman filter used in a preliminary screening step. Unlike

Smith (2011), we also consider a scenario in which the marginal likelihood under the ap-

proximation is intractable, but can be estimated cheaply (relative to the same calculation

under the MJP) using a particle filter. Use of the CLE in the preliminary screening step

falls into this category. In both cases, we show that the resulting MCMC scheme targets the

correct marginal, that is, the marginal parameter posterior under the MJP. The proposed

methods can in principle be applied to any Markov jump process.

The remainder of this paper is organised as follows. In Section 2 we describe the

Markov jump process model and associated inference problem. The CLE and LNA are

briefly reviewed. We describe the PMMH algorithm in Section 3.1 before considering a

modification to allow delayed acceptance in Section 3.3. We apply the method to a Lotka-

Volterra system, a model of gene expression and a simple epidemic process in Section 4.

Conclusions are drawn in Section 5.
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2 Stochastic kinetic models

Consider a reaction network involving u species X1,X2, . . . ,Xu and v reactionsR1,R2, . . . ,Rv,

with reaction Ri given by

Ri : pi1X1 + pi2X2 + · · ·+ piuXu

−→ qi1X1 + qi2X2 + · · ·+ qiuXu

where the stoichiometric coefficients pij and qij are non-negative integers. Let Xj,t denote

the number of specie Xj at time t, and let Xt be the u-vector Xt = (X1,t, X2,t, . . . , Xu,t)
′.

The v × u matrix P consists of the coefficients pij, and Q is defined similarly. The u × v

stoichiometry matrix S is defined by

S = (Q− P )′

and encodes important structural information about the reaction network. In particular,

if ∆R is a v-vector containing the number of reaction events of each type in a given time

interval, then the system state should be updated by ∆X , where

∆X = S∆R.

Each reaction Ri is assumed to have an associated rate constant, ci, and a propensity

function, hi(Xt, ci) giving the overall hazard of a type i reaction occurring. That is, we

model the system as a Markov jump process, and for an infinitesimal time increment dt,

the probability of a type i reaction occurring in the time interval (t, t + dt] is hi(Xt, ci)dt.

In many examples (such as those considered in Sections 4.1 and 4.3) the form of hi(Xt, ci)

can be thought of as arising naturally from the interactions between components of a well-

mixed population, such as reactants in a well-stirred container at constant temperature.

This leads to a mass action kinetic rate law (Gillespie, 1992), under which the hazard

function for a particular reaction of type i takes the form

hi(Xt, ci) = ci

u∏

j=1

(
Xj,t

pij

)
.

Let c = (c1, c2, . . . , cv)
′ and h(Xt, c) = (h1(Xt, c1), h2(Xt, c2), . . . , hv(Xt, cv))

′. Values for c

and the initial system stateX0 = x0 complete specification of the Markov process. Although

this process is rarely analytically tractable for interesting models, it is straightforward to

forward-simulate exact realisations of this Markov process using a discrete event simulation

method. This is due to the fact that if the current time and state of the system are t and

Xt respectively, then the time to the next event will be exponential with rate parameter

h0(Xt, c) =

v∑

i=1

hi(Xt, ci),
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and the event will be a reaction of type Ri with probability hi(Xt, ci)/h0(Xt, c) indepen-

dently of the waiting time. Forward simulation of process realisations in this way is typically

referred to as the stochastic simulation algorithm (Gillespie, 1977). See Wilkinson (2012)

for further background on stochastic kinetic modelling.

2.1 Chemical Langevin equation

We present here an informal intuitive construction of the chemical Langevin equation

(CLE), and refer the reader to Gillespie (2000) for further details.

Consider an infinitesimal time interval, (t, t+ dt]. Over this time, the reaction hazards

will remain constant almost surely. The occurrence of reaction events can therefore be

regarded as the occurrence of events of a Poisson process with independent realisations for

each reaction type. Therefore, if we write dRt for the v-vector of the number of reaction

events of each type in the infinitesimal time increment, it is clear that the elements are

independent of one another and that the ith element is a Po(hi(Xt, ci)dt) random quan-

tity. From this we have that E(dRt) = h(Xt, c)dt and Var(dRt) = diag{h(Xt, c)}dt. It is

therefore clear that

dRt = h(Xt, c)dt+ diag
{√

h(Xt, c)
}
dWt

is the Itô stochastic differential equation (SDE) which has the same infinitesimal mean and

variance as the true Markov jump process (where dWt is the increment of a v-dimensional

Brownian motion). Now since dXt = SdRt, we obtain

dXt = S h(Xt, c)dt+
√

Sdiag{h(Xt, c)}S ′dWt, (1)

where now Xt and Wt are both u-vectors. Equation (1) is the SDE most commonly re-

ferred to as the chemical Langevin equation or diffusion approximation, and represents the

diffusion process which most closely matches the dynamics of the associated Markov jump

process, and can be shown to approximate the stochastic kinetic model increasingly well

in high concentration scenarios (Gillespie, 2000). Note that in the absence of an analytic

solution to (1), a numerical solution can be constructed. For example, the Euler-Maruyama

approximation is

∆Xt ≡ Xt+∆t −Xt

= S h(Xt, c)∆t+
√
Sdiag{h(Xt, c)}S ′∆Wt (2)

where ∆Wt is a mean zero Normal random vector with variance matrix diag{∆t}.

We require a computationally efficient approximation to the Markov jump process for

use in a delayed acceptance particle MCMC scheme (described in Section 3.3). Perform-

ing exact (simulation based) inference for the diffusion approximation has been the focus of

Golightly and Wilkinson (2005), Purutcuoglu and Wit (2007), and Golightly and Wilkinson

(2011) among others. Although the latter find that a particle MCMC scheme based on the
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CLE can be more computationally efficient than a similar scheme that works with the

Markov jump process directly, calculation of an estimate of marginal likelihood under the

CLE (as is necessary at every iteration of a particle MCMC scheme) can be computationally

expensive. To facilitate greater computational savings, we therefore also consider a linear

noise approximation (LNA) (van Kampen, 2001; Komorowski et al., 2009; Fearnhead et al.,

2014; Stathopoulos and Girolami, 2013) which generally possesses a greater degree of nu-

merical and analytic tractability than the CLE (Wilkinson, 2012). This is the subject of

the next section.

2.2 Linear noise approximation

The LNA was first considered as a functional central limit law for density dependent pro-

cesses by Kurtz (1970) and can be derived in a number of more or less formal ways. For

example, Komorowski et al. (2009) (and see also Elf and Ehrenberg (2003)) derive the LNA

by approximating the forward Kolmogorov equation (satisfied by the transition rate of the

MJP) through a Taylor series expansion. We eschew this approach in favour of an informal

derivation following that of Fearnhead et al. (2014) and we refer the reader to the refer-

ences therein for a more detailed discussion. In what follows we calculate the LNA for a

general SDE before formulating it as an approximation to the CLE.

Consider now a general SDE satisfied by a process {Xt, t ≥ 0} of the form

dXt = α(Xt)dt+ ǫβ(Xt)dWt (3)

where ǫ << 1. Partition Xt into a deterministic path zt and a residual stochastic process

Mt and let zt be the solution to
dzt
dt

= α(zt). (4)

We assume that ||Xt−zt|| is O(ǫ) over a time interval of interest and substitute Xt = zt+ǫMt

into equation (3) to give

d(zt + ǫMt) = α(zt + ǫMt)dt+ ǫβ(zt + ǫMt)dWt.

