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Abstract We develop and analyse a first-order algorithm for the A-optimal
experimental design problem. The problem is first presented as a special case
of a parametric family of optimal design problems for which duality results
and optimality conditions are given. Then, two first-order (Frank-Wolfe type)
algorithms are presented, accompanied by a detailed time-complexity analy-
sis of the algorithms and computational results on various sized problems.

1 Optimal Experimental Design

Consider the following linear model

y = xT (t)θ + ε(t), (1)

where components of xT (t) = (x1(t), x1(t), . . . , xn(t)) are n linearly independent
continuous functions on some compact space and θ ∈ Rn is a vector of un-
known parameters to be estimated. Let the error terms ε(t) follow a multi-
variate normal distribution with mean 0 and the error in each observation
be independent from the others. Without loss of generality, suppress the de-
pendency of the vector x(t) on the actual experimental conditions t and work
with a model function such as

y = xT θ + ε, (2)

in which the vector x will be referred to as the regression or design vector.
Let X = {x1, . . . , xm} ⊂ R

n be the set of regression vectors, assume henceforth
that the xi’s span Rn, and X denote a matrix of order n × m whose columns
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Singapore University of Technology and Design
E-mail: ahipasaoglu@sutd.edu.sg

ar
X

iv
:1

31
1.

23
35

v1
  [

st
at

.C
O

] 
 1

1 
N

ov
 2

01
3



2 Selin Damla Ahipaşaoğlu

consist of these vectors. (Frequently, the regression points are chosen from
some fixed compact set, here suppose that some large fixed subsetX has been
preselected.)

Definition 1 An experimental design of size N is given by a finite number of
regression points x1, . . . , xm in Rn and nonnegative integers (representing the
number of repetitions at each respective point) n1, . . . , nm such that

∑m
i=1 ni = N.

In this setting, the dispersion matrix related to the optimal (unbiased) esti-
mator for the parameter vector is

D = σ2

 m∑
i=1

nixixT
i

−1

=
σ2

N

 m∑
i=1

ni

N
xixT

i

−1

. (3)

Optimal experimental design focuses on finding integers ni so that the disper-
sion matrix, which is a measure of the variance (or the error) of the estimator,
is minimized in some sense. The dispersion matrix is positive definite (i.e.,
D � 0) and usually the minimization is with respect to the Loewner ordering
over the cone of positive semidefinite matrices (A � B ⇐⇒ A − B ∈ SRn×n

+ ).
Since this is an antitonic ordering, minimizing the dispersion matrix is equiv-
alent to maximizing the information matrix

M =
N
σ2

m∑
i=1

ni

N
xixT

i .

When the total number of experiments N is finite, experimental design
problems become integer programming problems which are quite hard to
attack especially for large m. Hence the case where N tends to infinity is stud-
ied instead. In this case we maximize M(u) :=

∑m
i=1 uixixT

i , where ui ≥ 0, for
i = 1, . . . ,m, and

∑m
i=1 ui = 1. Note that an experimental design with an infinite

sample size N defines a probability distribution which assigns all its weight
to a finite number of points. The points with positive weight are the support
points of the experimental design. One can refer to Chapter 12 in [19] or [7] for
a valuable discussion on how to come up with an exact experimental design
for a finite sample size once the optimal design for an infinite sample size is
found.

Definition 2 An information function is a function φ from the cone of positive
semidefinite matrices to the real line, φ : SRn×n

+ → R, which is positively ho-
mogeneous, superadditive, nonnegative, nonconstant, and upper semicon-
tinuous.

It is easy to see that information functions are concave. They order the in-
formation matrices according to their informative value and preserve the
Loewner ordering. The most common information functions are matrix means.
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Definition 3 Let λ(C) denote the eigenvalues of a matrix C. If C is a positive
definite matrix, i.e., C � 0, the matrix mean φp is a function defined as

φp(C) =


λmax(C) for p = ∞;(

1
n TraceCp

)1/p
for p , 0,±∞;

(det C)1/n for p = 0;
λmin(C) for p = −∞.

If C is a singular positive semidefinite matrix, then

φp(C) =


λmax(C) for p = ∞;(

1
n TraceCp

)1/p
for p , 0,∞;

0 for p ≤ 0.

Matrix means satisfy the necessary properties of information functions
when p ≤ 1. Using these functions, the general optimal experimental design prob-
lem is defined as follows:

maxu gp(u) := ln φp(M(u))
(Dp) eT u = 1,

u ≥ 0,

where e is a vector of ones in Rm. Each value of the parameter p gives rise
to a different criterion with different applications. We will study one of the
special cases (when p = −1) in great detail in Section 5 forward.

2 Ellipsoidal Inclusion Problems

Assume that we have a set of pointsX = {x1, . . . , xm} ⊂ R
n, which spans Rn and

is symmetric with respect to the origin. We are interested in approximating
(especially enclosing) the convex hull of these points with an ellipsoid. Note
that the idea is to approximate the complex structure of the convex hull with a
simple geometric object. Boxes, balls, ellipsoids, and cylinders are used in the
literature. Ellipsoids are preferred in many applications since they are smooth
and flexible, and testing membership in or optimizing a linear function over
an ellipsoid is a straightforward task.

The set
E(x̄,H) := {x ∈ Rn : (x − x̄)T H(x − x̄) ≤ n}

for x̄ ∈ Rn and H � 0 is an ellipsoid in Rn. It is centered at x̄ and its shape is
defined by H. It can be viewed as a unit ball under an affine map where each
point x̃ in the unit ball is mapped to a point x = x̄ +

√
nLx̃ in the ellipsoid,

where L satisfies LLT = H−1. Geometric properties of the ellipsoid such as its
volume, length of its semi-axes, etc., are determined by the shape matrix H.
For example, its volume is nn/2

√
det H

times that of the unit ball.
The convex hull of a set of finitely many points can be enclosed by an

infinite number of ellipsoids. Obviously we are only interested in ellipsoids
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which are centered at the origin (since X is symmetric around the origin)
and resemble the convex hull in some sense. Although the enclosing ellipsoid
which has the minimum volume is a natural choice from both theoretical and
practical points of view, as discussed in detail in [26] and [4], defining the
problem using a more general criterion is quite insightful since other criteria
can be needed in certain applications.

For q ≤ 1, consider the following problem:

minH fq(H) := − ln φq(H)
(Pq) xT

i Hxi ≤ n, i = 1, . . . ,m,
H � 0.

For each value of q, this problem finds an ellipsoid which encloses all points
in X, is centered at the origin, and has a shape matrix with the largest ma-
trix mean φq. Each value of the parameter q leads to a different problem with
a different geometric interpretation. For example, when q = 0, the objective
function becomes (a multiple of) ln det(H−1) and hence (Pq) is equivalent to
the Minimum-Volume Enclosing Ellipsoid problem discussed in the previ-
ously mentioned references. Similarly, for the extreme case of q = −∞, we
have ln(λmin(H))−1 as the objective function and hence the problem becomes
that of finding the Minimum Enclosing Ball of X. (See F[32] and [3] for effi-
cient algorithms for this problem.) When q = 1/2, (Pq) maximizes the trace of
H1/2 and leads to a less familiar geometric problem in which we would like to
maximize the sum of the inverses of the semi-axes of the enclosing ellipsoid.
This problem has important applications in statistics and solving this prob-
lem is the main topic of this paper. We will refer to the general problem (Pq)
as the ellipsoidal inclusion problem.

