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Abstract Using networks as prior knowledge to guide model
selection is a way to reach structured sparsity. In particu-
lar, the fused lasso that was originally designed to penalize
differences of coefficients corresponding to successive fea-
tures has been generalized to handle features whose effects
are structured according to a given network. As any prior
information, the network provided in the penalty may con-
tain misleading edges that connect coefficients whose dif-
ference is not zero, and the extent to which the performance
of the method depend on the suitability of the graph has
never been clearly assessed. In this work we investigate the
theoretical and empirical properties of the adaptive general-
ized fused lasso in the context of generalized linear models.
In the fixed p setting, we show that, asymptotically, adding
misleading edges in the graph does not prevent the adap-
tive generalized fused lasso from enjoying asymptotic ora-
cle properties, while forgetting suitable edges can be more
problematic. These theoretical results are complemented by
an extensive simulation study that assesses the robustness of
the adaptive generalized fused lasso against misspecification
of the network as well as its applicability when theoretical
coefficients are not exactly equal. Our contribution is also to
evaluate the applicability of the generalized fused lasso for
the joint modeling of multiple sparse regression functions.
Illustrations are provided on two real data examples.
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1 Introduction

Network data have now become standard in many fields of
statistical applications to describe interactions or relation-
ships between observations and/or variables. In molecular
biology for instance, protein-protein interaction networks de-
scribe physical interactions between proteins (4). In web
analysis studies, networks are extracted from structured data-
bases and Web contents to describe hidden structures (10).
Network data have become so common that they now consti-
tute some prior knowledge for downstream statistical anal-
ysis: two proteins of the same biological pathway are likely
to share similar effects on the response to a treatment or
on disease development. Consequently, statistical methods,
like regression and model selection have recently focused on
structured sparsity. In addition to the classical sparsity as-
sumption (under which only a small fraction of the variables
are relevant), these methods work under the assumption that
two connected covariates in the network may share similar
effects on the response variable. Consequently the objective
of structured sparsity is twofold: improve model selection
by using some prior knowledge on the structure; increase
prediction performance by effective dimensionality reduc-
tion based on the prior knowledge that several covariates
may share the exact same coefficient.

Most methods proposed so far use a penalized version of
the log-likelihood based on some structured sparsity-indu-
cing penalty. The fused lasso of Tibshirani (23) is one partic-
ular example: in addition to the `1-norm penalty of the lasso
(22), the fused lasso penalizes the `1-norm of the vector of
successive differences. It is therefore especially adapted for
smoothing, when covariates are ordered and are likely to
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share similar effects with their direct neighbor. It has further
been generalized to handle more complex structure among
feature effects, in particular networks of features (11). The
network is modeled as a graph with vertices standing for
the p coefficients of the model, and with a set of edges. It
is used in the penalty as prior information to penalize the
absolute value of the difference of connected coefficients,
leading to the generalized fused lasso. Interestingly, struc-
ture in the vector of coefficients also naturally arises when
jointly estimating multiple regression models. For instance,
when data are collected from distinct strata (in epidemiol-
ogy, these strata can be defined by crossing age, gender, eth-
nicity), models defined on each stratum are expected to share
similarities. Consequently, structured-sparsity and in partic-
ular the generalized fused lasso can be used in this context to
enforce some structure while estimating the different mod-
els (5). In this context, the graph to be used in the penalty is
usually provided by the design of the study itself (see Sec-
tion 2.2 below).

As any prior information, the underlying graph can be
more or less informative. For instance, the clustered lasso
(20) was proposed when only the existence of a structure
is assumed but no particular knowledge allows for its pre-
cise description. Its main step involves a penalty based on
the `1-norm of the vector of all the p(p − 1)/2 differences
among the parameter values. This strategy corresponds to
the generalized fused lasso with the graph set to a clique that
connects all coefficients. When penalizing all differences, it
is very likely that some differences are unnecessarily penal-
ized, which raises the question of the method robustness to
graph misspecification. Interestingly, any structured-sparsity
approach is concerned by this robustness property, but this
question has never been thoroughly investigated (1).

In this work we focus on adaptive generalized fused lasso
estimates in the context of generalized linear models and
show how the framework of joint regressions can be re-
cast as a generalized fused lasso problem. In Section 3, we
prove that adaptive generalized fused lasso estimators enjoy
asymptotic oracle properties in the fixed p setting. Our re-
sults extend those obtained in the case of clique-based strate-
gies (20; 19), and in the case of joint linear regressions (5).
In particular, we observe that only adaptive versions of the
generalized fused lasso enjoy asymptotic oracle properties
(i.e., such that, as n grows to infinity, the correct support is
recovered with probability tending to one and estimates of
non-zero coefficients perform as well as if the true under-
lying model were given in advance). In a further step we
investigate the empirical benefits of using an `1-based fu-
sion penalty on support recovery and prediction as compared
with other penalization strategies, under logistic models. We
assess the robustness of the generalized fused lasso to graph
misspecification as well as its performance when true co-
efficients are not exactly equal. We also illustrate the ben-

efits of using adaptive weights and/or relaxation with gen-
eralized fused lasso estimates (Section 4). The performance
of the generalized fused lasso in the context of joint logistic
regression models is also empirically evaluated. Finally the
application of the generalized fused lasso is illustrated on
two data sets in Sections 5 and 6.

2 The adaptive generalized fused lasso in generalized
linear models

2.1 Models, loss functions and penalty

We consider the generalized linear models framework (13)
with Yi the response variable i = 1, . . . , n and xi = (xi1,

. . . , xip)
T a p-dimensional vector of features. We further set

zi = (1,xTi )T , and we consider the fixed design case with∑n
i=1 xij = 0. For generalized linear models the distribu-

tion of the response variable is given by

f(yi,β
∗, φ) = exp

(
yiηi − b(ηi)

a(φ)
+ c(yi, φ)

)
,

where φ is a dispersion parameter and functions b(·), a(·)
and c(·, ·) are known. The linear predictor ηi is given by
zTi β

∗ where β∗ = (β∗0 ,β
∗
\0)T ∈ Rp+1 stands for the vector

of coefficients, with β∗0 the intercept parameter and β∗\0 =

(β∗1 , . . . , β
∗
p). The mean µi = E(Yi) is related to the lin-

ear predictor via the link function g: g(µi) = ηi. Here we
consider the canonical link function. Estimation of the pa-
rameter vector β∗ is usually performed by the maximum
likelihood method. It consists in minimizing J , given by
J(β) = −

∑n
i=1 log f(yi,β, φ), with respect to β. In the

simulation studies and the applications below we focus on
the logistic model for which Yi ∈ {0, 1}, a(φ) = 1, b(x) =

log (1 + exp(x)) and c ≡ 0. Under logistic models, the
mean and the linear predictor are related by µi = 1/(1 +

exp(−zTi β
∗)) = g−1(ηi).

As mentioned above, we further focus on the general-
ized fused lasso (11). Consider a graph G = (V,E), with
node set V = {1, ...p} that corresponds to the coefficient
indices in β\0, and edge set E that corresponds to pairs of
connected coefficient indices (j, `) with j > `. The graph
G that is used in the penalty is fixed and represents some
prior knowledge, given by an expert. The adaptive gener-
alized fused lasso penalty consists in penalizing all coef-
ficients along with all coefficient differences for which an
edge exists in G:

penAda(β;G,w) = λ(1)
n

∑
j∈V

w
(1)
j |βj |+λ

(2)
n

∑
(j,`)∈E

w
(2)
j` |βj−β`|.