We then Taylor expand α(·) and β(·) about zt and collect terms of O(ǫ) to give the SDE

satisfied by Mt as

dMt = FtMtdt+ β(zt)dWt (5)

where Ft is the Jacobian matrix with (i, j)th element ∂αi(zt)/∂zj,t and αi(zt) refers to the

ith element of α(zt).

We use ǫ to explicitly indicate that the stochastic term in (3) is small. Its presence helps

us to gather together terms that are small but not negligible (i.e. O(ǫ)). We may instead

remove the explicit ǫ (effectively setting ǫ = 1) and simply think of β(Xt) as small. Since ǫ

plays no role in the evolution equations, (4) and (5), these are unchanged whether we define

Mt as (Xt − zt)/ǫ or as Xt − zt; only the initial condition for (5) and the interpretation of
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Mt change since now Mt = Xt − zt. Without loss of generality, therefore, we simplify the

exposition by setting ǫ = 1 and assuming that β(Xt) itself is small. To further simplify

the notation we also drop the explicit dependence of the hazard function on c, and of the

mean and variance of Mt on both c and zt.

For the CLE, we have

α(Xt) = S h(Xt), β(Xt) =
√
Sdiag{h(Xt)}S ′.

The linear noise approximation of the CLE is therefore defined through

dzt
dt

= Sh(zt) (6)

and

dMt = FtMtdt+
√

Sdiag{h(zt)}S ′dWt (7)

where Ft has (i, j)th element given by the first partial derivative of the ith element of

S h(zt) with respect to zj,t.

For fixed or Gaussian initial conditions, that is Mt1 ∼ N(mt1 , Vt1), the SDE in (7) can

be solved explicitly to give

(Mt|c) ∼ N (mt , Vt) (8)

where mt is the solution to the deterministic ordinary differential equation (ODE)

dmt

dt
= Ftmt (9)

and similarly
dVt

dt
= VtF

′
t + Sdiag{h(zt)}S

′ + FtVt . (10)

Hence, the solution of equation (7) requires the solution of a system of coupled ODEs; in

the absence of an analytic solution to these equations, a numerical solution can be used.

The approximating distribution of Xt can then be found as

(Xt|c) ∼ N (zt +mt , Vt) . (11)

3 Inference

We now consider the task of performing inference for the rate constants governing the

Markov jump process. First, let us augment the rate vector c to include any additional

parameters that arise from the observation process and assign to it a prior density, p(c).

Suppose that the MJP X = {Xt | 1 ≤ t ≤ T} is not observed directly, but (perhaps

partial) observations (on a regular grid) y = {yt | t = 1, 2, . . . , T} are available and assumed

conditionally independent (given X) with conditional probability distribution p(yt|xt, c).
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In this work, we consider Bayesian inference for c via the marginal posterior density

p(c|y) =

∫
p(c,x|y) dx (12)

where

p(c,x|y) ∝ p(c) p(x|c)
T∏

t=1

p(yt|xt, c)

and p(x|c) is the probability of the Markov jump process. Since the posterior in (12)

will typically be unavailable in closed form, samples must usually be generated through a

suitable MCMC scheme.

In what follows, for simplicity, we assume that the initial value of the MJP, X1 = x1, is

a known fixed quantity, and we take z1 = x1 so that m1 is the length-u zero vector and V1

is the u×u zero matrix. If X1 were unknown then it could be assigned a prior and treated

as an additional parameter in the augmented rate vector.

3.1 Particle marginal Metropolis-Hastings

We consider the special case of the particle marginal Metropolis-Hastings (PMMH) scheme

of Andrieu et al. (2010) and Andrieu et al. (2009) in which only samples from the marginal

parameter posterior are required. Noting the standard decomposition p(c|y) ∝ p(y|c)p(c),

we run a Metropolis-Hastings (MH) scheme with proposal kernel q(c∗|c) and accept a move

from c to c∗ with probability

min

{
1 ,

p̂
(
y|c⋆

)
p
(
c⋆
)

p̂
(
y|c

)
p
(
c
) × q

(
c|c⋆

)

q
(
c⋆|c

)
}

(13)

where p̂(y|c) is a sequential Monte Carlo (SMC) or ‘particle filter’ estimate of the intractable

marginal likelihood term p(y|c). The PMMH scheme as described here is an example of

a pseudo-marginal Metropolis-Hastings scheme (Beaumont, 2003; Andrieu and Roberts,

2009) and provided that p̂(y|c) is unbiased (or has a constant multiplicative bias that does

not depend on c), it is possible to verify that the method targets the marginal p(c|y). Let u

denote all random variables generated by the SMC algorithm and write the SMC estimate

of marginal likelihood as p̂(y|c) = p̂(y|c, u). Augmenting the state space of the chain to

include u, it is straightforward to rewrite the acceptance ratio in (13) to find that the chain

targets the joint density

p̂(c, u|y) ∝ p̂(y|c, u)q̃(u|c)p(c)

where q̃(u|c) denotes the conditional density associated with the auxiliary variables u.

Marginalising over u then gives
∫

p̂(c, u|y)du ∝ p(c)

∫
p̂(y|c, u)q̃(u|c)du

∝ p(c)p(y|c) .

8



The key insight here is that the SMC scheme can be constructed to give an unbiased

estimate of the marginal likelihood p(y|c) under some fairly mild conditions involving the

resampling scheme (Del Moral, 2004). The scheme therefore targets the correct marginal

p(c|y). Although interest here is in the marginal p(c|y) the PMMH scheme can be used to

sample the joint density p(c,x|y). At each step of the algorithm, a new path x∗ is proposed

from an SMC approximation of p(x∗|y, c∗). The acceptance probability is as in (13). For

further details, we refer the reader to Andrieu et al. (2010). The (special case of the)

PMMH algorithm and details of the SMC scheme that we use are given in Appendices A.1

and A.2.

3.2 Inference using the CLE and LNA

Although the marginal likelihood under the CLE is intractable, a PMMH scheme can be

implemented to perform inference for this model. In the simplest version of the scheme,

we replace draws of the MJP in step 2(a) of the SMC scheme with draws of a numerical

solution of the CLE, for example, using the Euler-Maruyama approximation. This is the

focus of Golightly and Wilkinson (2011) and further details can be found therein.

Under the LNA, the marginal likelihood is tractable for additive Gaussian observation

regimes. This tractability has been exploited for the purposes of parameter inference by

Komorowski et al. (2009), Fearnhead et al. (2014) and Stathopoulos and Girolami (2013).

In Komorowski et al. (2009) and Stathopoulos and Girolami (2013), the LNA is applied

over the entire time interval for which observations are available. In particular, the ODE

component of the LNA is solved once over the whole time-course for a given initial condition.

As discussed in Fearnhead et al. (2014), this can lead to a poor approximation to the

distribution of Xt as t gets large, due to the mismatch between the stochastic and ODE

solution. We therefore adopt the approach proposed in Fearnhead et al. (2014) and restart

the LNA at each observation time t, initialising zt to the posterior mean of Xt given all

observations up to time t. The algorithm for constructing the marginal likelihood under

an additive Gaussian observation regime using this approach is given in Appendix A.3.