3 Duality

We now show that the two problems introduced above are closely related.

Lemma 1 [Weak Duality] Let p and q be a pair of conjugate numbers in (−∞, 1),
i.e., they satisfy pq = p + q. Then we have fq(H) ≥ gp(u) for any H and u feasible in
(Pq) and (Dp), respectively.

Proof We have

fq(H) − gp(u) = − ln φq(H) − ln φp(M(u))

= − ln
(
φq(H)φp(M(u))

)
≥ − ln

(
1
n

H • M(u)
)

≥ − ln 1 = 0,

where • denotes the trace product of two symmetric matrices, i.e., A • B =
Trace(AB). The first inequality is an application of the Hölder’s inequality (on
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the eigenvalues of the matrices at hand) and a detailed proof can be found in
[19]. The second inequality follows from the feasibility of the solutions H and
u. Indeed, 1

n H • (M(u)) = 1
n
∑m

i=1

(
uiH • (xixT

i )
)
≤ 1

n
∑m

i=1

(
ui(xT

i Hxi)
)
≤ n

n = 1. ut

Theorem 1 [Strong Duality] Let p and q be a pair of conjugate numbers in (−∞, 1).
There exist optimal solutions for problems (Pq) and (Dp). Furthermore, the following
conditions, together with primal and dual feasibility, are necessary and sufficient for
optimality in both (Pq) and (Dp):

a. H = n
Trace(M(u))p (M(u))p−1 and

b. xT
i Hxi = n if ui > 0.

Proof Let H be a feasible solution for problem (Pq). Summing up the linear
constraints, we must have

∑m
i=1 xT

i Hxi = H • XXT ≤ nm. Since XXT � 0 and
nm > 0, {H � 0 : H • XXT ≤ nm} is a compact set. Hence the feasible region
for problem (Pq) is also a compact set (since it is the intersection of a compact
set with a finite set of halfspaces). Moreover, H = εI is feasible for (Pq) for
sufficiently small positive ε, and we can add the constraint that fp(H) ≤ fp(εI)
without loss of generality. The objective function is (finite and) continuous
on this modified compact feasible region, so an optimal solution exists for
problem (Pq). Existence of an optimal solution for (Pq) implies the existence
of an optimal solution for (Dp) as will be discussed later.

Sufficiency follows from the previous lemma, since the conditions imply
equality in the weak duality inequality. In order to prove necessity, let H̃ be an
optimal solution for (Pq). The KKT conditions must hold for this solution, i.e.,
there exist nonnegative multipliers ũ ∈ Rm such that the following equalities
hold:

−
n

TraceH̃q
H̃q−1 + M(ũ) = 0, (4)

ũi(n − xT
i H̃xi) = 0, i = 1, . . . ,m. (5)

These equalities imply that
∑m

i=1 ũi = 1, since

m∑
i=1

ũi =

∑m
i=1 ũixT

i H̃xi

n

= Trace
(

H̃M(ũ)
n

)

= Trace

 H̃
(

n
TraceH̃q H̃q−1

)
n


=

nTraceHq

nTraceHq = 1,

and hence ũ is a feasible solution for (Dp). Strong duality holds for the solu-
tion pair H̃ and ũ, so strong duality holds for any pair of optimal solutions
H and u. Conditions (a) and (b) are direct consequences of Equations (4) and
(5), and hence they are necessary. ut
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Let βi(u) := xT
i (M(u))p−1xi. The following identity will be used extensively.

uTβ(u) =
m∑

i=1

uiβi(u)

=

m∑
i=1

Trace
(
uixT

i (M(u))p−1xi

)
= Trace

(M(u))p−1
m∑

i=1

uixixT
i


= Trace(M(u))p. (6)

Using (6), we can write the necessary and sufficient conditions for u to be
optimal in (Dq) (the optimal H for (Pq) follows from (a)) as

(i) βi(u) ≤ uTβ(u) for all i, and
(ii) βi(u) = uTβ(u) if ui > 0,

which motivates the following definitions.

Definition 4 Given a positive ε, we call a dual feasible point u an ε-primal
feasible solution if βi(u) ≤ uTβ(u)(1 + ε) for all i, and say that it satisfies the
ε-approximate optimality conditions or it is an ε-approximate optimal solution if
moreover βi(u) ≥ uTβ(u)(1 − ε) whenever ui > 0.

The following lemma justifies the notation and proves that an ε-primal
feasible solution for (Dp) is close to being optimal in a well-defined way.

Lemma 2 Let p and q be a pair of conjugate numbers in (−∞, 1). Given a dual
feasible solution u which is ε-primal feasible, H = n

(1+ε)Trace(M(u))p (M(u))p−1 is feasible
in (Pq) and we have 0 ≤ g∗p − gp(u) ≤ ln(1 + ε) where g∗p is the optimal objective
function value of (Dp).

Proof The ε-primal feasibility implies that H = n
(1+ε)Trace(M(u))p (M(u))p−1 is fea-

sible for the primal problem (Pq). Let us first assume that p, q , 0. Then by
weak duality, we have

0 ≤ fq(H) − g∗p

= −
1
q

ln
(

1
n

Trace
(

n(M(u))p−1

(1 + ε)Trace(M(u))p

)q)
− g∗p

= ln(1 + ε) −
1
q

ln
(

nq−1Trace(M(u))(p−1)q

(Trace(M(u))p)q

)
− g∗p

= ln(1 + ε) + ln
(
n

1−q
q (Trace(M(u))p)

q−1
q

)
− g∗p

≤ ln(1 + ε) +
1
p

ln
(

1
n

Trace(M(u))p
)
− g∗p

g∗p − gp(u) ≤ ln(1 + ε).

The case where p = q = 0 is similar and the proof can be found in [4]. ut
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Lemma 3 u0 = 1
m (1, 1, . . . , 1) is an (m-1)-primal feasible solution.

Proof We have

m∑
i=1

1
m
βi(u0) = (u0)Tβ(u0), or

m∑
i=1

βi(u0) = m(u0)Tβ(u0), so that

max
1≤i≤m

βi(u0) ≤ (1 + (m − 1))(u0)Tβ(u0),

and the result follows from the definition of an (m-1)-primal feasible solution.
ut

So far, we have developed the duality relation between problems (Pq) and
(Dp) and characterized the optimal solutions of these problems. We also have
an initial solution for (Dp) which is somewhat close to optimality and we
can assess the quality of the solutions at hand. (Note that we will refer to
this initialization method as “Khachiyan’s Initialization” since it was used by
Khachiyan in [16] for p = q = 0.) In other words, we know how to start and
end an algorithm for (Dp) and now we need to figure out how to move from
a given solution to a better one. The selection of the iterate and the analysis
of the algorithm changes with respect to the specific parameter, namely p, of
the optimal experimental design. In the following section, we will develop a
Frank-Wolfe type first-order algorithm for the case when p = −1 (and hence
q = 1/2). This problem is referred to as the A-optimal experimental design in
statistics.