In the fixed p case considered here, and following the
idea of the adaptive lasso (25), adaptive weights w(1)

j and

w
(2)
j` are based on initial Maximum-Likelihood estimates β̃
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of β∗. More precisely, for some γ > 0, we set w(1)
j =

|β̃j |−γ and w(2)
j` = |β̃j − β̃`|−γ . The rationale is to penal-

ize more heavily coefficients (or differences of coefficients)
when their initial estimates are small. A typical value (that
we use) for γ is 1. The adaptive generalized fused lasso crite-
rionQ is then simply defined, for given graphG and weights
w, as

Q(β) = J(β) + penAda(β;G,w)

.

2.2 Application of the generalized fused penalty to joint
modeling

Interestingly, in some situations the graph to be used in the
penalty is provided by the design of the study itself. This is
notably the case when jointly estimating multiple sparse re-
gression models. The joint modeling framework described
here has some connections with multi-task learning (12; 3).
More specifically we consider the very common case of data
collected from distinct strata, which often arises in epidemi-
ology where each stratum can be defined by crossing gender,
age and ethnicity for instance. The design is structured ac-
cording to a given vector of categorical variables (C1, . . . , Cn),
each variable taking values in {1, . . . , C}, with C ≥ 1 the
total number of strata. Let nc be the number of observa-
tions falling into stratum c (so that n =

∑
c nc). Under

generalized linear models, we would have g(µi) = zTi β
∗
Ci ,

for i = 1, . . . , n, where β∗c denotes the vector of parame-
ters for stratum c. The purpose of the analysis is to deter-
mine whether the distribution of the response varies across
strata, i.e. to detect which coefficients of β∗c do vary with
c. Constructing independent (possibly sparse) models for
each stratum would not take advantage of the common struc-
ture, while constructing a single model for the whole data
set would mask the differences. Alternatively, the general-
ized fused lasso can be used to couple estimations obtained
from each stratum, encouraging them to share some com-
mon structure (5). More precisely, the following penalty can
be used:
C∑
c=1

{
λ(1)
n

p∑
j=1

w
(1)
j |βc,j |

}
+λ(2)

n

p∑
j=0

∑
c1>c2

w
(2)
c1,c2,j

|βc1,j − βc2,j |,

where w(1)
j and w(2)

c1,c2,j
are appropriate adaptive weights.

Parameter λ(2)
n governs the amount of shrinkage for differ-

ences between strata: if null, this penalty resumes to C in-
dependent lasso penalties. If positive, the fused part of the
penalty encourages coefficients βc1,j and βc2,j to be at least
close to each other (that is, the jth coefficient in strata c1

and c2 respectively). In the general context described here,
it can be shown that the problem reduces to an adaptive gen-
eralized fused lasso where the graph is composed by p + 1

cliques of size C and the j-th clique connects β1,j , . . . , βC,j
all together (see the Supplementary Material for more de-
tails).

3 Theoretical results

We study the asymptotic properties of the adaptive general-
ized fused lasso estimator in generalized linear models. Be-
fore stating our results some notations and assumptions are
needed. Let A = {1 ≤ j ≤ p, β∗j 6= 0} be the support of
β∗\0 and p0 = |A| its cardinality. Further consider the set

B = {(j, `) ∈ E, β∗j 6= 0 and β∗j = β∗` } ⊂ A×A.

We denote by I(β) the empirical Fisher’s matrix of size (p+

1)× (p+ 1). For future use, observe that I(β∗) = ZTDZ,
whereD denotes an n×n diagonal matrix. For instance un-
der logistic regression models, we have Dii = µi(1 − µi).
For any δ ≥ 0, we further denote by Nn(δ) the neighbor-
hood of β∗ defined by

Nn(δ) =

{
β ∈ Rp+1/

∥∥∥∥[I(β)−
1
2

]T
(β − β∗)

∥∥∥∥ ≤ δ} .
We will work under the following conditions:

– AL1 I(β∗)/n converges to C where C is a positive def-
inite (p+ 1)× (p+ 1) matrix.

– AL2 As n goes to∞,

max
β∈Nn(δ)

∥∥∥∥I(β)−
1
2 I(β∗)T

[
I(β)−

1
2

]T
− Ip+1

∥∥∥∥→ 0.

Assumptions AL1 and AL2 are standard when working un-
der generalized linear models (13). Assumption AL1 is sim-
ilar to the one used to study the fused lasso in the Gaussian
context (23). Let us remark that under AL1, the minimiza-
tion of criterion Q defined in Section 2.1 corresponds, for n
large enough, to a strictly convex optimization problem, and
thus is not concerned by the issue of multiple local minima.

In Theorem 1 below, we generalize the first theorem of
(23) to the case of generalized fused lasso, in generalized
linear models. This result establishes the root-n consistency
of non-adaptive generalized fused lasso estimates. However,
it also implies that when λ(m)

n = O(
√
n), for m = 1, 2, the

support of β∗ can not be recovered with high probability by
non-adaptive fused lasso estimates, as stated in Proposition
1 below. Proofs are given in the Appendix.

Theorem 1 Let β̂ be the minimizer of criterion Q defined
in Section 2.1 with w(1)

j = 1 and w(2)
j` = 1 for all j, `. If
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λ
(m)
n /
√
n → λ

(m)
0 ≥ 0 (m = 1, 2), then under assump-

tions AL1-2,
√
n
(
β̂ − β∗

)
→d arg min(V), where V is

the function defined, for u = (u0, . . . , up) ∈ Rp+1, as

V(u) = uTW +
1

2
uTCu

+ λ
(1)
0

p∑
j=1

{ujsign(β∗j )I(β∗j 6= 0) + |uj |I(β∗j = 0)}

+λ
(2)
0

∑
(j,`)∈E

{(uj − u`)sign(β∗j − β∗` )I(β∗j 6= β∗` )

+ |uj − u`|I(β∗j = β∗` )}.

Above, W has an N (0p+1,C) distribution.

Proposition 1 Under the assumptions of Theorem 1, and
setting Ãn = {1 ≤ j ≤ p, β̂j 6= 0}, we have

lim sup
n

P(Ãn = A) ≤ c < 1,

where c is a constant depending on the true model.

Now we show that for appropriate choices of λ(m)
n =

O(
√
n) for m = 1, 2, the adaptive generalized fused lasso

estimator β̂
ad

, defined as the minimizer of criterion Q in
Section 2.1, enjoys asymptotic oracle properties, contrasting
with its non-adaptive counterpart. Some more notations are
needed before stating our result: in particular, the number s0

of distinct non-zero values in β∗\0 “supported” byG needs to
be precisely defined (s0 can be seen as the theoretical model
complexity “supported” byG). To this end, first observe that
A ⊆ V and B = {(j, `) ∈ E : β∗j β

∗
` 6= 0, β∗j = β∗` } ⊆ E.

Then consider the graph GB = (A,B) and denote by s0

the number of its connected components (e.g., in the par-
ticular case where G is a chain graph, s0 is the number of
segments consisting of non-zero and equal coefficients). Ob-
serve that d0 ≤ s0 ≤ p0, where p0 = |A| is the number of
non-zero coefficients in β∗\0 and d0 is the number of distinct
non-zero values in β∗\0. We actually have s0 = p0 if and
only if (β∗j = β∗` 6= 0 ⇒ (j, `) /∈ E), whereas s0 = d0

if and only if for all (j, `) such that β∗j = β∗` , j and ` be-
long to the same connected component of GB. Now denote
by A1, . . .As0 the sets of vertices of each connected com-
ponents of GB. Of course, we have A =

⋃s0
s=1As. Fur-

ther set js = min{As} for s = 1, . . . , s0. Now we can
define β∗B = (β∗0 , β

∗
j1
, . . . , β∗js0

)T , which is composed by
the intercept and the s0 distinct non-zero values of β∗\0 sup-

ported by G; we further set β̂
ad

B its estimate. Now denote
by XB the matrix of size n × s0, whose s-th column is
XBs =

∑
j∈As Xj , where Xj is the j-th column of X.