Use of a Gaussian observation model is likely to be unsatisfactory in some scenarios. For

example, in Section 4.1 we consider observations with a Poisson distribution, the mean of

which is the value of the true process. Nonetheless, we may still use the LNA to obtain a

tractable approximation to the marginal likelihood under the true MJP. We approximate

the observation density p(yt|xt) by a Gaussian density with mean and variance given by the

ODE solution (6). That is, we apply the algorithm in Appendix A.3 with Σ replaced by

a diagonal matrix containing the components of zt for which observations are made. This

tractable approximation can then be used in the delayed acceptance scheme.
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3.3 Delayed acceptance particle marginal Metropolis-Hastings

In order to improve the efficiency of the PMMH algorithm for the MJP we aim to limit

the number of runs of the computationally expensive SMC scheme for the MJP. Ideally

we want to run the SMC scheme only for parameter values which are likely to lead to

acceptance in the PMMH algorithm. We do this by choosing a particular proposal kernel

in the PMMH scheme of Appendix A.1. This proposal kernel is based on a preliminary

screening step involving an approximate model which is less computationally intensive than

the MJP, such as the LNA or the CLE. In what follows, the CLE approximation refers to

the Euler-Maruyama approximation in (2). Likewise, the LNA refers to the numerical

solution of the ODEs in (6), (9) and (10). We note that the CLE or LNA are used only

in the preliminary screening step and further approximation through use of a numerical

solution will not change the target distribution of the Metropolis-Hastings scheme.

Our proposed algorithm for taking advantage of the CLE approximation, which we call

delayed acceptance PMMH (daPMMH), is outlined in Algorithm 1; the algorithm which

takes advantage of the LNA is a slight simplification of this. Both algorithms have the

following basic structure.

First a candidate set of parameter values is proposed, then a decision is made whether to

accept or reject these values based on a MH step with target density pa(c|y) ∝ pa(y|c)p(c),

which is the posterior density of parameters under the approximate model (for example, the

LNA or the CLE); here pa(y|c) represents the marginal likelihood under the approximate

model. If the proposed parameter values are accepted at this first stage then they undergo

another MH step with target density p(c|y) ∝ p(y|c)p(c), which is the marginal posterior

density under the MJP. The idea here is that the first stage weeds out ‘poor’ parameter

values. Consequently, the computationally expensive SMC algorithm for the MJP is only

implemented for ‘good’ parameter values which are likely to be accepted at the second

stage.

When the CLE is used as the approximate model the marginal likelihood pa(y|c) is not

available analytically, so we replace it with an unbiased estimate p̂a(y|c) obtained from an

SMC scheme which targets pa(x|y, c), the conditional density of the latent states under the

approximate model, given the observed data and the parameter values. We therefore have

to run a particle filter at both stages of the daPMMH algorithm, as one is always needed

at stage 2 to give an unbiased estimate p̂(y|c) of the MJP marginal likelihood p(y|c). We

note, however, that despite the CLE requiring a run of an SMC scheme to obtain p̂a(y|c)

this may still be much faster to run than the SMC scheme for the MJP (with the same

number of particles).

Our daPMMH algorithm is an extension of the delayed acceptance MH (daMH) algo-

rithm of Christen and Fox (2005), which is a version of the ‘surrogate transition method’ of

Liu (2001). Specifically, we have extended the daMH algorithm by replacing all intractable

marginal likelihoods by unbiased estimates obtained from appropriate SMC schemes. Our

extension of the daMH algorithm to an intractable likelihood at Stage 1 is essential when the

10



Algorithm 1 Delayed acceptance PMMH (daPMMH)

1. Initialisation, i = 0,

(a) set c(0) arbitrarily,

(b) run a particle filter targeting p(x|y, c(0)), and let p̂(y|c(0)) denote the marginal like-

lihood estimate,

(c) run a particle filter targeting pa(x|y, c
(0)), and let p̂a(y|c

(0)) denote the marginal

likelihood estimate under the approximate model.

2. For iteration i ≥ 1,

(a) sample c∗ ∼ q(·|c(i−1)),

(b) Stage 1

(i) run a particle filter targeting pa(x|y, c
∗), and let p̂a(y|c

∗) denote the marginal

likelihood estimate under the approximate model,

(ii) with probability

α1(c
(i−1), c∗) = min

{
1,

p̂a(y|c
∗)p(c∗)

p̂a(y|c
(i−1))p(c(i−1))

q(c(i−1)|c∗)

q(c∗|c(i−1))

}
, (14)

run a particle filter targeting p(x|y, c∗), let p̂(y|c∗) denote the marginal likeli-

hood estimate and go to 2(c); otherwise, set c(i) = c(i−1), p̂(y|c(i)) = p̂(y|c(i−1)),

p̂a(y|c
(i)) = p̂a(y|c

(i−1)), increment i and return to 2(a).

(c) Stage 2

With probability

α2(c
(i−1), c∗) = min

{
1,

p̂(y|c∗)p(c∗)

p̂(y|c(i−1))p(c(i−1))

p̂a(y|c
(i−1))p(c(i−1))

p̂a(y|c
∗)p(c∗)

}
(15)

set c(i) = c∗, p̂(y|c(i)) = p̂(y|c∗) and p̂a(y|c
(i)) = p̂a(y|c

∗) otherwise set c(i) = c(i−1),

p̂(y|c(i)) = p̂(y|c(i−1)) and p̂a(y|c
(i)) = p̂a(y|c

(i−1)). Increment i and return to 2(a).
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approximate model is the CLE since the marginal likelihood under the CLE is intractable.

However, when the LNA is chosen as the approximate model this extra level of complexity

is not necessary; we simply replace the marginal likelihood estimates p̂a(y|c) in Algorithm 1

with the exact values pa(y|c) since these are available numerically (see Appendix A.3 for

details). Despite replacing the intractable marginal likelihoods by unbiased estimates, our

daPMMH algorithm still targets the (exact) posterior density of the parameters under the

MJP, p(c|y), as we outline in Section 3.3.1. Note that in an independent technical report,

Smith (2011) proved that the daPMMH algorithm has p(c|y) as its target density when

the marginal likelihood under the approximate model is tractable. In Section 3.3.1 we

generalise the argument of Smith (2011) to the case of an SMC-based marginal likelihood

estimate for the approximate model.

3.3.1 Validity of delayed acceptance PMMH

In this section we show that the daPMMH algorithm (Algorithm 1) is a valid MCMC

scheme which targets a distribution that admits p(c|y) as a marginal distribution.

We first define some notation and an extended state-space. Let F : R2 → [0, 1] be any

function satisfying the following.

aF [a, a∗] = a∗F [a∗, a] (16)

F [ba, ba∗] = F [a, a∗]. (17)

An example of F is the Metropolis-Hastings acceptance probability F [a, a∗] = min(1, a∗/a),

with a = p(c|y)q(c∗|c) and a∗ = p(c∗|y)q(c|c∗). More generally, F defines an acceptance

probability that admits a chain with invariant density a, a joint density (known up to an

arbitrary constant) on the current value in the chain and the next proposal. Condition (16)

ensures that detailed balance is satisfied with respect to a, and Condition (17) ensures that

the target density need only be known up to a fixed constant.

Let U be a vector of auxiliary random variables, sampled conditional on the parameters

according to q̃(u|c), and let p̂(c, u) and p̂a(c, u) be two approximations to the posterior

which depend on U , with p̂ unbiased up to a fixed constant, k > 0:∫
p̂(c, u) q̃(u|c) du = k p(c|y). (18)

Note that for notational simplicity, we have dropped dependence of p̂(c, u) and p̂a(c, u) on

the data y. For further clarity of exposition we adopt the shorthand

p̂ := p̂(c, u), p̂∗ := p̂(c∗, u∗), p̂a := p̂a(c, u),

p̂∗a := p̂a(c
∗, u∗), q̃ := q̃(u|c), q̃∗ = q̃(u∗|c∗).