Remark 1 We would like to note that most of the results in this section are
not entirely new to the statistic community. What is new, and hopefully use-
ful, is the treatment of the subject using a standard mathematical program-
ming approach that builds the necessary machinery in devising algorithms
and analysing their convergence properties. Specifically, (i) Theorem 1 in this
section (and Theorem 2 below, which is a special case of Theorem 1) can be
obtained by following Theorems 7.12, 7.19, and 7.20 in [20]; and (ii) Lemma
2 is similar to Proposition IV.28 in [18]. Instead of borrowing these results
directly from literature, we have provided a consistent and comprehensive
treatment of the subject here. We strongly believe this is a simpler and -in
some sense- more intuitive approach for building algorithms. Understand-
ing the relationship between primal and dual problems, and the derivation
of the optimality conditions based on this relation is necessary to follow the
rest of the paper. One exception is possibly Lemma 3, which was only ob-
tained for the p = q = 0 case in [16]. The generalized result provided here is
novel according to our knowledge.

Remark 2 The duality relationship between problems (Pq) and (Dp) presented
in this chapter, provides a geometric and non-trivial insight to the design
problem: Finding the best experimental design is equivalent to covering the
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induced design space with a ’minimum volume’ ellipsoid (where the mea-
sure of the volume is dictated by the criterion used for the design problem).
This interpretation is also well-known to the statistics community for the case
p = q = 0. (See: [22],[23], [13], and more recently in [4]). In [8], the authors pro-
vide a similar discussion about the geometric interpretation of (Dp)-optimal
design problems for all values of p for models with two parameters. Our dis-
cussion is more general since it is independent of the number of parameters
in the model. Understanding the geometric interpretation plays a significant
role in internalizing several pieces of the machinery developed in this pa-
per, especially in construction of approximate solutions, quantification of the
duality gap associated with them and choosing pivots for the algorithm. A
similar geometric interpretation exists for the Dk-optimal experimental de-
sign problem: A generalization of the D-optimal experimental design prob-
lem where we are only interested in estimating the first k out of n parameters
in a general linear model. In this case, finding the best experimental design
is equivalent to covering the induced design space with a minimum-area el-
lipsoidal cylinder with special properties about its base and axis as discussed
in [5]. It is easy to see that although this paper discusses only the D-criterion,
the geometric interpretation carries to other criteria in a straightforward way.

Remark 3 Finally, before continuing our discussion towards algorithms for
the A-optimal experimental design problem (p = −1 and q = 1/2) below, we
would like to mention that ‘in principle’ algorithms for problems with other
values of p (and respective q) can be designed and analysed following the
steps outlined here. Nevertheless, the step sizes and convergence analysis
need to be customized for each criterion, and can be challenging in some
cases. One can refer to [4] for a detailed analysis of similar algorithms for the
D-optimal experimental design problem.

4 Existing Algorithms

Many Frank-Wolfe type algorithms have been devised to solve experimental
design problems, especially for the D-optimal experimental design problem.
Some of these were developed by statisticians: [10] and [30] provided algo-
rithms that maximize a linearization of the objective function over the unit
simplex at each iteration. These algorithms only allow iterations that increase
the weight of one of the coordinates of the solution. These were improved
significantly by [6] where decreasing the weight of the chosen coordinate was
also considered, paralleling the addition of Wolfe’s Away Steps to Frank’s algo-
rithm (see [12] for the original Frank-Wolfe algorithm). Recently, these algo-
rithms were analysed rigorously by the optimization community, motivated
by the ellipsoidal inclusion problem rather than the design problem. The al-
gorithms in [16] and [17] were equivalent to that of [10]. In addition, [17]
proposed an initialization scheme that produces optimal solutions with sig-
nificantly smaller number of nonzero weights than previous algorithms. This
was accompanied by introducing the concept of core sets, and the authors



On the A-Optimal Experimental Design Problem 9

were able to provide upper bounds on the number of nonzero weights in
the optimal design. Later, [26] extended the analysis to include Wolfe’s away
steps, hence providing rigorous complexity results for an algorithm equiva-
lent to that of [6]. During this period, [14] proved a simple condition that can
be used to identify and eliminate points that do not lie on the boundary of the
optimal ellipsoid, i.e., points that are guaranteed to have zero weight in the
optimal design. (Recently, this result has been extended for all values of p in
[15].) Incorporating this condition to any Frank-Wolfe type algorithm is very
easy and improves the computational time significantly (see Chapter 2 in [1]).
In addition, [4] proved that the Frank-Wolfe type algorithms with an exact
line search have favorable local convergence properties and therefore can be
used to obtain very accurate solutions. In the following section, we will de-
vise and analyse an algorithm which is a Frank-Wolfe type algorithm with
Wolfe’s aways steps. It can be viewed as applying Atwood’s approach to the
A-optimal experimental design problem. The global and local convergence
properties that will be established below are in line with those developed re-
cently by the optimization community for the D-optimal experimental design
problem.

In contrast to Frank-Wolfe type algorithms, multiplicative algorithms up-
date all weights simultaneously. Several versions were developed for various
criteria: C-optimality in [9], D-optimality in [25], and A-optimality in [27]. Re-
cently, faster algorithms were developed in [33] for D-optimality and in [31]
for the general experimental design problem, i.e., problem (Dp) discussed in
this paper. A relatively recent survey on multiplicative algorithms together
with a new multiplicative approach can also be found in [7].

Another interesting and modern approach to the experimental design prob-
lem is using semidefinite programming reformulations as discussed in [28].
This approach fails to solve large problems due to the lack of efficient solvers
as demonstrated in Section 9.

5 The A-Optimal Experimental Design Problem

Let X = {x1, . . . , xm} ⊂ R
n be a set of regression vectors and X denote a matrix

of order n×m whose columns consist of these vectors. Finding a design which
minimizes the mean dispersion of the parameters in (1) amounts to solving

maxu ĝ(u) := −Trace(M(u))−1

(D̂) eT u = 1,
u ≥ 0,

where e is a vector of ones in Rm as in the previous sections. Problem (D̂) is
referred to as the A-optimal experimental design problem in statistics. In [10],
Fedorov proved that a Frank-Wolfe type algorithm converges to an optimal
design and discussed the conditions under which D-optimal and A-optimal
designs coincide. In this paper, we will introduce a pair of problems dual
to each other and closely related to (D̂). Using the interplay between these
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problems, we will develop various Frank-Wolfe type algorithms and prove
that an ε-approximate solution (defined as in Section 1) can be obtained in
O(n ln n + ε−1) or O(ln m + ε−1) iterations. Each step of the algorithm can be
performed in O(nm) arithmetic operations. In Section 7, we will prove that
some of these algorithms possess a local linear convergence property. These
algorithms are also preferable in practice as illustrated by the computational
results in Section 8.

Consider the following two problems:

min f (H) := −2 ln TraceH1/2

(P) xT
i Hxi ≤ 1, i = 1, . . . ,m,

and
maxu g(u) := − ln Trace(M(u))−1

(D) eT u = 1,
u ≥ 0.