Finally set ZB = (1n,XB) and denote by CB the (s0 +

1) × (s0 + 1) positive definite matrix that is defined as the
limit, as n → ∞, of I(β∗B)/n, where I(β∗B) = ZTBDZB.
Finally introduce An = {1 ≤ j ≤ p, β̂adj 6= 0} and

Bn = {(j, `) ∈ E, β̂adj 6= 0 and β̂adj = β̂ad` }. We have
now all the ingredients to state our main result, whose proof
is given in the Appendix (see Section 8.3).

Theorem 2 If λ(m)
n /
√
n → 0 and λ

(m)
n n(γ−1)/2 → ∞,

m = 1, 2, then, under assumptions AL1-2, the adaptive gen-
eralized fused lasso estimator satisfies the following proper-
ties:

1. Consistency in variable selection: P [An = A]→ 1 and
P [Bn = B]→ 1 as n→ +∞.

2. Asymptotic normality:
√
n
(
β̂
ad

B − β
∗
B

)
−→d N

(
0s0+1,CB

−1
)
.

Interestingly this result allows us to compare the asymp-
totic theoretical performance of methods that use a rough
structured-sparsity prior (ie. clique-based methods (20; 19))
with graph-based structured sparsity. Observing that I(β∗B)

is the information matrix of the true submodel as soon as
s0 = d0, Theorem 2 states that the estimator β̂

ad

B is asymp-
totically efficient as soon as s0 = d0 (p is fixed and n→∞),
which is notably the case for clique-based methods. Our the-
oretical results state that, asymptotically, adding edges in the
graph between coefficients with theoretical different values
does not diminish the adaptive generalized fused lasso per-
formance. These results being asymptotic, we evaluate the
finite sample properties of the generalized fused lasso in
the simulation study, with an emphasis on its robustness to
graph mis-specification. In other respect, results presented
in the framework of joint linear models (5) readily follow
from Theorem 2 above.

4 Simulation study

We perform an extensive simulation study to compare the
performance of the generalized fused lasso with other pe-
nalized strategies in two contexts: (i) when the variables lie
on a graph and the support is densely connected on the graph
and (ii) in the joint modeling framework. In (i), our main
objective is twofold: to study the impact of a graph misspeci-
fication on the generalized fused lasso performance and also
to study the robustness of the generalized fused lasso when
non-null connected coefficients do not share the exact same
value. In (ii), the graph being “given” by the design of the
study, we will study how the performance of the generalized
fused lasso vary with the level of heterogeneity across strata.

4.1 Simulation framework, implementation and evaluation

Our results being in the fixed design framework, we set N ,
the maximal sample size considered in a given scenario, and
we generateN i.i.d. predictors xi ∈ Rp, i = 1, . . . , N, from
a N (0p,CAR(1)) distribution, where CAR(1) =

(
ρ|i−j|

)
/16
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(i = 1...p, j = 1...p). Then, given n ≤ N , X = (x1, . . . ,xn)T

and β∗ (with β∗0 = 0), the vector of labels is generated
such that Yi ∼ B(µi), with µi defined as in Section 2.1.
Unless otherwise stated, the p0 non-null coefficients of β∗\0
are all set to a common value β∗, that we make vary in
{log(1.1),log(2),log(4),log(8),log(12)}. Fifty replicates are
considered for each configuration.

The adaptive generalized fused lasso is solved with the
coordinate-wise optimization algorithm (11) with tuning pa-
rameters (λ1, λ2) selected using the BIC, which is standard
when n � p (degrees of freedom are set to the number of
distinct non-null coefficients in the estimated model). Be-
cause using shrunk estimates within the BIC can result in se-
vere over-fitting, we also propose an extension of the relaxed
lasso (15) to the generalized (adaptive) fused lasso (see Sec-
tion 2 in the Supplementary Material).

Prediction accuracy is assessed using an independent test
sample of N observations (z

(0)
i , Y

(0)
i ) and computing Acc.

Pred = (1/N)
∑N
i=1 I(Y

(0)
i = Ŷ

(0)
i ), with Ŷ (0)

i equal to
I(1/[1+exp(−z(0)T

i β̂)] > 0.5). To assess accuracy on sup-
port recovery we define Acc.A = (|Ā ∩ Ān|+ |A∩An|)/p
where Ā (resp. Ān) is the set of null coefficients in β∗

(resp. β̂). Moreover, to evaluate the performance regard-
ing the classification of pairs of coefficients, we focus on
Acc.B = |{(j, `) ∈ B : β̂j = β̂`}|/|B|. Because the lasso
does not encourage equality among non-null coefficients, its
Acc.B only reflects the proportion of pairs in B whose ele-
ments are both put to zero by the lasso. Consequently, the
lasso should show poor results regarding this criterion (es-
pecially when β∗ is large). In the joint modeling framework,
Acc.B assesses the capacity of the methods to detect homo-
geneity across strata, and could be interpreted as a type-1
error of an interaction test.

In the following simulation study we explore the prop-
erties of the “raw” generalized fused lasso (without adap-
tive weights nor relaxation), the adaptive generalized fused
lasso, the relaxed generalized fused lasso, and of the relaxed
adaptive generalized fused lasso. Comparisons are made us-
ing the relaxed adaptive lasso as a reference that does not
account for any structure among feature effects. The sparse
group lasso (12), which includes the lasso penalty and the
group lasso penalty, and an extension of the elastic-net (21)
were also tested, but their performance were similar to those
achieved by the lasso (see Figures 1 and 6 in the Supplemen-
tary Material).

4.2 Performance of adaptive generalized fused lasso
estimates and influence of the provided graph

We set p = 24 and sample xi as describe above with ρ =

−0.39 (25). Our theoretical results being asymptotic in n

we consider cases where n/p ∈ {1, 5, 10, 50}. We also ex-

plore different degrees of sparsity with p0 ∈ {12, 8, 3}. To
study the robustness of selection method to a graph mis-
specification, we generate graphs with varying suitabilities
such that equal (resp. non-equal) coefficients are connected
with probability θ (resp. 1 − θ). When θ increases fewer
edges connect distinct coefficients, the most [resp. least] fa-
vorable configuration for generalized fused estimates being
when θ = 1 [resp. θ = 0]. The most suitable graph in the
penalty correspond to the graph that connects equal coeffi-
cients. When no prior information is available on graph G,
a strategy can be to use no graph (with the lasso) or to use a
graph that connects all coefficients (clique-graph). This lat-
ter option was also considered to compare the generalized
fused lasso with clique-based methods (19; 20). We mention
that edges of the graph are fixed across replicates.

In the following we choose the adaptive lasso as a refer-
ence that does not depend on any graph. In the best-case
scenario (perfectly suited graph, θ = 1), all graph-based
method are more accurate than the lasso for support recov-
ery, which reflects a cooperative effect on support recovery
that is characteristic of `1-based fused penalties (Figure 1).
We also start by mentioning that all fused penalties are more
accurate than the lasso for prediction, without much differ-
ence among them (Figure 1). Then the sensitivity to graph
mis-specification depends on the penalty: the “raw” fused
lasso is very sensitive since its performance drop as soon
as θ ≤ 0.8 (or with the clique graph). Interestingly, us-
ing adaptive weights and/or relaxation increases robustness
to graph mis-specifications (compare the first and second
lines of Figure 2 for instance), as performance decrease for
θ ≤ 0.4 only. Note that the adaptive and the relaxed adaptive
generalized fused lasso perform better than (or at least sim-
ilarly to) the lasso except when θ = 0. Averaged accuracies
on support recovery show that the relaxation of the adaptive
generalized fused lasso does not necessarily increase its ac-
curacy (see Table 1, and compare the first and fourth lines
of Figure 2 when p0 = 3 for instance). Then when vary-
ing the n/p ratio (Supplementary Material, Figure 3), adap-
tive and/or relaxed strategies remain more accurate than the
“raw” generalized fused lasso except when the graph is per-
fectly suited (i.e., θ = 1, which is very unlikely in practice),
or in situations where maximum likelihood estimates may
lack in precision (n/p ' 1).