Our delayed-acceptance Markov chain proposes according to q(c∗|c)q̃∗ and accepts with

a probability of

α (c, u; c∗, u∗) = F [p̂a q(c∗|c), p̂∗aq(c|c
∗)]× F

[
p̂

p̂a
,
p̂∗

p̂∗a

]
.
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Our chain targets the joint posterior p̂(c, u)q̃(u|c) so that, by (18), the marginal distribution

for c is the posterior p(c|y). To show that p̂(c, u)q̃(u|c) is indeed the invariant distribution

of the chain it is sufficient to show that our chain satisfies detailed balance with respect

to this posterior. Since rejection moves (c∗ ← c, u∗ ← u) automatically satisfy detailed

balance we need only consider moves where the proposal is accepted. Now

p̂ q̃ q(c∗|c) q̃∗ = p̂a q(c∗|c)×
p̂ q̃ q̃∗

p̂a
.

By (16),

p̂a q(c∗|c) F [p̂a q(c∗|c), p̂∗a q(c|c∗)] = p̂∗a q(c|c∗) F [p̂∗a q(c|c∗), p̂a q(c∗|c)] .

Also, by (17) then (16) then (17) again,

p̂ q̃ q̃∗

p̂a
× F

[
p̂

p̂a
,
p̂∗

p̂∗a

]
=

p̂ q̃ q̃∗

p̂a
× F

[
p̂ q̃ q̃∗

p̂a
,
p̂∗ q̃ q̃∗

p̂∗a

]

=
p̂∗ q̃ q̃∗

p̂∗a
× F

[
p̂∗ q̃ q̃∗

p̂∗a
,
p̂ q̃ q̃∗

p̂a

]

=
p̂∗ q̃ q̃∗

p̂∗a
× F

[
p̂∗

p̂∗a
,
p̂

p̂a

]
.

Thus

p̂ q̃ q(c∗|c) q̃∗ α(c, u; c∗, u∗) = p̂∗ q̃∗ q(c|c∗) q̃ α(c∗, u∗; c, u),

as required. When our Stage 1 approximation is deterministic (using the LNA ) then it is

independent of U . Otherwise, when we use the CLE at Stage 1, our two estimates of the

posterior are independent, i.e. U is split into two independent vectors, U1 and U2, with

p̂a a function of U1 only and p̂ a function of U2 only. However, for the algorithm to work

we only need to be able to simulate U1 (for Stage 1) and then, if required, U2|U1 = u1

(for Stage 2); the independence is not necessary. Indeed a higher Stage 2 acceptance rate

might be obtainable if it were possible to make p̂a(c, U) and p̂(c, U) positively correlated.

Unfortunately we cannot see any obvious method for constructing correlated estimators

based upon the CLE and the MJP.

3.3.2 Comments on efficiency

Christen and Fox (2005) note that with a fast approximate model daMH algorithms are less

computationally expensive — that is, they exhibit lower CPU times for the same number of

iterations — than standard MH algorithms that do not employ delayed acceptance. They

also note that daMH algorithms are less statistically efficient than standard MH algorithms

that do not employ delayed acceptance. Here statistical efficiency relates to the mixing of

the Markov chain, and can be measured by the effective sample size (ESS), the number of

13



independent samples that are equivalent in information content to the actual number of

dependent samples from the Markov chain. Clearly, computational time is dictated by the

speed with which pa(y|c) (or its estimate p̂a(y|c)) is computed, and statistical efficiency is

dictated by the accuracy of the approximation pa(y|c) or p̂a(y|c) to p(y|c). For example,

pa(y|c) under the LNA will be faster to compute than p̂a(y|c) under the CLE since the

latter requires a run of an SMC algorithm. However, we might expect the CLE (at least

with a small Euler time-step) to provide a better approximation to the MJP than the LNA,

since the LNA is, in some sense, a simplified version of the CLE. Increasing the time-step

∆t in the CLE will decrease the computation time but should also decrease the accuracy

of the approximation; the trade-off in terms of computational efficiency between these two

factors merits further investigation.

Another factor which will affect statistical efficiency is the variability associated with

the SMC-based estimate of marginal likelihood p̂a(y|c). An algorithm using p̂a(y|c) will

be less statistically efficient than an idealised algorithm which uses pa(y|c) (for the same

approximate model). We might expect, therefore, that using the LNA as the approximate

model, with its tractable marginal likelihood, may lead to increased statistical efficiency

over the CLE-based approximation, although this depends on the accuracy of the LNA.

The daPMMH scheme (using either the LNA or CLE) requires specification of a number

of particles N to be used in the SMC scheme at Stage 2. As noted by Andrieu and Roberts

(2009), the mixing efficiency of the PMMH scheme decreases as the variance of the es-

timated marginal likelihood increases. This problem can be alleviated at the expense of

greater computational cost by increasing N . This therefore suggests an optimal value of

N and finding this choice is the subject of Pitt et al. (2012) and Doucet et al. (2013). The

latter suggest that N should be chosen so that the variance in the noise in the estimated

log-posterior is around 1. Pitt et al. (2012) note that the penalty is small for a value be-

tween 0.25 and 2.25. We therefore recommend performing an initial pilot run of daPMMH

to obtain an estimate of the posterior mean for the parameters c, denoted ĉ. The value of

N should then be chosen so that Var(log p(y|ĉ)) is around 1–1.5. When the CLE is used

as a surrogate model, we must also specify a number of particles (say N1) to be used in

Stage 1. For simplicity, we take N1 = N . Provided the CLE is a reasonable approximation

to the MJP, we may expect that N1 provides a suitable trade-off between computational

cost and accuracy (in terms of the variance of the estimated marginal likelihood under the

CLE).

In the next section we show empirically that our daPMMH algorithm (with either

the CLE or the LNA as the approximate model) can lead to improvements in overall

computational efficiency (in terms of ESS normalised by CPU time) over a vanilla PMMH

scheme for the MJP.
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4 Applications

4.1 Lotka-Volterra

Following Boys et al. (2008), we consider first a Lotka-Volterra model of predator and prey

interaction comprising three reactions:

R1 : X1
c1−−→ 2X1

R2 : X1 + X2
c2−−→ 2X2

R3 : X2
c3−−→ ∅.

For simplicity of notation we drop the explicit dependence of the current state X =

(X1, X2)
′ and the deterministic approximation z = (z1, z2)

′ on time, t. The stoichiome-

try matrix is given by

S =

(
1 −1 0

0 1 −1

)

and the associated hazard function is

h(X, c) = (c1X1, c2X1X2, c3X2)
′.

The diffusion approximation can be calculated by substituting S and h(X, c) into the CLE

(1) to give respective drift and diffusion coefficients of

α(X, c) =

(
c1X1 − c2X1X2

c2X1X2 − c3X2

)
,

β(X, c) =

(
c1X1 + c2X1X2 −c2X1X2

−c2X1X2 c2X1X2 + c3X2

)
.

For the linear noise approximation, the Jacobian matrix Ft is given by

Ft =

(
c1 − c2z2 −c2z1

c2z2 c2z1 − c3

)
.