(P) is a special case of (Pq) in Section 1 in which q = 1/2. From a geometric
point of view, it is the problem of finding an ellipsoid which encloses all data
points in X and has the largest sum of inverses of its semi-axes. Also (D) is
a special case of (Dp) in Section 1 where p = −1. This problem is equivalent
to the statistical problem (D̂) introduced above. We will use both (D) and (D̂)
in order to develop and analyze first-order algorithms for solving all of the
three problems mentioned above simultaneously. We will first establish weak
duality:

Lemma 4 [Weak Duality] We have f (H) ≥ g(u) for any H and u feasible in (P)
and (D), respectively.

Proof Follows from Lemma 1 since p = −1 and q = 1/2 are conjugate numbers
in (−∞, 1]. Note that we have omitted an additive constant in the objective
functions of (P) and (D) in this section unlike Section 1. ut

We next show that having two feasible solutions H and u such that f (H) =
g(u) is not just sufficient but also necessary for optimality.

Theorem 2 [Strong Duality] There exist optimal solutions H∗ and u∗ for problems
(P) and (D), respectively. Furthermore, the following conditions, together with pri-
mal and dual feasibility, are necessary and sufficient for optimality in both (P) and
(D):

a. H∗ = (M(u∗))−2

Trace(M(u∗))−1 ,
b. xT

i H∗xi = 1 if u∗i > 0.

Proof As in the previous lemma, the proof follows from Theorem 1 for p = −1
and q = 1/2. ut

After some simplification, the necessary and sufficient conditions for u∗ to
be optimal in (D) can be written as

(i) αi(u∗) ≤ u∗Tα(u∗) for all i, and
(ii) αi(u∗) = u∗Tα(u∗) if u∗i > 0,



On the A-Optimal Experimental Design Problem 11

where α(u) := ∇ĝ(u) = (xT
i (M(u))−2xi)m

i=1. We say that a feasible solution u for
(D) is ε-primal feasible if αi(u) ≤ uTα(u)(1 + ε) for all i, and say that it satisfies
the ε-approximate optimality conditions or it is an ε-approximate optimal solution
if moreover αi(u) ≥ uTα(u)(1 − ε) for all i such that ui > 0. (Note that these
definitions can be deduced from those in Section 1 for p = −1 and q = 1/2.)

Lemma 5 Let u be an ε-primal feasible solution. Then we have

i. 0 ≤ g∗ − g(u) ≤ ln(1 + ε)
ii. 1 ≤ ĝ(u)

ĝ∗ ≤ 1 + ε,

where g∗ and ĝ∗ are the optimal objective function values of (D) and (D̂), respectively.

Proof Since u is an ε-primal feasible solution, (M(u))−2

(1+ε)Trace(M(u))−1 is feasible with
respect to (P). Let H∗ and u∗ be optimal solutions of (P) and (D), respectively.
Then we have

− 2 ln Trace
(

(M(u))−2

(1 + ε)Trace(M(u))−1

)1/2

+ 2 ln TraceH∗1/2 ≥ 0, or

ln(1 + ε) − ln Trace(M(u))−1 − g(u∗) ≥ 0, from which
0 ≤ g∗ − g(u) ≤ ln(1 + ε), (7)

which proves (i). Property (ii) follows from g = − ln(−ĝ). ut

6 Algorithms and Analysis

In the rest of this paper, we will develop various iterative (Frank-Wolfe type)
algorithms for solving (D) and (D̂). We will assume that the following as-
sumption holds, for every feasible solution u produced by these algorithms.

Assumption 1 The dual feasible variable u satisfies ω j(u) := xT
j (M(u))−1x j ≤ ω for

all j ∈ {1, . . . ,m} and for some ω > 1.

The objective function ĝ of (D̂) is a concave function with gradient α(u)
and that, with

u+ := (1 − τ)u + τe j, (8)

rank-one update formulae give

ĝ(u+) = −Trace(M(u+))−1

= −Trace

(1 + λ)

(M(u))−1 −
λ(M(u))−1x jxT

j (M(u))−1

1 + λω j(u)


= −(1 + λ)

Trace(M(u))−1 −
λTrace

(
(M(u))−1x jxT

j (M(u))−1
)

1 + λω j(u)


= (1 + λ)ĝ(u) +

λ(1 + λ)
1 + λω j(u)

α j(u), (9)
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where λ = τ
1−τ . The partial derivative of the objective function is equal to

∂ĝ(u+)
∂λ

= ĝ(u) +
λ2ω j(u) + 2λ + 1

(1 + λω j(u))2 α j(u). (10)

Let ĝ, ω j, and α j be shorthand for ĝ(u), ω j(u), and α j(u), respectively. The nu-
merator of the partial derivative is equal to the left-hand side of the following
equation (the denominator is positive):

(ω2
j ĝ + ω jα j)λ2 + λ(2ω jĝ + 2α j) + ĝ + α j = 0. (11)

We can find the best step size τ∗ (or λ∗) by investigating the roots of the
quadratic equation (11) and the boundary condition (λ∗ ≥ −u j) arising from
the nonnegativity of the dual feasible solutions as follows:

– if we have ω jĝ+α j = 0, then the partial derivative is negative for all values
and hence λ∗ = −u j;

– if (1−ω j)(α j +ω jĝ) < 0 (which is equivalent to ω j < 1 since α j +ω jĝ ≤ 0 for
any feasible solution), the discriminant of the quadratic (11) is negative.
Furthermore, ĝ + α j < 0 (since 0 ≤ ω j < 1, α j + ω jĝ < 0, and ĝ < 0),
and hence the quadratic (11) has no real roots and everywhere negative.
Therefore, λ∗ = −u j;

– otherwise λ∗ is equal to one of the roots of the quadratic (11), which are

λ∗1,2 =
−ω jĝ − α j ±

√
(ω jĝ + α j)2 − (ω2

j ĝ + ω jα j)(ĝ + α j)

(ω2
j ĝ + ω jα j)

=
−ω jĝ − α j ±

√
α j(1 − ω j)(α j + ω jĝ)

(ω2
j ĝ + ω jα j)

,

or −u j whichever is feasible and gives the greatest improvement in the
objective function.

Once we find the step size, we can calculate ω(u+) and α(u+) from

ωi(u+) = xT
i (M(u+))−1xi

= xT
i

(1 + λ)

(M(u))−1 −
λ(M(u))−1x jxT

j (M(u))−1

1 + λω j(u)

 xi

= (1 + λ)ωi(u) −
(1 + λ)λ

1 + λω j(u)
ωi j(u)2

= (1 + λ)(ωi(u) − ηωi j(u)2), (12)

and

αi(u+) = xT
i (M(u+))−2xi

= xT
i ((1 + λ)

(M(u))−1 −
λ(M(u))−1x jxT

j (M(u))−1

1 + λω j(u)

 ...
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(1 + λ)

(M(u))−1 −
λ(M(u))−1x jxT

j (M(u))−1

1 + λω j(u)

)xi

= (1 + λ)2xT
i ((M(u))−2 −

2λ
1 + λω j(u)

(M(u))−2x jxT
j (M(u))−1...