In our simulation design all non-null coefficients were
set to a unique value so that the task was to detect a group
of p0 non-null parameters among a set of p. This was a way
to study the effect of varying p0 on the robustness to a graph
mis-specification. Then, as expected, all graph-based fused
methods perform better when the graph is highly suitable
and/or p0 is high (as compared to the lasso, Figure 2). Tak-
ing the example of the adaptive generalized fused lasso (first
line in Figure 2), the method performs better than or at least
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similarly to the lasso for θ ≥ 0.4 when p0 = 12, for θ ≥ 0.8

when p0 = 8 and only for θ = 1 when p0 = 3.
Next, focusing on the strategy that consists in penaliz-

ing all possible differences using the clique-graph (19; 20),
we observe that they are close to those of graph-based meth-
ods with low suitability (θ = 0; 0.4), whatever the degree of
sparsity p0 of the true model (see Figure 2). With the clique-
graph, the number of edges connecting non-null and equal
coefficients increases with the number of non-null coeffi-
cients p0, but so does the number of misleading edges that
connect null and non-null coefficients (p0(p − p0) is an in-
creasing function of p0 ∈ [0, p/2]). As a consequence, gen-
eralized fused lasso estimates obtained with the clique-graph
never significantly improve upon the lasso for support recov-
ery in our experiments. These results complement those of
Theorem 2 above: while using a clique-graph is asymptot-
ically optimal, this strategy is clearly sub-optimal on finite
samples.

Lastly, we consider the classification of pairs of non-null
(and then equal) coefficients (Acc.B; Figure 1). First observe
that B = ∅ when the graph is completely mis-specified (θ =

0) so that Acc.B can not be computed for this value of θ.
Clearly, no method is robust on graph mis-specification re-
garding pairs of coefficients, except the ”raw” version of the
generalized fused lasso. However, what seems to be a good
performance for the “raw” fused lasso is actually linked to
a poor model selection and estimation precision since the
“raw” fused lasso tends to return the same value for all coef-
ficients (Supplementary Material, Figure 4). To explain why
the accuracy on pairs drops with the graph mis-specification,
we first note that both the number of edges connecting non-
zero equal coefficients |B| and Acc.B decrease as θ decreases.
When the graph is mis-specified there is an increased dis-
crepancy between the true number of distinct coefficients
(d0), the number of distinct coefficients that would be possi-
ble to estimate in the asymptotic setting (s0), and sn the ac-
tual non-asymptotic model complexity. Then as θ decreases,
s0 − d0 obviously tends to increase but so does sn − s0. It
means that graph mis-specifications lead to models that are
too complex with respect to the theoretical one. This is still
true with the clique-graph for which we do have s0 = d0,
but Acc.B is still moderate which means that sn > s0 = d0:
even when all the edges that should be present in the graph
are indeed present, misleading edges prevent the method
from selecting the right model: Acc.B is moderate and, in
turn, so is Acc.A.

4.3 Performance of the generalized fused lasso when
connected coefficients may not be exactly equal

Here, we adopt the exact same setting as in the previous
paragraph, but instead of setting the p0 non-null coefficients
to the same β∗ value, we set each of them to |β∗ + ν|,

Acc.A Acc.B Acc.Pred
n/p non-R R non-R R non-R R

1
non-adaptive 62 57 75 45 58 58
adaptive 54 55 41 47 58 58

5
non-adaptive 67 73 87 66 61 62
adaptive 71 69 66 59 61 61

10
non-adaptive 71 78 82 70 62 63
adaptive 78 76 72 68 63 63

50
non-adaptive 79 88 75 80 65 65
adaptive 89 88 87 86 65 65

Table 1 Average Accuracies (×100) for support (Acc.A), pairs of
non-zero and equal coefficients (Acc.B) and Prediction (Acc.Pred). R,
relaxed; non-R, non-relaxed.

with ν ∼ N (0, σ2
ν). The variance σ2

ν governs the amount of
“noise” (variability across the p0 non-null coefficients), and
we make it vary in {0, 0.2, 0.5}. Illustrations of the resulting
β∗ vector are provided on Figure 5 in the Supplementary
Material. In this setting, the reference method is arguably
the original group lasso (i.e., with the group lasso penalty
only) where the penalty accounts for the true group struc-
ture. The relaxed adaptive version of this method was there-
fore included in this particular setting (using the grplasso R
package (14)).
We first compete it with generalized fused lasso estimates,
for which exact knowledge of the group structure is also as-
sumed; that is we consider generalized fused lasso estimates
with θ = 1 (results for the relaxed adaptive lasso are also
provided). Results regarding support recovery (Acc.A) are
presented on Figure 3 for n = 240. Interestingly, most gen-
eralized fused lasso estimates are always at least comparable
to the group lasso. More importantly, they significantly out-
perform the group lasso in many situations, especially when
the variability across the p0 non-null coefficients is weak,
p0 is large or signal is weak (low values of β∗). Compar-
isons based on prediction accuracy advocate even more for
the use of generalized fused lasso estimates (see Figure 6 in
the Supplementary Materials).
Figure 4 further shows that, in the case where σ2

ν = 0.2, the
performance of the group lasso (with exact knowledge of the
group structure) in terms of support recovery is comparable
to or worse than that of the generalized fused lasso in the
following configurations. (i) when p0 = 12 and θ ≥ 0.8 or
β∗ ≤ 1.5 (irrespective of the θ value); (ii) when p0 = 8 and
θ = 1 or θ = 0.8 and β∗ ≤ 1.5; and (iii) when p0 = 3

and θ = 1. Analogous results were obtained for other values
of σ2

ν . In other words, even when the true structure is un-
known, generalized fused lasso estimates (with θ < 1 then)
can achieve performance similar to those that would achieve
the group lasso if the true structure were known, especially
if groups of non-null coefficients are large enough. Again,
results regarding prediction accuracy support even more the
generalized fused lasso (see Figure 7 in the Supplementary
Materials).
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All these results clearly state the potential benefits of using
generalized fused lasso estimates instead of group lasso es-
timates, in the setting considered in our experiments.

4.4 Simulation Study in the context of joint modeling.

Our objective here is to investigate in more details the per-
formance of the generalized fused lasso in the context of
joint logistic regressions, in particular with varying signal-
strengths and levels of heterogeneity across strata.

We set C = 4, nc = 200 (so that n =
∑
c nc = 800),

p = 20, and for each stratum we sample covariates xi with
ρ = 0.5. Then we control for the level of heterogeneity
across strata by using different repartitions of null and non-
null coefficients for a given covariate in the various strata,
while keeping β∗0c = 0 for every stratum c. In Configuration
1, all strata share the same β∗c with 6 non-null elements.
In the other two configurations β∗cs do vary across strata
while keeping the number of non-null elements equal to 6
for each stratum. In Configuration 2, 8 coefficients are null
on all strata, 6 are null on all but one stratum, and 6 are non-
null (and equal) on all but one stratum. In Configuration 3,
8 coefficients are null on all strata and 12 are non-null (and
equal) on two strata (and null on the other two). See Figure
8 in the Supplementary Material for a graphical description
of these three configurations. Then we compete the gener-
alized fused lasso with two versions of the relaxed adap-
tive lasso. The “independent” version consists in computing
the relaxed adaptive lasso on each stratum independently.
In the “interaction” version, a reference stratum is first se-
lected and interaction terms between the remaining strata
and the covariates are included as explained in Section 3.2
in the Supplementary Material (this corresponds to the gen-
eralized fused lasso with a star-graph and with λ1 = λ2).
Then one relaxed adaptive lasso is computed on this whole
data set. This latter approach can be regarded as the refer-
ence method in this context.