We simulated a synthetic dataset by generating 50 observations at integer times using

the Gillespie algorithm with initial conditions x1 = (70, 80)′ and parameter values c =

(1.0, 0.005, 0.6)′ taken from Wilkinson (2012). Predator values were discarded leaving 50

observations on prey only. These were then corrupted via an error distribution for which

the marginal likelihood under the LNA is intractable:

Yt ∼ Poisson(x1,t), t = 1, 2, . . . , 50.

A tractable approximation to the true marginal likelihood under the MJP, for use in Stage

1 of the delayed acceptance scheme was obtained using the LNA as described in Section 3.2.

In what follows, for simplicity, we assume that the latent initial state x1 is known.
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Figure 1: Lotka-Volterra model. Marginal posterior distributions under the MJP (his-

togram), LNA (solid line) and CLE with ∆t = 0.0625 (dashed line), ∆t = 0.125 (dotted

line), ∆t = 0.2 (dot-dashed line). True values of each log(ci) are indicated (∗).

For brevity, we refer to the MCMC algorithm targeting the posterior under the MJP that

uses the LNA inside the delayed acceptance PMMH scheme as daPMMH-LNA. Similarly,

when using the CLE inside the delayed acceptance scheme we refer to this as daPMMH-

CLE. Finally, we designate the vanilla PMMH scheme without delayed rejection as PMMH.

Using independent Uniform U(−8, 8) priors for each log(ci) we performed a pilot run of

the PMMH scheme with 50 particles to give an approximate covariance matrix V̂ar(c) and

approximate posterior mean ĉ. Further pilot runs were then implemented with c fixed at

ĉ and numbers of particles ranging from 50 to 250. We found that using 200 particles

gave the variance in the noise in the estimated log-posterior as 1.16. We therefore took

N = 200 particles for the main monitoring runs, which consisted of 2×105 iterations of each

scheme, with the log(ci) updated in a single block using a Gaussian random walk proposal

kernel. For PMMH, we followed the practical advice of Sherlock et al. (2013) and used an

innovation variance matrix given by λ2.382

3
V̂ar(c) with λ tuned to give an acceptance rate

of around 10%. We tried a range of λ values and report results for λ = 0.7 which gave

an acceptance rate of 9.4%. For daPMMH-CLE and daPMMH-LNA, we found that using

λ = 1 and λ = 3 (respectively) gave an improved overall efficiency (compared with simply

using λ = 0.7). Intuitively, as computation of an estimate of marginal likelihood under

the CLE and an approximation to the marginal likelihood under the LNA is extremely

cheap relative to the MJP, larger moves should be tried at Stage 1. For daPMMH-CLE,

we considered three levels of discretisation, namely, ∆t = 0.2, 0.125, 0.0625. The cost of

computing either an estimate of marginal likelihood (under the CLE) or an approximation

to the marginal likelihood (under the LNA) scales roughly as 1 : 20 : 30 : 58 : 362 for LNA

: CLE(∆t = 0.2) : CLE(∆t = 0.125) : CLE(∆t = 0.0625) : MJP. All algorithms are coded

in C and were run on a desktop computer with a 2.83 GHz clock speed.

Figure 1 summarises the output of the PMMH scheme (consistent with the output
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Figure 2: Log-marginal likelihood estimates under the MJP (log(p̂(y|c))) against the cor-

responding log-marginal likelihood estimate under (a) the CLE (∆t = 0.2), (b) the CLE

(∆t = 0.125), (c) the CLE (∆t = 0.0625) and (d) the LNA. All plots are obtained using

10, 000 values of c sampled from the posterior p(c|y) for the Lotka-Volterra model.
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Algorithm α1 α2|1 CPU time (s) ESSmin Rel. ESSmin/s

PMMH 0.094 1.000 74850 2186 1.00

daPMMH-CLE (∆t = 0.2) 0.123 0.142 15167 485 1.10

daPMMH-CLE (∆t = 0.125) 0.105 0.278 14814 867 2.00

daPMMH-CLE (∆t = 0.0625) 0.109 0.327 21230 948 1.53

daPMMH-LNA 0.031 0.464 2581 835 11.08

Table 1: Lotka-Volterra model. Stage 1 acceptance rate α1, Stage 2 acceptance rate α2|1,

CPU time (to the nearest second), minimum effective sample size (ESSmin, to the nearest

whole number) and minimum effective sample size per second, relative to the corresponding

value obtained from the vanilla PMMH scheme. All values are based on 105 iterations.

of the delayed acceptance schemes, not reported). We also give kernel density estimates

of the marginal parameter posteriors under the LNA and CLE (for each discretisation

choice). That is, we ran daPMMH-LNA and daPMMH-CLE without performing the Stage

2 correction. When working with the CLE, smaller Euler time steps appear to give a better

approximation. The effect of this choice on overall efficiency can be seen in Table 1. Here,

we report Stage 1 acceptance rate α1, Stage 2 acceptance rate α2|1, the CPU time, the

minimum (over the 3 parameters) effective sample size (ESSmin) and minimum effective

sample size per second, relative to the corresponding value obtained from the vanilla PMMH

scheme. Whilst the daPMMH-CLE scheme gives an improvement in overall efficiency (as

measured by relative ESSmin per second) for all values of ∆t employed, the effect of the

discretisation is clear. The marginal likelihood under the CLE approaches that under

the MJP as ∆t decreases, resulting in greater statistical efficiency of the daPMMH-CLE

scheme. This can also be seen by inspecting the Stage 2 acceptance probability reported in

Table 1. Naturally, this improvement comes at a greater computational cost suggesting an

optimal value of ∆t between 0.2 and 0.0625 for this example. Perhaps counter-intuitively,

the CPU time for ∆t = 0.2 is actually greater than that for ∆t = 0.125. Whilst all three

approximate posteriors that are derived from the CLE are wider than that derived from

the MJP, the approximate posterior with ∆t = 0.2 is by far the widest. Consequently

the Stage 1 acceptance rate is much higher and the computationally intensive Stage 2

calculation is performed more often. Further insight into this result can be gained from

Figure 2, which plots estimates of the marginal likelihood (on the log-scale) under PMMH

against the corresponding value obtained under each approximation, for 10, 000 values of c

sampled from the posterior p(c|y). The Stage 1 and 2 acceptance rates depend only on the

estimates of the log-likelihood at the proposed and current values through their difference.

Thus the efficiency of the algorithm is unaffected by any fixed shift of the points from the

line through the origin with a slope of one. However, variability about a line with this

slope is important and we see greater variability in the estimates obtained for ∆t = 0.2

resulting in a reduction in statistical efficiency for the daPMMH-CLE (∆t = 0.2) scheme,
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with proposed values that were accepted at Stage 1 being rejected at Stage 2.

The daPMMH-LNA scheme on the other hand requires minimal tuning. The LNA

gives an analytic form for the (approximate) marginal likelihood and therefore does not

require implementation of a particle filter during the first Stage of the delayed acceptance

scheme. Moreover, the LNA solution involves solving a set of ODEs, for which standard

routines, such as the lsoda package (Petzold, 1983), exist. Therefore, pre-specification of

a suitable time discretisation is not required. We find for this example that the daPMMH-

LNA scheme outperforms the vanilla PMMH scheme by a factor of more than 10. In what

follows, we focus on the daPMMH-LNA scheme.