+
λ2

(1 + λω j(u))2 (M(u))−1x jxT
j (M(u))−2x jxT

j (M(u))−1)xi

= (1 + λ)2αi(u) − 2
(1 + λ)2λ

1 + λω j(u)
ωi j(u)αi j(u) +

(1 + λ)2λ2

(1 + λω j(u))2ωi j(u)2α j(u)

= (1 + λ2)(αi(u) − 2ηωi j(u)αi j(u) + η2ωi j(u)2α j(u)), (13)

where η := λ
1+λω j(u) , ωi j(u) := xT

i (M(u))−1x j, and αi j(u) := xT
i (M(u))−2x j. Note

that all updates can be performed cheaply (in O(nm) operations).

Now we describe two Frank-Wolfe type algorithms. The first algorithm
(Algorithm 1) uses positive step sizes and seeks an ε-primal feasible solution;
whereas the second one (Algorithm 2) may also have negative step sizes and
stops when an ε-approximate optimal solution is found. This algorithm is an
extension of the first one with Wolfe’s away steps. We will show that although
these algorithms have similar global complexity results, away steps are nec-
essary in order to achieve high accuracy, a phenomenon that is also observed
for the D-Optimal Experimental Design Problem in [4].

Algorithm 1
Input: X ∈ Rn×m, ε > 0.
Step 0. Let u = (1/m)e. Compute ω(u) and α(u).
Step 1. Find j := arg maxt{αt(u) − uTα(u)}.

If α j(u)
uTα(u) − 1 ≤ ε,

STOP: u is an ε-primal feasible solution.
Step 2. Replace u as in (8), where τ > 0 is chosen to maximize ĝ.
Step 3. Update ω(u) and α(u). Go to Step 1.
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Algorithm 2
Input: X ∈ Rn×m, ε > 0.
Step 0. Let u = (1/m)e. Compute ω(u) and α(u).
Step 1. Find j := arg maxt{αt(u) − uTα(u)} and i := arg mint{αt(u) − uTα(u) : ut > 0}.

If α j(u)
uTα(u) − 1 ≤ ε and 1 − αi(u)

uTα(u) ≤ ε,
STOP: u is an ε-approximate optimal solution.

Else,
if α j(u) − uTα(u) > uTα(u) − αi(u), go to Step 2;
else, go to Step 3.

Step 2. Replace u as in (8), where τ > 0 is chosen to maximize g. Go to Step 4.
Step 3. Replace u by u+ := (1 − τ)u + τei, where now τ is chosen from

negative values to maximize ĝ subject to u+ remaining feasible.
Step 4. Update ω(u) and α(u). Go to Step 1.

If we look closely at these algorithms, we can identify three different types
of iterations. Let ul be the dual feasible solution at hand at iteration number
l, e jl be the vertex that we use in our update and τl be the step size associated
with this update. We refer to iteration l as

- an add/increase step if τl > 0,

- a decrease step if ul
jl
> 0 and

−ul
jl

1−ul
jl

< τl < 0, and

- a drop step if ul
jl
> 0 and τl =

−ul
jl

1−ul
jl

.

We only have add/increase steps in Algorithm 1, whereas all types of steps
can be performed in Algorithm 2. Note that after a drop step we have ul+1

jl
= 0.

In such a step, we may not be able to improve the objective function as much
as we desire. Fortunately, the number of drop steps is bounded above by the
number of add steps plus a constant (the number of positive components of
the initial solution), and hence studying only the first two types of steps will
be enough to obtain convergence results.

Lemma 6 u0 = (1/m)e = 1
m (1, 1, . . . , 1) is an (m − 1)-primal feasible solution.

Proof Follows from Lemma 2 in Section 1. ut

We now analyze the first algorithm closely:

Lemma 7 As long as ul satisfy Assumption 1 for all l = 1, 2, . . ., Algorithm 1 finds
an ε-primal feasible solution in at most

L(ε) = O(ln m + ε−1) (14)

steps. The constants hidden in the ‘big oh’ are linearly dependent on the constant ω
in Assumption 1.
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Proof Given a dual solution ul (the iterate at iteration l), we define εl = max{ α j(ul)
(ul)Tα(ul)−

1, 1 − αi(ul)
(ul)Tα(ul) }, where j := arg maxt{αt(ul) − (ul)Tα(ul)} and i := arg mint{αt(ul) −

(ul)Tα(ul) : ul
t > 0}. (Note that the algorithm stops at iteration k if εk ≤ ε.)

We will first prove that

L(1) = min{l|εl ≤ 1} = O(ln m). (15)

Let jl be the index of the pivot point at iteration l, τl be the step size, and
λl =

τl
1−τl

. (Remember that all values of ĝ are negative by definition.) At each
iteration l with εl ≥ 1, from (9), we have

ĝ(ul+1) − ĝ(ul) = λlĝ(ul) +
λl(1 + λl)

1 + λlω jl (ul)
αsl

≥
1

2ω jl (ul)
ĝ(ul) −

1
2ω jl (u

l)

1 + 1
2ω jl (u

l)ω jl (ul)
2ĝ(ul)

≥
1

2ω jl (ul)
ĝ(ul)

1 − 2
1 + 1

2


≥ −

ĝ(ul)
6ω

. (16)

The first inequality follows since the improvement obtained from choosing
the best step length is at least as good as the improvement obtained by using
any step length; in particular, it can be bounded by plugging in λl =

1
2ω jl (u

l) .
Hence we have

ĝ(ul+1) ≥ (1 −
1

6ω
)ĝ(ul). (17)

Using Lemmas 5 and 6,

ĝ(u0) ≥ mĝ∗. (18)

Combining inequalities (17) and (18), we obtain

ĝ∗ ≥ ĝ(ul) ≥ (1 − 1
6ω )lĝ(u0) ≥ (1 − 1

6ω )lmĝ∗ ≥ e−
l

6ω mĝ∗. (19)

Hence we must have L(1) ≤ 6ω ln(m) = O(ln m).
Now assume that εl ≤ 1 and define h(εl) := min{h|εl+h ≤ εl/2}. As long as

εl+h ≥ ε/2, from (9) we also have

ĝ(ul+h+1) − ĝ(ul+h) ≥ ĝ(ul+h)
εl

4ωl+h(ul)

1 − 1 + εl/2
1 + εl

4ωl+h(ul)ωl+h(ul)


≥ −

ε2
l

32ω
ĝ∗. (20)
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Again, the first inequality is obtained by setting λl =
εl

4ωl+h(ul) . On the other
hand, Lemma 5 gives

ĝ(ul)
ĝ∗
≤ 1 + εl. (21)

Combining equations (20) and (21), we get h(εl) ≤ 32ω
εl

. Therefore

H(ε) = h(εl) + h(εl/2) + h(εl/4) + . . . + h(εl/2dln εl/εe−1)

≤ 32ω
(

1
εl
+

2
εl
+

4
εl
+ . . . +

2dln εl/εe−1

εl

)
≤

64ω
ε
= O(ε−1), (22)

iterations are required to obtain an ε-primal feasible solution starting with a
solution εl ≤ 1. Combining (22) and (15) completes the proof. ut

Once we take care of the drop steps, the analysis of the algorithm with
away steps is no more complicated.