Here we mostly focus on performance for the classifi-
cation of pairs, which is of primary interest in the context
of joint modeling. As before, we first consider Acc.B. Be-
cause β∗c1,jβ

∗
c2,j
6= 0 ⇒ β∗c1,j = β∗c2,j 6= 0 in our simu-

lations, it assesses the capacity of methods to detect homo-
geneity across strata, and could be interpreted as a type-1
error of an interaction test, as mentioned above. We also
consider the percentage of truly heterogeneous edges (i.e.
connecting nodes that correspond to different true coeffi-
cients) that are detected as heterogeneous. It can be inter-
preted as a power of an interaction test, and is denoted by
Pow.H. Note that the “independent” relaxed adaptive lasso
is expected to show good performance regarding this cri-
terion since it does not encourage coefficients to be equal
across strata: 1 - Pow.H for this method only represents the

proportion of heterogeneous edges for which both coeffi-
cients are set to 0 (so that 1-Pow.H is expected to decrease,
and Pow.H to increase, as β∗ increases for the “indepen-
dent”’ relaxed adaptive lasso). Figure 5 shows that the re-
laxed adaptive generalized fused lasso outperforms the “in-
teraction” relaxed adaptive lasso in terms of Pow.H and, in
most cases, in terms of Acc.B as well. Moreover, it is al-
most “perfect” to detect heterogeneity since it shares similar
performance with the “independent” relaxed adaptive lasso
regarding Pow.H. The non-relaxed version is in most cases
a little better (resp. worse) than the relaxed one in terms
of Acc.B (resp. Pow.H). As for support recovery, (relaxed)
adaptive generalized fused lasso also outperforms the “inter-
action” relaxed adaptive lasso, especially as the level of het-
erogeneity across strata increases (as in Configuration 2 and
3). Interestingly, even under the most heterogeneous config-
uration (Configuration 3), the relaxed adaptive generalized
fused lasso attains performance similar to those achieved by
the “independent” lasso in terms of Acc.A.

In other respect, Gertheiss and Tutz (5) especially ob-
served that imposing λ1 = λ2 lead to results comparable
to those obtained with “free” λ1 and λ2. As shown on Fig-
ure 9 of the Supplementary Material, this was not the case
on our experiments for non-adaptive versions of the gen-
eralized Fused Lasso, nor for the relaxed adaptive general-
ized fused lasso, especially under Configuration 3. There-
fore, unless computational time is a critical issue, we would
not recommend to impose λ1 = λ2 when using generalized
fused lasso in the context of joint modeling (especially if
non-adaptive versions are to be used).

5 Network-based prediction of cancer status based on
expression data

Genomics has faced a fload of network data in the last years,
ranging from protein-protein interaction data, pathway data
to regulation networks (7; 18). The molecular characteriza-
tion of cancers has been at the core of many projects, espe-
cially to establish molecular subtypes of histologically simi-
lar tumors. In particular finding genomic signatures has been
the graal for many studies to predict patient outcome, sur-
vival or relapse (9). Such signatures are determined a pe-
nalized logistic regression model based on gene-expression
data as covariates, and we consider here a logistic regression
to predict the 5-year relapse status of 214 women with breast
cancer (80 relapse in the sample) (9). Covariates correspond
to the measurement of the p = 54, 613 gene expressions re-
duced to the 248 genes differentially expressed (FDR=0.05),
and we use 5-fold Monte Carlo cross validations to assess
prediction performance. Interestingly, the expression of dif-
ferent genes is structured according to some unknown regu-
latory network that can be inferred from the data using Gaus-
sian Graphical models for instance (2). Our hypothesis here
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is that using this inferred network can help in the prediction
of patients outcome. However, since this regulatory network
is not perfectly known, our strategy is based on the hypothe-
sis that there is no ”true” regulatory network, and we explore
the robustness of the generalized fused lasso to the addi-
tion/removal of edges in the penalty, as we did in the simu-
lation study. To proceed we consider the regulatory network
that is inferred on the training data by the SIMoNE pack-
age (2). This package is based on sparse Gaussian Graphical
models, and by varying the amount of shrinkage, we were
able to consider networks with increasing number of edges,
and then to assess the impact of changes in the network on
prediction performance and estimated model dimensions.

The first conclusion is that the gain in used fused-based
strategies is massive: the AUC (Area under the Curve) jumps
from ∼0.7 for the lasso to ∼0.95 for generalized fused esti-
mates, and the empirical error rate drops from∼0.3 to∼0.1,
which clearly indicates that the network has helped in the
correct classification of samples (Figure 6). Moreover, as
previously mentioned in the simulations, fused-based meth-
ods are more performant that the lasso, but there is no sig-
nificant difference among them for prediction. Very interest-
ingly, the classification performance remain with the addi-
tion of edges, which indicates that the suitability of this new
edges is about θ ' 0.5. Then the number of non-null esti-
mated coefficients is higher for all fused-penalties, and the
estimated number of distinct non-null coefficients (a crude

estimate of quantity s0) converges towards a set of ∼10 dis-
tinct values for estimated parameters.

6 Joint modeling to analyze road-safety data

Driving under the influence of alcohol (DUI) is an estab-
lished risk factor of car accidents. Interestingly, several stud-
ies also suggest that DUI increases the risk of dying in an
accident, but this result remains controversial: biological ev-
idence supporting this assumption is still lacking and the ob-
served effect of DUI could be due to confounding variables
only. We present an application of the generalized fused lasso
to the joint modeling framework, where the main objective
is to study the effect of alcohol consumption on the risk of
death (for drivers involved in a car crash). Our dataset con-
sists of n = 21, 064 drivers involved in reported single-car
personal injury crashes from 2006 to 2009 in France (16).
Current data show 33 covariates including the characteris-
tics of the crash, of the drivers and of crash-involved vehi-
cles, and we focus on the vital status of the driver only. We
define 4 strata based on gender and DUI: strata 1-2 (resp.
3-4) for males and females not driving (resp. driving) under
the influence when the accident occurred.

We consider logistic models to relate the probability of
dying in a car accident to risk factors in each stratum. Since
most factors are expected to share similar effects, joint mod-
eling is used to couple the estimations of the four models. In-
tercept parameters are of particular importance: they should
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be homogeneous across strata if neither gender nor alcohol
directly modified the risk of death. Then we compare the
relaxed adaptive fused lasso, to the “independent” and “in-
teraction” versions of the relaxed adaptive lasso (with stra-
tum 1, i.e., sober males, as the reference stratum). We also
present unpenalized estimates derived from standard logistic
regression models independently built on each stratum (see
the Supplementary Material, Figure 6 for complete results).