4.2 Gene Expression

Here, we consider a simple model of gene expression involving three biochemical species

(DNA, mRNA, protein) and four reaction channels (transcription, mRNA degradation,

translation, protein degradation):

R1 : DNA
κR,t

−−−→ DNA +R

R2 : R
γR−−−→ ∅

R3 : R
κP−−−→ R + P

R4 : P
γP−−−→ ∅.

This system has been analysed by Komorowski et al. (2009) among others, and we therefore

adopt the same notation to aid the exposition.

Let Xt = (Rt, Pt)
′ denote the system state at time t, where Rt and Pt are the respective

number of mRNA and protein molecules. As in Komorowski et al. (2009), we take κR,t to

be the time dependent transcription rate of the gene. Specifically,

κR,t = b0 exp
(
−b1(t− b2)

2
)
+ b3

so that transcription rate increases for t < b2 and tends to the baseline b3 for t > b2. We

denote the vector of unknown parameters by

c = (γR, γP , κP , b0, b1, b2, b3)
′

and our goal is to perform inference for these parameters. The stoichiometry matrix asso-

ciated with the system is given by

S =

(
1 −1 0 0

0 0 1 −1

)

and the associated hazard function is

h(Xt, c) = (κR,t, γRRt, κPRt, γPPt)
′.
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Figure 3: A single realisation of the gene expression system obtained using the first reaction

method. Protein numbers used in the artificial dataset are shown as circles.

For the linear noise approximation, we have the Jacobian matrix as

Ft =

(
−γR 0

κP −γP

)
.

We simulated a synthetic dataset by generating observations every 15 minutes for

25 hours (giving 100 observations in total) noting that care must be taken when sim-

ulating from the MJP representation of this system, due to the time dependent haz-

ard of reaction R1. We used initial conditions of x1 = (10, 150)′ and parameter values

c = (0.44, 0.52, 10, 15, 0.4, 7, 3)′ with units of time in hours. As in Komorowski et al. (2009)

we created a challenging data-poor scenario by discarding observations on mRNA levels

and corrupting the remaining protein observations with additive Gaussian noise:

Yt ∼ N(Pt , σ
2), t = 1, 2, . . . , 100.

We took σ = 10 and assume that this quantity is unknown. We therefore augment the

parameter vector c to include σ. The data are shown in Figure 3.

For each rate constant, we assumed the same prior distributions as in Komorowski et al.

(2009) including informative priors for the degradation rates to ensure identifiability. Specif-

ically, we have that
γR ∼ Γ(19.36, 44), γP ∼ Γ(27.04, 52),

κP ∼ Exp(0.01), b0 ∼ Exp(0.01),

b1 ∼ Exp(1), b2 ∼ Exp(0.1),

b3 ∼ Exp(0.01), σ ∼ Exp(0.01)

where Γ(a, b) denotes the Gamma distribution with mean a/b and Exp(b) denotes the

Exponential distribution with mean 1/b). For simplicity, we fixed the initial latent states
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Figure 4: Gene expression model. Marginal posterior distributions under the MJP (his-

tograms) and LNA (solid line). True values of each log(ci) are indicated (∗).

at their true values. We performed a pilot run of the PMMH scheme with 50 particles

to give an approximate covariance matrix V̂ar(c) and approximate posterior mean ĉ. By

performing further pilot runs we found that using 250 particles gave the variance in the

noise in the estimated log-posterior as 1.54. We therefore took N = 250 particles for the

main monitoring runs, which typically consisted of 2× 105 iterations of each scheme, with

the log(ci) updated in a single block using a Gaussian random walk proposal kernel. We

used an innovation variance matrix given by λ2.382

3
V̂ar(c). For PMMH, further pilot runs

were performed to determine an appropriate scaling λ. We used λ = 0.6 (which gave an

acceptance rate of around 8%) for the main run. The cost of computing an approximation

to the marginal likelihood (under the LNA) versus computing an estimate of marginal

likelihood under the MJP scales roughly as 1 : 780 for LNA : MJP and we might therefore

expect that a larger value of λ will be optimal for daPMMH-LNA. In order to investigate

effect of λ on the daPMMH-LNA scheme, we report results for λ = 0.6, 1, 2, 3, 4.

Figure 4 summarises the output of the PMMH scheme which we find to be consistent

with the output of the daPMMH-LNA scheme (not reported). We also give kernel density

estimates of the marginal parameter posteriors under the LNA. The posterior samples ap-

pear to be consistent with the true values that produced the data although we see some

discrepancy between the LNA and MJP posteriors. Table 2 shows Stage 1 acceptance

rate α1, Stage 2 acceptance rate α2|1, CPU time, minimum (over the parameters) effective

sample size (ESSmin) and minimum effective sample size per second, relative to the cor-

responding value obtained from the PMMH scheme. The effect of increasing the scaling
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Figure 5: Log-marginal likelihood estimates log(p̂(y|c)) under the MJP against the corre-

sponding log-marginal likelihood estimate under the LNA, using 10, 000 values of c sampled

from the posterior p(c|y) for the gene expression model.

parameter λ (which in turn increases the innovation variance for the Gaussian random walk

update) can clearly be seen. When λ = 3 we see an 8 fold improvement in overall efficiency

(as measured by relative ESSmin per second). The result is relatively robust to the choice

of λ, with a relative ESSmin per second of 2.72 when using the same scaling as PMMH

(λ = 0.6).

The accuracy of the LNA can be assessed through inspection of Figures 4 and 5. There

is a noticeable discrepancy in the marginal posteriors for log(b1) and log(b2). Despite this,

Figure 5 suggests that the LNA provides a reasonable approximation to the MJP in regions

of high posterior density, and we recorded an empirical Stage 2 acceptance probability of

around 0.18.

4.3 Epidemic model

Finally, we consider a Susceptible–Infected–Removed (SIR) epidemic model involving two

species (susceptibles X1 and infectives X2) and two reaction channels (infection of a sus-

ceptible and removal of an infective):

R1 : X1 + X2
β
−−→ 2X2

R2 : X2
γ
−−→ ∅.
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Algorithm α1 α2|1 CPU time (s) ESSmin Rel. ESSmin/s

PMMH 0.077 1.000 350657 524 1.00

daPMMH-LNA (λ = 0.6) 0.218 0.198 77704 316 2.72

daPMMH-LNA (λ = 1) 0.137 0.178 50840 394 5.19

daPMMH-LNA (λ = 2) 0.051 0.163 20155 246 8.18

daPMMH-LNA (λ = 3) 0.029 0.149 11667 153 8.76

daPMMH-LNA (λ = 4) 0.023 0.182 9518 120 8.44

Table 2: Gene expression model. Stage 1 acceptance rate α1, Stage 2 acceptance rate α2|1,

CPU time (to the nearest second), minimum effective sample size (ESSmin, to the nearest

whole number) and minimum effective sample size per second, relative to the corresponding

value obtained from the vanilla PMMH scheme. All values are based on 2× 105 iterations.

The system can be seen as a special case of the Lotka-Volterra system with c1 = 0. We let

c = (β, γ)′ denote the unknown parameter vector. The stoichiometry matrix is given by

S =

(
−1 0

1 −1

)

and the associated hazard function is

h(X, c) = (βX1X2, γX2)
′

where X = (X1, X2)
′ denotes the state of the system at time t. For the linear noise

approximation, the Jacobian matrix Ft is given by

Ft =

(
−βz2 −βz1
βz2 βz1 − γ

)

where z = (z1, z2)
′ is the state at time t of the deterministic process satisfying (6).