Lemma 8 As long as ul satisfy Assumption 1 for all l = 1, 2, . . ., Algorithm 2 finds
an ε-approximate optimal solution in at most

L(ε) = O(m + ε−1) (23)

steps. The constants hidden in the ‘big oh’ are linearly dependent on the constant ω
in Assumption 1.

Proof We can only have add/increase steps when εl ≥ 1; hence Algorithms 1
and 2 take the same steps until the first solution ul̂ with εl̂ ≤ 1 is encountered.
So that

L(1) = min{l|εl ≤ 1} = O(ln m) (24)

holds for Algorithm 2 as well.
Now assume that εl ≤ 1 and define h(εl) := min{h|εl+h ≤ εl/2} as before. Let

us look at the improvement in the objective function at the (l + h)th iteration.
There are three cases:

1. If this is an add/increase step, then

ĝ(ul+h+1) − ĝ(ul+h) ≥ −
ε2

l

32ω
ĝ∗ (25)

from (20);
2. if it is a decrease step, we have

ĝ(ul+h+1) − ĝ(ul+h) ≥ ĝ(ul+h)
−εl

4ωl+h

1 − 1 − εl/2
1 − εl

4ωl+h
ωl+h


≥ −

ε2
l

16ω
ĝ∗; (26)
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3. otherwise (it is a drop step), we can only conclude that

ĝ(ul+h+1) − ĝ(ul+h) ≥ 0. (27)

Hence we have

ĝ(ul+h+1) − ĝ(ul+h) ≥ −
ε2

l

32ω
g∗, (28)

whenever we have an add/increase or decrease step.
On the other hand, using Lemma 5 we have

ĝ(ul)
ĝ∗
≤ 1 + εl. (29)

Combining equations (28) and (29), we need to perform at most

h(εl) ≤
32ω
εl

add/increase and decrease steps to obtain an εl/2-approximate optimal so-
lution starting with an εl-approximate optimal solution. Applying this argu-
ment repeatedly, we conclude that we need at most

H(ε) = h(εl) + h(εl/2) + h(εl/4) + . . . + h(εl/2dln εl/εe−1)

≤ 32ω
(

1
εl
+

2
εl
+

4
εl
+ . . . +

2dln εl/εe−1

εl

)
≤

64ω
ε
= O(ε−1), (30)

add/increase and decrease iterations to obtain an ε-approximate optimal so-
lution starting with an εl-approximate optimal solution where εl ∈ (0, 1]. Since
the number of drop steps is bounded above by the number of add steps plus
m (the number of positive components of the initial solution u0), (23) is imme-
diate. ut

The following lemma shows that (for the same set of data points) an ap-
proximate solution to the D-optimal design problem is also close to the opti-
mal solution of the A-optimal design problem in some sense.

Lemma 9 Let uD be a δ-primal feasible solution for the D-optimal design (as defined
as in Definition 4 with p = q = 0), then uD is an (n+ nδ− 1)-primal feasible solution
for (D).

Proof For all 1 ≤ j ≤ m, we have

xT
j (M(uD)XT )−2x j = Trace((M(uD)XT )−1(M(uD)XT )−1/2x jxT

j (M(uD)XT )−1/2)

≤ Trace((M(uD)XT )−1)Trace((M(uD)XT )−1/2x jxT
j (M(uD)XT )−1/2)

≤ Trace((M(uD)XT )−1)Trace(xT
j (M(uD)XT )−1x j)

≤ Trace((M(uD)XT )−1)(n + nδ),



18 Selin Damla Ahipaşaoğlu

where UD = Diag(uD). This proves that uD is an (n + nδ − 1)-primal feasible
solution for (D). ut

Let us call the algorithm which finds a 1-approximate optimal solution for
the D-optimal design problem using WA-TY method described in [26] and
proceeds with Steps 1, 2, and 3 of Algorithm 1 as Algorithm 1-MV; and that
proceeds with Steps 1, 2, 3, and 4 of Algorithm 2 as Algorithm 2-MV. When
m � n, these algorithms perform significantly better than the original ones
as the following lemma suggests. In addition, we are able to obtain core-set
results for free.

Lemma 10 As long as ul satisfy Assumption 1 for all l = 1, 2, . . .,

a. Algorithm 1-MV finds an ε-primal feasible solution in at most

L(ε) = O(n ln n + ε−1) (31)

steps;
b. Algorithm 2-MV finds an ε-approximate optimal solution in at most

L(ε) = O(min{m, n ln n} + ε−1) (32)

steps;
c. furthermore, Algorithm 1-MV identifies a setA ⊂ X such that

|A| ≤ O(n ln n + ε−1)

and an ε-primal feasible solution u for the A-optimal design problem defined over
data set A is also an ε-primal feasible solution for the A-optimal design problem
defined over data set X; and

d. Algorithm 2-MV identifies a setA ⊂ X such that

|A| ≤ O(n ln n + ε−1)

and an ε-approximate optimal solution u for the A-optimal design problem de-
fined over data setA is also an ε-approximate optimal solution for the A-optimal
design problem defined over data set X.

Proof It is proved in [26] that a 1-approximate optimal solution for the D-
optimal design problem can be obtained in O(n ln n) iterations. Let u0 be such
a solution. Lemmas 5 and 9 give

ĝ(u0) ≥ 2nĝ∗. (33)

Replacing (18) with (33) in the proof of Lemma 7, gives L(1) = O(ln n) for
Algorithm 1-MV. Since the rest of the proof is unchanged, Algorithm 1-MV
finds an ε-primal feasible solution inL(ε) = O(n ln n+ln n+ε−1) = O(n ln n+ε−1)
iterations, which proves (a).

Similarly, (b) follows from Lemma 8 with replacing L(1) = O(ln n) and
noticing that the number of positive components in u0 is bounded above by
O(min{m, n ln n}) as proved in [17].
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Let û be the output of Algorithm 1-MV. LettingA = {xi : ûi > 0} proves (c)
since the number of positive components of û is bounded above by the num-
ber of positive components in the initial solution (which is 2n as discussed
in [17]) plus the number of add steps (which is less than the total number of
iterations proved in part (a)). Similar arguments can be used to prove part
(d). ut

Remark 4 The complexity results we have presented in this section depend
on the constant ω in Assumption 1. It is easy to see that ω is proportional
to the inverse of the infimum of the set of eigenvalues of the matrices M(ul),
l = 1, 2, . . . generated by the algorithm. Alternatively, ω is the supremum of
the ellipsoidal distances of the data points with respect to the ellipsoids cen-
tered at the origin that have shape matrices M(ul). Therefore, ω depends on
the geometry of the design points and the steps taken by the algorithm. When
the design points are very thinly spread around a proper subspace of Rn, the
ellipsoids generated by the algorithm will have elongated axes in some di-
rections and extremely short axes in others, potentially leading to large el-
lipsoidal distances for some data points. The sequence of positive definite
matrices, M(ul), l = 1, 2, . . ., generated by the algorithm converge to a single
limit point, say M(u∗), which is positive definite and has smallest eigenvalue,
say λ∗. Therefore, there exists an integer N( λ

∗

2 ), such that the eigenvalues of
M(ul), for l ≥ N

(
λ∗

2

)
are lower bounded by λ∗/2. That guarantees that ω is

finite.