All methods agree on the absence of effect of most fac-
tors on the risk of death in a car crash, and on the inten-
sity of the effects of other factors, such as a higher risk for
older drivers and a lower risk associated with the use of a
seat-belt. Then inspecting the influence of city roads em-
phasizes interesting differences between the relaxed adap-
tive fused lasso and “independent” relaxed adaptive lassos
in the presence of highly correlated variables (see Table 2).
Indeed covariates “City Roads” (crash on a road managed
by a city) and “City” (crash in a city) were both kept in the
analysis despite redundancy. Thus, the global effect should
be the sum of the two corresponding coefficients. Based on
this global effect, all methods agree on the absence of in-

teraction with gender and DUI (the sum of the two coeffi-
cients is roughly constant over the 4 strata according to ev-
ery method). Accordingly, the relaxed adaptive fused lasso
(as well as the “interactions” lasso) return equal individual
effects for “City Roads” and “City” on every stratum. How-
ever, because of these two variables are highly correlated,
“independent” lassos return widely different individual ef-
fect for “City Roads” and “City”, which does not make any
sense. There are a few other differences between the three
penalized methods, but when relaxed adaptive fused lasso
and “interactions” relaxed adaptive lasso estimates disagree,
the relaxed adaptive fused lasso most often agrees with “in-
dependent” relaxed adaptive lassos. This is consistent with
our conclusions from the simulation study where these lat-
ter two methods generally performed the best in terms of
support recovery.

Finally, the relaxed adaptive fused lasso agrees with the
other methods on the fact that intercepts do vary across strata,
suggesting an effect of both gender and DUI on the risk of
death (see Table 2). More precisely, sober females are at a
higher risk than sober males, and, to a lesser extent, females
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under the influence are at a higher risk than males under the
influence. Moreover, irrespective on gender, drivers under
the influence are at a higher risk than sober drivers. How-
ever this result should be tempered by potential confounding
due to speed, which was not available here. For instance,
drivers under the influence are likely to drive faster than
sober drivers. The effects of speed may be partly captured
by other covariates, but not entirely. Consequently resid-
ual “speed effects” could be responsible for detected het-
erogeneities between intercepts.

7 Discussion

In this paper, we investigate theoretical and empirical prop-
erties of the generalized fused lasso, in various settings. From
the theoretical point of view, we especially show that using
adaptive weights leads to estimators enjoying asymptotic or-
acle properties. However, for the true underlying dimension
of the problem d0 (that is the number of distinct non-null
values in β∗) to be equal to the asymptotic dimension s0 of
the estimator, the graph G used in the penalty has to enjoy
the following property: for all (j, `) such that β∗j = β∗` , j
and ` belong to the same connected component of GB, the
sub-graph of G such that GB = (A,B). In particular, our
results indicate that setting G to the clique connecting all
coefficients of β∗ together (in which case all the p(p− 1)/2

differences are penalized) is asymptotically optimal. There-
fore, they confirm those obtained in the linear regression set-
ting in (20), and extend them to generalized linear models.
In words, it means that, asymptotically, adding misleading
edges in the graph is harmless, while forgetting relevant ones
can be harmful.

From the modeling point of view however, we empiri-
cally studied the robustness of generalized fused lasso esti-
mates against graph misspecification on finite samples. On
our experiments, we observed that adaptive weights and/or
relaxation lead to some improved robustness. However, and
overall, we demonstrated that the performance of general-
ized fused lasso estimates on finite samples are deeply re-
lated to the suitability of the graph in the penalty, espe-
cially for support recovery. In particular, we show that, un-
der the designs considered in our simulations, the clique-
based strategy is clearly sub-optimal for support recovery,
so that misleading edges are harmful on finite samples. The
graph used in the penalty constitutes a formal description of
some prior knowledge on the problem that is investigated,
and has to be determined with caution, especially if sup-
port recovery matters. We may stress that this graph does not
describe correlations among features but similarity between
their effects under the considered model. Of course, corre-
lated features may share similar coefficients, but not nec-
essarily. For instance in epidemiological studies, smoking
and alcohol consumption are generally highly correlated.

They further may share similar effects under a logistic model
when studying cardiovascular diseases so that it might make
sense to penalize the difference of their effects. However,
when studying lung cancer, they are not expected to share
similar coefficients at all, so that their difference should not
be penalized. That being said, in our application of Section
5, using a graph based on (partial) correlation still leads to
highly improved prediction accuracy compared to the Lasso
for instance (of course, support recovery performance can
not be assessed on real data).

We further show that generalized fused lasso can be use-
ful even in situations where theoretical coefficients are not
exactly the same. Interestingly, it can improve upon state-of-
the-art competing methods, such as the group lasso in this
context, even when the graph is not perfectly suited.

A particular situation where the graph is suggested by
the design of the study itself is the joint modeling frame-
work, where data come from various strata. When the main
question is the detection of heterogeneities across strata, we
believe that the graph made of cliques is very appealing as it
encourages coefficients to be homogeneous across the strata.
This strategy has some connections with the statistical tests
theory where tests are generally performed under the null
hypothesis (absence of heterogeneity in this case), and data
need to be far enough from this assumption for the null hy-
pothesis to be rejected. But even in the joint modeling con-
text, other graphs may be considered: for instance, if strata
correspond to various treatments, the control treatment can
serve as the reference and star-graphs may be more appro-
priate than cliques (see Section 1 in the Supplementary Ma-
terial).

We established the asymptotic oracle properties of the
adaptive generalized fused lasso estimates under generalized
linear models, for fixed p. These results are the first estab-
lished for fused lasso estimates in the setting of generalized
linear models and for the generalized fused penalty based
on a graph. Even if the fixed p case is relevant, especially in
the joint modeling framework, they should be extended to
cover the high-dimensional case. Most published papers on
the fused lasso in high-dimension focus on the chain-based
fused penalty in the Gaussian sequence model. A notable ex-
ception is the work of Vaiter et al. (24) in which results that
encompass generalized fused lassos under a bounded noise
assumption were recently established. The extension of such
results to the random noise case and generalized linear mod-
els would be an interesting lead. Moreover, non-asymptotic
oracle prediction inequalities still need to be established for
fused-like estimates: under the linear model for instance,
and denoting by β̂ the fused lasso estimator for some ap-
propriate values of the tuning parameters, it is easy to ob-
tain inequalities of the form ‖X(β̂−β∗)‖2 ≤ κp0 log(p)/n

with high probability, for some positive constant κ. Under
the Gaussian sequence model, a modification of the Fused
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Table 2 Parameter estimates obtained on the road-safety data for the intercept terms and coefficients of variables “City” and “City Roads”. For
each method and each parameter, four values are given, corresponding to the estimate obtained on each of the four considered strata.

Variable relaxed adaptive fused lasso “independent” relaxed adaptive lasso “interaction” relaxed adaptive lasso
Intercept -2.86 -3.89 -2.14 -2.14 -2.85 -3.86 -2.01 -2.22 -2.83 -3.67 -2.22 -2.39
City -0.37 -0.37 -0.37 -0.37 -0.43 0.00 -0.50 -0.70 -0.39 -0.39 -0.39 -0.39
City Roads -0.21 -0.21 -0.21 -0.21 0.00 -0.54 0.00 0.00 -0.21 -0.21 -0.21 -0.21

Lasso has been shown to enjoy the same kind of bound, but
with p0 replaced by a quantity similar in spirit to s0 (17). Ex-
tending this result to more general contexts is not straightfor-
ward and constitutes a promising research direction as well.

8 Appendix

8.1 Proof of Theorem 1

This proof is an adaptation of the proof given by (23) to
account for the generalized linear model loss and the gener-
alized fused lasso penalty. Let us define Vn(u) = Q(β∗ +

u/
√
n)−Q(β∗) with u = (u0, . . . , up)

T , and Q defined as
in Section 2.1. Obviously Vn(u) is minimized at

√
n(β̂ −

β∗). Similarly to (23), we obtain:

Vn(u) = J

(
β∗ +

u√
n

)
− J(β∗)

+ λ(1)
n

p∑
j=1

{∣∣∣∣β∗j +
uj√
n

∣∣∣∣− |β∗j |}

+ λ(2)
n

∑
(j,`)∈E

{∣∣∣∣β∗j − β∗` +
(uj − u`)√

n

∣∣∣∣− |β∗j − β∗` |} .
For any fixed u, the last two terms of the right-hand side
converge to the last two terms in expression (1) of V(u) as
n goes to∞. As for the first two terms, a Taylor expansion
yields

J

(
β∗ +

u√
n

)
− J(β∗) = ∇J(β∗)T

u√
n

+
1

2
uT
I(β∗)

n
u + oP(1/n).