We consider the Abakaliki small pox dataset given in Bailey (1975) and studied by

O’Neill and Roberts (1999), Fearnhead and Meligkotsidou (2004) and Boys and Giles (2007)

among others. Page 125 of Bailey (1975) provides a complete set of 29 inter-removal times,

measured in days, from a smallpox outbreak in a community of 120 individuals in Nigeria.

We report the data here as the days on which the removal of individuals actually took

place, with the first day set to be time 0 (Table 3). We assume an SIR model for the

data with observations being equivalent to daily measurements of X1 + X2 (as there is a

fixed population size). In addition, and for simplicity, we assume that a single individual

remained infective just after the first removal occurred. We analyse the data under the as-

sumption of no measurement error. This assumption can be incorporated into the PMMH

algorithm by calculating the un-normalised weight in step 2(b) of the SMC scheme as

w∗i
t+1 =

{
1, xi

t+1 = yt+1

0, otherwise
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Day 0 13 20 22 25 26 30 35 38 40 42 47

No. of removals 1 1 1 1 3 1 1 1 1 2 2 1

Day 50 51 55 56 57 58 60 61 66 71 76

No. of removals 1 1 2 1 1 1 2 1 2 1 1

Table 3: Abakaliki smallpox data.
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Figure 6: Epidemic model. Marginal posterior distributions under the MJP (histograms)

and LNA (solid line), and contour plots of the joint posterior under the MJP (left) and

LNA (right).

The marginal likelihood under the LNA can be computed using the algorithm described

in A.3 with G′ = (1, 1) and Σ = 0. Note that for this example, the cost of computing the

LNA marginal likelihood versus an estimate of marginal likelihood under the MJP scales

roughly as 1 : 34 for LNA : MJP.

We followed Fearnhead and Meligkotsidou (2004) by taking β ∼ Γ(10, 104) and γ ∼

Γ(10, 102) a priori. A pilot run of the PMMH scheme with 500 particles was used to

give an approximate covariance matrix V̂ar(c) and approximate posterior mean ĉ. By

performing further pilot runs we found that using 2000 particles gave the variance in the

noise in the estimated log-posterior as 1.25. We therefore took N = 2000 particles for

the main monitoring runs, which typically consisted of 105 iterations of each scheme, with

the log(ci) updated in a single block using a Gaussian random walk proposal kernel with

innovation variance λ2.382

3
V̂ar(c). For PMMH, a number of short pilot runs suggested that

λ = 1.1 (which gave an acceptance rate of 0.23) was close to optimal.

Figure 6 gives marginal posterior densities under the MJP (using the output of the

PMMH scheme) and the LNA (using the output of the daPMMH-LNA scheme without

Stage 2). We see that the LNA substantially underestimates the uncertainty in β. Use

of the LNA as a surrogate model in this case will likely lead to rejected parameter draws

at Stage 1 that would otherwise be accepted at Stage 2. We alleviate this problem by

scaling the log marginal likelihood under the LNA by an amount 1/τ , where τ is chosen to

maximise the efficiency of the delayed acceptance scheme. Specifically, we replace pa(y|c) in

Algorithm 1 with pa(y|c)
1

τ . To determine an appropriate value for τ , we fixed the scaling
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Algorithm α1 α2|1 CPU time (s) ESSmin Rel. ESSmin/s

PMMH 0.226 1.000 4981 7469 1.00

daPMMH-LNA (τ = 1, λ = 1.1) 0.252 0.402 1208 1478 0.82

daPMMH-LNA (τ = 4, λ = 1.1) 0.345 0.509 1634 3444 1.41

daPMMH-LNA (τ = 5, λ = 1.1) 0.358 0.499 1698 4374 1.72

daPMMH-LNA (τ = 6, λ = 1.1) 0.372 0.488 1763 2831 1.07

daPMMH-LNA (τ = 5, λ = 3) 0.180 0.476 890 2920 2.19

daPMMH-LNA (τ = 5, λ = 4) 0.144 0.471 762 2471 2.16

daPMMH-LNA (τ = 5, λ = 5) 0.120 0.468 649 2008 2.06

Table 4: Epidemic model. Stage 1 acceptance rate α1, Stage 2 acceptance rate α2|1, CPU

time (to the nearest second), minimum effective sample size (ESSmin, to the nearest whole

number) and minimum effective sample size per second, relative to the corresponding value

obtained from the vanilla PMMH scheme. All values are based on 105 iterations.

λ at 1.1 and ran the daPMMH-LNA scheme for τ in the range [1, 10]. Table 4 reports

results for τ ∈ {1, 4, 5, 6}. We see that as τ increases so does the Stage 1 acceptance rate,

resulting in an increase in CPU time (as the expensive MJP simulator is run more often).

However, the Stage 2 acceptance rate also increases, suggesting an optimal value of τ . We

found that τ = 5 is optimal for the range considered. We therefore fixed τ = 5 and varied

the scaling λ. For λ ∈ {3, 4, 5} it is possible to achieve a 2-fold increase in efficiency over

PMMH.

5 Discussion

We have proposed two delayed acceptance Particle Mar-ginal Metropolis-Hastings algo-

rithms, analogues of the delayed acceptance Metropolis-Hastings scheme of Christen and Fox

(2005). We have shown that both lead to a chain with the desired stationary distribution

and applied them to the problem of parameter estimation in Markov jump processes with

state-dependent rate parameters. In both analogues the true posterior that is used in

Christen and Fox (2005) is replaced with an unbiased approximation obtained through a

particle filter. In the second analogue the fast deterministic approximation is replaced

with a relatively fast stochastic approximation that is also obtained via a particle filter.

The need for such an approach is motivated by the potentially huge computational cost of

performing particle MCMC for the MJP directly, where each iteration requires implemen-

tation of a particle filter with N particles, and a complete run of the stochastic simulation

algorithm is required for each particle.

The delayed acceptance PMMH scheme aims to avoid calculating an estimate of marginal

likelihood (and therefore running the particle filter) under the MJP for proposals that are

25



likely to be rejected, by implementing a preliminary screening step that uses a cheap ap-

proximation of the marginal likelihood. We explored two approximations, the chemical

Langevin equation (CLE) and the linear noise approximation (LNA). The LNA can be

viewed as an approximation to the CLE. Thus, providing the Euler time-step is not too

large the CLE leads to a greater effective sample size over a fixed number of iterations.

However under Gaussian observation regimes the marginal likelihood under the LNA is

tractable, whereas the marginal likelihood under the CLE is generally intractable whatever

the observation regime. We therefore replaced the true posterior under the CLE approx-

imation with a stochastic approximation to this, also obtained via a particle filter. We

tested both schemes on a Lotka-Volterra system where the observed counts follow a Pois-

son distribution with expectation equal to the true count. We showed how the LNA can be

used to obtain a reasonable deterministic approximation to the marginal likelihood even

though the observations are not Gaussian and created a scheme which is approximately

an order of magnitude more efficient than the standard PMMH scheme. Even though the

particle filter is computationally much more costly than simply integrating the LNA, using

the CLE we are still able to double the efficiency compared with the standard PMMH

scheme. In a further application of the LNA scheme to a more complex MJP, with a larger

number of unknown parameters we again obtained a speed up of approximately an order

of magnitude.