7 Local Convergence Properties

In this section, we will show that Algorithms 2 and 2-MV are locally lin-
early convergent, i.e., the number of iterations grows with O(ln ε−1) not O(ε−1)
asymptotically under certain assumptions. The typical behavior of the algo-
rithms is demonstrated in Figure 1. Unfortunately, this bound depends on the
data of the problem as well as the dimensions and the constant ω defined as
in Lemma 8, and so does not provide global complexity bounds better than
those above. Let us look at the following perturbation of the primal problem
(P):

min f (H) := −2 ln TraceH1/2

(P(κ)) xT
i Hxi ≤ 1 + κi, i = 1, . . . ,m.

Given u satisfying the ε-approximate optimality conditions, let H(u) := (M(u))−2

Trace(M(u))−1

and define κ := κ(u, ε) as

κi(u, ε) :=
{
ε if ui = 0,
xT

i H(u)xi − 1 else.

Note that, each component of perturbation vector κ is absolutely bounded by

ε and uT κ =

∑
j:u j>0 u j xT

j (M(u))−2 x j

Trace(M(u))−1 − 1 = 1 − 1 = 0. H(u) is optimal w.r.t. P(κ(u, ε)),
since it is feasible and u provides the corresponding Lagrangian multipliers.
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Fig. 1 Behavior of Algorithm 2 for (m, n) = (10000, 100).

Let φ(κ) be the value function, the optimal value of (P(κ)). If u∗ is a vector of
multipliers corresponding to the optimal solution of (P), then u∗ is a subgra-
dient of φ at 0. For any ε-approximate optimal solution u and κ := κ(u, ε), we
have

g(u) = f (H(u)) = φ(κ) ≥ φ(0) + u∗
T
κ

= g∗ + (u∗ − u)T κ ≥ g∗ − ‖u − u∗‖‖κ‖. (34)

Since f (H) is strongly convex near any H � 0 and the constraints are linear,
Robinson’s second order condition holds at (H, û) for any P(κ), where H is
the optimal solution and û is any Lagrangian multiplier. Moreover, the linear
constraints are regular at any feasible point and they are polyhedral, therefore
Robinson’s Corollary 4.3 ([21]) applies, which shows that

‖u − u∗‖ ≤ L‖κ‖ ≤ L
√

mε,

where L is a data-dependent constant and whenever ‖κ‖ is sufficiently small.
Hence we conclude

g∗ − g(u) ≤ Mε2 (35)

for some M depending on the data of the problem (P). Using inequality (35),
we can find a constant ĉ such that

ĝ(ul)
ĝ∗
≤ eMε2

l ≤ 1 + ĉε2
l , (36)

for any εl-approximate solution ul, as long as εl is small enough. Using (36)
instead of (29) in the last part of the proof of Lemma 8 we obtain the following
lemma:

Lemma 11 Under the assumption of Lemma 8, there exists a data-dependent con-
stant Q such that Algorithms 2 and 2-MV discussed above converges to an ε-approximate
optimal solution in Ø(Q + ln(1/ε)) steps.
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8 Computational Study

In this section we present some computational results for Algorithms 1 and
2, using different initialization strategies: the Khachiyan initialization (KH)
strategy, where the initial feasible solution u is the center of the unit simplex,
i.e., ui = 1/m for all i = 1, . . . ,m; the Kumar-Yıldırım initialization (KY) strat-
egy introduced in [17]; and a new strategy (MV) where the initial solution is
set to be a 1-approximate optimal solution obtained by the WA-TY method
of [26]. All experiments were carried out on a 3.40 GHz Pentium IV proces-
sor with 1.0 GB RAM using MATLAB version R2006b. We assume a general
linear model in this section and next. Note that we do not generate our re-
gression points as fixed grid of support points on a compact interval as many
other papers do. Instead we generate a large set of random regression points
following [24]. According to our past experience from [4], instances gener-
ated by this method are quite challenging. For all algorithms we study below,
we report the total computational time inclusive of the time spent on the ini-
tialization schemes.

In Table 1, we compare the computation time of the algorithms described
above with three initializations on small- to medium-sized data sets. The data
sets are generated as in [24]. The results presented are the geometric means of
the solution times for 10 random problems to obtain an ε-primal feasible (for
Algorithm 1) or an ε-approximate optimal solution (for Algorithm 2) where
ε = 10−3. It is clear from the results that Algorithm 2 preforms significantly
better than Algorithm 1 showing that away steps are necessary for develop-
ing efficient algorithms. For these instances, it is hard to make conclusions on
the performances of the initialization strategies.

Table 2 presents the performance of the algorithms on larger data sets.
Again, the results are the geometric means of the solution times of 10 random
problems generated as in [24] for each parameter set. The results indicate that
for these instances where m � n, the MV initialization is outperforming the
Khachiyan initialization as Lemma 10 suggests. Since the KY initialization
is somehow close to the MV initialization, its performance it similar to the
MV initialization. One should not be surprised by the fact that Algorithm 2
with the Khachiyan initialization is very slow on these instances, since the ini-
tial solution has many entries with positive weights and the algorithm needs
to take many drop steps before converging to the optimal solution. Fortu-
nately, other two initializations are able to find accurate solutions in short
time. We have tried even larger data sets to explore the limits of the algo-
rithms. We were able to find 10−4-approximate optimal solutions to instances
where n = 500 and m = 10000 (generated as before) with Algorithm 2 using
KY initialization under 30 minutes.

The number of iterations required can be significantly decreased if we
make the best possible update (not just one of the two arguments used in
Step 1) at each iteration. This can be done by calculating the improvement
related to each index and choosing the best. We have coded a version of Al-
gorithm 2-MV and experimented on some of the data sets above. The (mean)
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Table 1 Geometric mean of solution times of Algorithms 1 and 2 for small-medium sized prob-
lems with different initializations

Geometric Mean of Time (Seconds)
Algorithm 1 Algorithm 2

n m Kha KY MV Kha KY MV
10 50 9.1 8.5 8.5 1.6 0.7 0.8
10 100 10.5 10.3 10.1 1.2 1.3 1.9
10 200 10.8 9.9 10.6 0.6 1.4 1.1
10 400 11.9 11.2 12.5 0.4 0.8 1.0
10 600 13.3 13.0 12.7 0.6 1.1 0.8
10 800 13.9 13.4 13.4 1.0 1.5 1.2
20 200 37.9 36.4 35.3 1.2 0.8 0.6
20 300 39.6 40.0 39.2 1.4 1.1 1.0
20 400 38.3 38.5 39.7 0.7 1.7 1.6
20 600 49.2 49.2 45.7 0.9 2.0 2.9
20 800 52.6 54.5 52.3 1.2 2.5 3.4
20 1000 57.1 54.4 53.1 1.7 3.4 3.4
20 1200 58.7 56.4 56.6 1.8 5.3 5.0
30 450 108.6 100.1 93.9 2.0 2.9 2.8
30 900 130.0 119.6 127.5 1.5 4.7 4.5
30 1350 142.3 121.3 120.9 2.3 6.5 5.8
30 1800 154.2 131.3 128.9 3.5 7.6 7.7