Under AL1, we have uT (I(β∗)/n)u →d uTCu. More-
over, AL1 implies that the minimum eigenvalue of I(β∗)

goes to∞ and, under AL2, we have (∇J(β∗)/
√
n)→d W,

where W has an N (0p+1,C) distribution (8). By Slutsky’s
theorem, we therefore have Vn(u) →d V(u). Since Vn is
convex, the epi-convergence results of (6) can finally be used
to complete the proof of Theorem 1.

8.2 Proof of Proposition 1

If λ(2)
0 = 0, the proof is the same as in the lasso case (25).

Now assume that λ(2)
0 6= 0 (we further assume that λ(1)

0 6= 0,

the case where λ(1)
0 = 0 being slightly easier and omitted).

First observe that P(Ãn = A) ≤ P(
√
nβ̂j = 0 ∀j /∈

A). Moreover, in virtue of Theorem 1, we have lim supn
P(
√
nβ̂j = 0 ∀j /∈ A) ≤ P(u∗j = 0 ∀j /∈ A), with

u∗ = argmin(V). Therefore, we only need to show that
c = P(u∗j = 0 ∀j /∈ A) < 1.

For any j ∈ {1, . . . , p}, introduce E=
j (β∗) = {` : (`, j) ∈

E or (j, `) ∈ E and β∗j = β∗` } and E 6=j (β∗) = {` :

(`, j) ∈ E or (j, `) ∈ E and β∗j 6= β∗` }. Setting W =

(W0, . . . ,Wp)
T and Cu∗ = ((Cu∗)0, . . . , (Cu∗)p)

T , we
have, by the KKT conditions,

W0 + (Cu∗)0 = 0, (1)

and for all j ∈ A,

Wj+(Cu∗)j+λ
(1)
0 sign(β∗j )+λ

(2)
0

{ ∑
`∈E 6=j (β∗)

sign(β∗j−β∗k)

+
∑

`∈E=
j (β∗)

(−1)I(j<`)tj`

}
= 0,

and for all j /∈ A,

Wj + (Cu∗)j + λ
(1)
0 rj + λ

(2)
0

{ ∑
`∈E 6=j (β∗)

sign(β∗j − β∗k)

+
∑

`∈E=
j (β∗)

(−1)I(j<`)tj`

}
= 0.

Above, rj = sign(u∗j ) if u∗j 6= 0 and rj is some real number
in [−1, 1] otherwise. Similarly, tj` = sign(u∗j −u∗` ) if u∗j 6=
u∗` and tj` is some real number in [−1, 1] otherwise.

For any index j ∈ A there is some s = s(j) such that
j ∈ As(j), whereAs still denotes the set of vertices of the s-
th connected component ofGB (see the paragraph before the
statement of Theorem 2 for the definitions of these objects).
Then summing up the KKT conditions over As(j), we have

∑
k∈As(j)

{
Wk + (Cu∗)k + λ

(1)
0 sign(β∗k)

+ λ
(2)
0

∑
`∈E 6=k (β∗)

sign(β∗k − β∗` )
}

= 0. (2)

Similarly, setting B̃ = {(j, `) ∈ E ∩ Ā × Ā} and denoting
by G0 = (Ā, B̃), the set Ā can be decomposed as Ā =
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∪s1s=1Ās, where 1 ≤ s1 ≤ p − p0 and Ās is the subset of
vertices constituting the s-th connected component of G0.
Then, for any j /∈ A, there exists some s = s(j) such that
j ∈ Ās(j) and summing up the KKT optimality conditions
over Ās(j), we have

∑
k∈Ās(j)

{
Wk + (Cu∗)k + λ

(1)
0 rk+

λ
(2)
0

∑
`∈E 6=k (β∗)

sign(β∗k − β∗` )
}

= 0, (3)

with |sk| ≤ 1. If u∗j = 0 for all j /∈ A, equations (2) along
with equation (1) form a system of s0 + 1 equations with
p0 + 1 ≥ s0 + 1 variables, that can be written as

WB + M1u
∗
{0}∪A + λ

(1)
0 rB + λ

(2)
0 tB = 0,

where M1 is the (s0 + 1) × (p0 + 1) matrix whose (s, j)

element is ms,j =
∑
k∈As−1

Ck,j (with Ck,j the (k, j) ele-
ment of C and A0 = {0}), and WB, rB and tB are vectors
in Rs0+1 whose s-th elements are

∑
k∈As−1

Wk,
∑
k∈As−1

sign(β∗k) and
∑
k∈As−1

∑
`∈E 6=k (β∗) sign(β∗k − β∗` ) respec-

tively. Now, denoting by M†1 the pseudo-inverse of M1,
there exists some vector ω ∈ Rp0+1 such that u∗{0}∪A =

(Ip0+1−M†1M1)ω−M†1(WB+λ
(1)
0 rB+λ

(2)
0 tB). There-

fore, if u∗j = 0 for all j /∈ A, equations (3) form a system of
s1 equations that can be written,

∣∣∣WB̃ + λ
(2)
0 tB̃ + M2

{
(Ip0 −M†1M1)ω

−M†1(WB + λ
(1)
0 rB + λ

(2)
0 tB)

}∣∣∣ ≤ λ
(1)
0 rB̃,

where WB̃, rB̃ and tB̃ are the vectors in Rs1 whose s-th
elements are given by

∑
k∈ĀsWk, |Ās| and∑

k∈Ās

∑
`∈E 6=k (β∗)

sign(β∗k − β∗` )

respectively. We can now conclude by observing that

c ≤ P
(∣∣∣WB̃ + λ

(2)
0 tB̃ + M2

{
(Ip0 −M†1M1)ω−

M†1(WB + λ
(1)
0 rB + λ

(2)
0 tB)

}∣∣∣ ≤ λ
(1)
0 rB̃

)
< 1.

8.3 Proof of Theorem 2

The following proof is a modification to the proof given by
(25) to account for both the generalized linear model loss
and the generalized fused penalty. Let us define Vn(u) =

Q(β∗ + u/
√
n) − Q(β∗) with u = (u0, . . . , up)

T and Q

defined as Section 2.1. Note that Vn(u) is minimized at
√
n(β̂

ad
− β∗). We have

Vn(u) = ∇J(β∗)T
u√
n

+
1

2
uT
I(β∗)

n
u + oP(1/n)

+
λ

(1)
n√
n

p∑
j=1

w
(1)
j

√
n

{∣∣∣∣β∗j +
uj√
n

∣∣∣∣− |β∗j |}
+

λ
(2)
n√
n

∑
(j,`)∈E

w
(2)
j`

√
n

{∣∣∣∣β∗j − β∗` +
(uj − u`)√

n

∣∣∣∣− |β∗j − β∗` |}

=: ∇J(β∗)T
u√
n

+
1

2
uT
I(β∗)

n
u+oP(1/n)+

p∑
j=1

T
(1)
j +

∑
(j,`)∈E

T
(2)
j`

We have the two following behaviors :

T
(1)
j →p

{
0 if β∗j 6= 0 or (β∗j = 0 and uj = 0)

∞ otherwise

and

T
(2)
j` →p

{
0 if β∗j 6= β∗` or (β∗j = β∗` and uj = u`)

∞ otherwise
.