The proposed methodology can in principle be applied to any stochastic kinetic model

and in Section 4.3 we applied the delayed acceptance scheme (using the LNA) to a simple

epidemic model. For this example, we found that an estimate of marginal likelihood un-

der the MJP could be computed relatively cheaply. In spite of this, running the delayed

acceptance scheme is still worthwhile, and we observed an overall increase in efficiency of

at least a factor of two.

The efficiency of both proposed delayed acceptance PMMH schemes can be improved in

a number of ways. Both schemes can be parallelised and will benefit from recent work on

the use of graphics cards for Monte Carlo methods (Lee et al., 2010). In addition, in high

signal-to-noise scenarios, the variance of the marginal likelihood estimator under both the

CLE and MJP could be reduced through implementation of an auxiliary particle filter such

as that considered by Pitt et al. (2012). The interplay between the number of particles, and

choice of scaling for the RWM proposal, and the efficiency of the scheme is non-trivial. For

example, increasing the number of particles increases the CPU time per iteration but (e.g.

Andrieu and Roberts (2009)) should lead to a more efficient PMMH algorithm in terms

of ESS for a fixed number of iterations. However with a delayed acceptance algorithm we

might expect less of an increase in ESS once the accuracy of the stochastic approximation

exceeds that of the deterministic approximation since the Stage 2 acceptance rate depends

on the ratio of these. Our tuning of the algorithms was relatively ad hoc; with sound tuning

advice driven by theory it is possible that further efficiency gains might be obtained.

Our demonstration of detailed balance showed that when a stochastic estimate of the
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marginal likelihood is used at Stage 1 as well as Stage 2, the independence of the estimators

is unnecessary. This suggests that a positive correlation between the two might increase

the Stage 2 acceptance rate; unfortunately it was not obvious how to achieve this for our

particular estimators. It is also straightforward to extend our derivation to apply to a

k-Stage delayed acceptance algorithm, using a sequence of k − 1 approximations. Such a

sequence would need a careful design as the increase in accuracy at each stage would need

to outweigh the increase in computational cost, and we do not pursue this here.

A Appendix

Recall that x = {xt | 1 ≤ t ≤ T} denotes values of the latent MJP and y = {yt | t =

1, 2, . . . , T} denotes the collection of (noisy) observations on the MJP at discrete times. In

addition, we define xt = {xs | t− 1 < s ≤ t} and yt = {ys | s = 1, 2, . . . , t}.

A.1 PMMH scheme

The PMMH scheme has the following algorithmic form.

1. Initialisation, i = 0,

(a) set c(0) arbitrarily and

(b) run an SMC scheme targeting p(x|y, c(0)), and let p̂(y|c(0)) denote the marginal

likelihood estimate

2. For iteration i ≥ 1,

(a) sample c∗ ∼ q(·|c(i−1)),

(b) run an SMC scheme targeting p(x|y, c∗), and let p̂(y|c∗) denote the marginal

likelihood estimate,

(c) with probability min{1, A} where

A =
p̂(y|c∗)p(c∗)

p̂(y|c(i−1))p(c(i−1))
×

q(c(i−1)|c∗)

q(c∗|c(i−1))

accept a move to c∗ otherwise store the current values

Note that the PMMH scheme can be used to sample the joint posterior p(c,x|y). Essen-

tially, a proposal mechanism of the form q(c∗|c)p̂(x∗|y, c∗), where p̂(x∗|y, c∗) is an SMC

approximation of p(x∗|y, c∗), is used. The resulting MH acceptance ratio is as above. Full

details of the PMMH scheme including a proof establishing that the method leaves the

target p(c,x|y) invariant can be found in Andrieu et al. (2010).
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A.2 SMC scheme

A sequential Monte Carlo estimate of the marginal likelihood p(y|c) under the MJP can

be constructed using (for example) the bootstrap filter of Gordon et al. (1993). Algorith-

mically, we perform the following sequence of steps.

1. Initialisation.

(a) Generate a sample of size N , {x1
1, . . . , x

N
1 } from the initial density p(x1).

(b) Assign each xi
1 a (normalised) weight given by

wi
1 =

w∗i
1∑N

i=1w
∗i
1

, where w∗i
1 = p(y1|x

i
1, c) .

(c) Construct and store the currently available estimate of marginal likelihood,

p̂(y1|c) =
1

N

N∑

i=1

w∗i
1 .

(d) Resample N times with replacement from {x1
1, . . . , x

N
1 } with probabilities given

by {w1
1, . . . , w

N
1 }.

2. For times t = 1, 2, . . . , T − 1,

(a) For i = 1, . . . , N : draw Xi
t+1 ∼ p

(
xt+1|x

i
t, c

)
using the Gillespie algorithm.

(b) Assign each xi
t+1 a (normalised) weight given by

wi
t+1 =

w∗i
t+1∑N

i=1w
∗i
t+1

, where w∗i
t+1 = p(yt+1|x

i
t+1, c) .

(c) Construct and store the currently available estimate of marginal likelihood,

p̂(yt+1|c) = p̂(yt|c)p̂(yt+1|yt, c)

= p̂(yt|c)
1

N

N∑

i=1

w∗i
t+1 .

(d) Resample N times with replacement from {x1
t+1, . . . ,x

N
t+1} with probabilities

given by {w1
t+1, . . . , w

N
t+1}.
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A.3 Marginal likelihood under the linear noise approximation

Assume an observation regime of the form

Yt = G′Xt + εt , εt ∼ N (0,Σ)

where G is a constant matrix of dimension u × p and εt is a length-p Gaussian random

vector.

Now suppose that X1 ∼ N(a, C) a priori. The marginal likelihood under the LNA,

pa(y|c) can be obtained as follows.

1. Initialisation. Compute

pa(y1|c) = φ (y1 ; G
′a , G′CG+ Σ)

where φ(· ; a , C) denotes the Gaussian density with mean vector a and variance

matrix C. The posterior at time t = 1 is therefore X1|y1 ∼ N(a1, C1) where

a1 = a+ CG (G′CG+ Σ)
−1

(y1 −G′a)

C1 = C − CG (G′CG+ Σ)
−1

G′C .

2. For times t = 1, 2, . . . , T − 1,

(a) Prior at t + 1. Initialise the LNA with zt = at, mt = 0 and Vt = Ct. Note that

this implies ms = 0 for all s > t. Therefore, integrate the ODEs (6) and (10)

forward to t + 1 to obtain zt+1 and Vt+1. Hence

Xt+1|yt ∼ N(zt+1, Vt+1) .

(b) One step forecast. Using the observation equation, we have that

Yt+1|yt ∼ N (G′zt+1, G
′Vt+1G + Σ) .

Compute

pa(yt+1|c) = pa(yt|c)pa(yt+1|yt, c)

= pa(yt|c)φ (yt+1 ; G
′zt+1 , G

′Vt+1G+ Σ) .

(c) Posterior at t + 1. Combining the distributions in (a) and (b) gives the joint

distribution of Xt+1 and Yt+1 (conditional on yt and c) as
(

Xt+1

Yt+1

)
∼ N

{(
zt+1

G′zt+1

)
,

(
Vt+1 Vt+1G

G′Vt+1 G′Vt+1G+ Σ

)}

and therefore Xt+1|yt+1 ∼ N(at+1, Ct+1) where

at+1 = zt+1 + Vt+1G (G′Vt+1G+ Σ)
−1

(yt+1 −G′zt+1)

Ct+1 = Vt+1 − Vt+1G (G′Vt+1G+ Σ)
−1

G′Vt+1 .
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