Table 2 Geometric mean of solution times of Algorithms 1 and 2 for large problems with differ-
ent initializations

Geometric Mean of Time (Seconds)
Algorithm 1 Algorithm 2

n m Kha KY MV Kha KY MV
5 10000 17.267 12.208 11.641 35.236 3.5327 3.5428
5 20000 26.57 20.417 20.905 55.491 7.8292 7.4747
5 30000 35.941 29.808 30.374 43.136 7.9607 9.8677
5 50000 58.433 54.698 52.828 98.456 28.159 28.715
10 10000 43.677 32.431 32.173 38.017 5.7187 5.5486
10 20000 76.886 67.377 66.554 138.93 10.604 10.154
10 30000 103.56 87.166 90.091 126.69 17.158 15.499
20 10000 141.76 113.23 117.45 48.849 18.482 19.234
20 20000 211.44 186.48 183.35 196.31 40.659 39.256
20 30000 287.15 253.81 252.65 385.37 53.223 45.749
20 50000 426.9 395.6 402.68 543.22 99.232 91.305
30 10000 295.09 247.77 243.47 59.061 27.439 31.508
30 20000 451.68 395.66 402.26 220.01 74.113 61.231
30 30000 606.04 536.8 528.98 500.77 89.2 96.194
50 50000 2308.2 2154.5 2142.8 1992.3 370.77 327.79

solution times and number of iterations are compared in Tables 3 and 4. The
unmodified version of the algorithm is represented in the columns labeled
with ‘’Orig.‘’ while the version with optimal decisions is labeled with ‘’ALL’‘.
It is obvious that as the number of points in the data set increase calculating
the possible improvement for each index becomes expensive; hence consid-
ering only two promising vertices is a wise choice. Obviously some hybrid
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Table 3 Geometric mean of solution times of Algorithm 2-MV with different (update) selection
strategies for small instances

Time (Seconds) Iterations
n m ALL Orig. ALL Orig.
20 200 0.54 0.85 510.7 1697.9
20 300 0.67 1.16 638.5 2252
20 400 0.91 1.72 772.08 3122
20 600 1.45 2.02 904.9 3254
20 800 2.01 2.57 1028.9 3918.6
20 1000 2.67 3.41 1189.9 4836.6
20 1200 3.00 5.35 1195.3 6397
30 450 1.26 2.90 963.3 4467.3
30 900 2.82 4.71 1314.6 5723.7
30 1350 4.68 6.59 1660.4 6976.3
30 1800 6.33 7.67 1782.9 7706.8
20 1000 2.54 3.49 1168.4 4694.9

Table 4 Geometric mean of solution times of Algorithm 2-MV with different (update) selection
strategies for large instances

Time (Seconds) Iterations
n m ALL Orig. ALL Orig.
10 10000 13.33 5.71 875.8 2656.5
20 10000 26.08 18.48 1634.5 6072.5
20 20000 59.32 40.61 1879.8 6852.7
20 30000 102.14 62.41 2220.3 7854.7
30 10000 42.95 27.43 2547.9 7100.8
30 20000 101.86 74.11 3085.6 10515
30 30000 140.42 89.2 2876.5 8899.2
50 50000 428.3 370.7 5106.4 15979

versions, which choose the best of a small set of carefully selected indices,
can perform better for certain instances; so can other versions with active set
strategies.

9 Semidefinite Programming Reformulation and Comparison

Any reader with some familiarity with nonlinear optimization would know
that semidefinite programming has gained significant attention in last two
decades. As discussed in [29], many interesting problems in science and en-
gineering can be reformulated as SDPs and solved via one of the freely avail-
able SDP solvers such as SDPT3 or SEDUMI. The D-optimal and A-optimal
design problems are no exception. Section 4 of [28] provides the reformula-
tions of both of these problems. Following their discussion, problem (D) is
equivalent to:
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min
∑n

i=1 ti

(SDP)
(

M(u) ei

eT
i ti

)
� 0, i = 1, . . . , n,

eT u = 1,
u ≥ 0,

where ei is the ith unit vector in Rn, and the variables are u ∈ Rm and t ∈ Rn.
Although many problems can be cast as semidefinite programs, not many

semidefinite formulations can be solved efficiently yet due to high memory
requirements and slow convergence rate of the state-of-the-art methods. We
compare one of our algorithms (Algorithm 2 with KY initialization) versus
the SDPT3 algorithm using the CVX platform on MATLAB, which is a classic
platform to solve SDPs. The results presented in Table 5 are mean solution
times for 5 random problems to obtain an ε-approximate optimal solution
with Algorithm 2 in the third column and with the SDP solver on the forth.
For fair comparison, we run both algorithms until a very accurate solution
is obtained (i.e., ε = 10−7), especially since being able find accurate solutions
is one of the strong points of the SDP approach. In this section, we test only
5 instances of each problem since the SDP solver takes very long amount
of time and the conclusion is obvious even with small number of instances
considered. The instances are generated as before following [24]. The solu-
tions obtained from the two methods were identical (to be precise: the norm
of their distance was smaller than 10−7 as expected). It is clear that our first-
order technique dominates the SDP method, sometimes it is more than 300
times faster. Furthermore, it is impossible to solve large instances of the SDP
formulation due to memory restrictions and time limitations. For example,
we can not solve problems with n = 30 and m = 600 with the SDP solver.

10 Conclusions

In this paper, we will develop a Frank-Wolfe type algorithm for the A-optimal
experimental design problem. Our approach is similar to the Frank-Wolfe
type algorithms developed for the D-optimal experimental design problem.
Nevertheless, we are the first to discuss global and local convergence of the
algorithms rigorously for the A-optimal experimental design problems.

11 Acknowledgements

The author would like to express her gratitude to Prof. Mike Todd for bring-
ing the experimental design problem to her attention during her PhD candi-
dacy at Cornell University and his constant support and mentorship. She is
also thankful to the two anonymous reviewers for their valuable comments
and suggestions.



On the A-Optimal Experimental Design Problem 25

Table 5 Mean solution times of SDPT3 and Algorithm 2-MV for small-medium sized problems

n m Algorithm 2 SDP speed-up
10 50 0.33 0.58 3.20
10 100 0.24 0.45 3.63
10 200 0.70 1.51 1.90
10 400 0.76 2.80 5.32
10 600 1.56 7.83 3.01
10 800 1.37 9.90 12.18
10 1000 0.88 11.43 7.85
20 50 0.08 2.66 42.40
20 100 0.33 4.83 8.20
20 200 0.44 11.40 19.64
20 400 0.92 33.46 55.77
20 600 1.15 66.73 54.49
20 800 2.02 120.82 66.19
20 1000 1.84 197.45 115.66
30 50 0.05 17.07 334.33
30 100 0.19 22.36 145.58
30 200 0.89 58.38 38.88
30 400 1.07 140.58 187.42
30 600 2.13 337.95 139.66
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4. S. D. Ahipaşaoğlu and P. Sun and M. J. Todd, Linear convergence of a Modified Frank-Wolfe
algorithm for computing minimum-volume enclosing ellipsoids, Optimization Methods and
Software, 23, 5–19 (2008)
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