Denote by CA the (p0+1)×(p0+1) sub-matrix of C consti-
tuted of rows and columns associated with indexes in {0} ∪
A and by WA a random Gaussian vector N (0p0+1,CA).
Then, as in the proof of Theorem 1, Vn(u) →d V(u) for
every u, with V defined for u = (u0, . . . , up) ∈ Rp+1, by

V(u) =


1
2u

T
ACAuA + uTAWA if uj = 0 for j /∈ A and

uj = u` for (j, `) ∈ B,
∞ otherwise.

Recall the notations introduced just before stating Theorem
2. Any vector u ∈ Rp+1 such that uj = 0 for all j /∈ A
and uj = u` for all (j, `) ∈ B has s0 + 1 distinct non-
zero values. Denoting by u0, uj1 , . . . , ujs0 these values, and
setting uB = (u0, uj1 , . . . , ujs0 )T , we have

V(u) =


1
2u

T
BCBuB + uTBWB if uj = 0 for j /∈ A and

uj = u` for (j, `) ∈ B,
∞ otherwise,

where WB ∼ N (0s0+1,CB). Clearly, V has a unique min-
imum for u ∈ Rp+1 such that uj = 0 for all j /∈ A and
uj = u` for all (j, `) ∈ B and uB = −C−1

B WB. Since
Vn is convex we can proceed by using the epi-convergence
results (6) to prove the asymptotic normality part (25).

Let us now turn our attention to the variable selection
consistency. Namely, we have to show that ∀j ∈ A, P(j ∈
An) → 1 and that ∀j /∈ A, P(j ∈ An) → 0. The first
claim is an easy consequence of the previous asymptotic
result (25). To prove the second claim, consider an index
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j /∈ A and denote by Cj the subset of vertices constitut-
ing the connected component of G to which j belongs. Let
C0
j = {` ∈ Cj , β

∗
` = 0}; clearly, j ∈ C0

j . Our aim is to
prove that P(` ∈ An)→ 0, for all ` ∈ C0

j . Observe that the
KKT conditions write, for k = 1, . . . , p:[
∇J(β̂

ad
)
]
k

= λ(1)
n w

(1)
k rk + λ(2)

n( ∑
(k,`)∈E

w
(2)
k` tk` −

∑
(`,k)∈E

w
(2)
k` t`k

)

where rk = sign(β̂adk ) for β̂adk 6= 0 and sk is some real
number in [−1, 1] if β̂adk = 0; likewise, for any (k, `) ∈ E,
tk` = sign(β̂adk − β̂ad` ) for β̂adk 6= β̂ad` and tk` is some real
number in [−1, 1] if β̂adk = β̂ad` . Introducing the set Ẽ =

{(k, `) : (k, `) ∈ E or (`, k) ∈ E}, and setting tk` = −t`k
for (`, k) ∈ E, we have the following more compact form
for the KKT conditions:[

∇J(β̂
ad

)
]
k

= λ(1)
n w

(1)
k rk + λ(2)

n

∑
(k,`)∈Ẽ

w
(2)
k` tk`,

where, in particular, tk` = sign(β̂adk − β̂ad` ) for any (k, `) ∈
Ẽ such that β̂adk 6= β̂ad` . Next, since (∇J(β∗)/

√
n) →d

W (as shown in the proof of Theorem 1), the assumption

AL1 enables us to show that Mn(k) := [∇J(β̂
ad

)]k/
√
n =

OP(1) as n→∞ as well.
Let us now suppose that there exist some ` ∈ C0

j such
that β̂ad` 6= 0. In this case, either the set Sneg = {` ∈ C0

j :

β̂ad` < 0} or the set Spos = {` ∈ C0
j : β̂ad` > 0} is not

empty (or both sets are not empty). If Sneg 6= ∅, let bmin =

mink∈Sneg β̂
ad
k . Further denote by L the subset of Sneg of

connnected indices ` such that β̂ad` = bmin. Since Sneg 6=
∅, L has at least one element. Then, summing up the KKT
conditions over L, we obtain

∑
k∈L

Mn(k) =
λ

(1)
n√
n
nγ/2

∑
k∈L

rk

|
√
nβ̃k|γ

+
λ

(2)
n√
n

∑
k∈L

∑
(k,`)∈Ẽ, β∗` 6=0

tk`

|β̃k − β̃`|γ

+
λ

(2)
n√
n
nγ/2

∑
k∈L

∑
(k,`)∈Ẽ

β∗`=0 & β̂ad` >bmin

tk`

|
√
n(β̃k − β̃`)|γ

.

Since L ⊂ Sneg, rk = −1, for all k ∈ L, and by defini-
tion of L, tk` = −1 for all ` such that β̂ad` 6= bmin. More-
over when β∗` 6= 0 then β∗` 6= β∗k , and λ(2)

n tk`/(
√
n|β̃k −

β̃`|γ) →P 0, as n goes to ∞. Since λ(m)
n nγ/2/

√
n (m =

1, 2) tends to ∞,
∑
k∈LMn(k) tends to −∞, which con-

tradicts Mn(`) = OP(1) for all ` = 1, . . . , p. That leads to

P(Sneg = ∅)→ 1. If Sneg = ∅, then Spos 6= ∅, and simi-
lar arguments can be used (with maxima instead of minima)
to get a contradiction. Putting all this together, we conclude
that for all ` ∈ C0

j , P(` ∈ An)→ 0.

It remains to show the consistency for the set Bn. As for
An, we need to prove that ∀(j, `) /∈ B, P((j, `) ∈ Bcn) → 1

and that ∀(j, `) ∈ B, P((j, `) ∈ Bcn) → 0. Let us prove the
first claim. If (j, `) /∈ B either (β∗j = 0 and/or β∗` = 0),
or (β∗j 6= 0, β∗` 6= 0 and β∗j 6= β∗` ). In the first case, when
j ∈ Ac, we have proved previously that P(j ∈ Acn)→ 1, so
P((j, `) ∈ Bcn) → 1. In the second case, if (j, `) ∈ A, and
(j, `) /∈ B, the asymptotic normality result indicates that
β̂adj − β̂ad` →P β∗j − β∗` 6= 0; thus P((j, `) ∈ Bcn) → 1.

Now let us prove the second claim, using KKT conditions
as before. Let j be an index of A such that for some ` ∈
A we have (j, `) ∈ B. Then, for some 1 ≤ s(j) ≤ s0,
j ∈ As(j), where As still denotes the set of vertices of the
s-th connected component of GB. Suppose that there exists
some ` ∈ As(j) such that β̂ad` 6= β̂adj . As previously we
define bmin = mink∈As(j) β̂

ad
k and L the subset of As(j) of

connected indices ` such that β̂ad` = bmin. Then, summing
up the KKT conditions over L, we obtain

∑
k∈L

Mn(k) =
λ

(1)
n√
n

∑
k∈L

rk

|β̃k|γ

+
λ

(2)
n√
n

∑
k∈L

∑
(k,`)∈Ẽ, β∗` 6=β

∗
k

tk`

|β̃k − β̃`|γ

+
λ

(2)
n√
n
nγ/2

∑
k∈L

∑
(k,`)∈Ẽ

β∗`=β∗k & β̂ad` >bmin

tk`

|
√
n(β̃k − β̃`)|γ

.

Since L ⊂ A, the first sum converges to 0 in probability.
Moreover, the second sum also converges to 0 in proba-
bility, while the third sum tends to −∞, which contradicts
Mn(`) = OP(1) for all ` = 1, . . . , p. We therefore conclude
that P((j, `) ∈ Bcn)→ 0, for all (j, `) ∈ B, which completes
the proof of Theorem 2.
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