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Abstract

To recover a low rank structure from a noisy matrix, truncated sin-
gular value decomposition has been extensively used and studied. Recent
studies suggested that the signal can be better estimated by shrinking
the singular values. We pursue this line of research and propose a new
estimator offering a continuum of thresholding and shrinking functions.
To avoid an unstable and costly cross-validation search, we propose new
rules to select two thresholding and shrinking parameters from the data.
In particular we propose a generalized Stein unbiased risk estimation cri-
terion that does not require knowledge of the variance of the noise and
that is computationally fast. A Monte Carlo simulation reveals that our
estimator outperforms the tested methods in terms of mean squared error
on both low-rank and general signal matrices across different signal to
noise ratio regimes. In addition, it accurately estimates the rank of the
signal when it is detectable.

Keywords: denoising, singular values shrinking and thresholding, Stein’s
unbiased risk estimate, adaptive trace norm, rank estimation

1 Introduction

In many applications such as image denoising, signal processing, collaborative
filtering, it is common to model the data X, an N × P matrix, as

X = W + E, (1)

where the unknown matrix W is measured with i.i.d. N(0, σ2) errors E. The
matrix W is assumed to have low rank R < min(N,P ), which means that its
singular value decomposition (SVD) W = PDQT has R non-zero singular val-
ues d1 ≥ . . . ≥ dR. Note that model (1) is also known as bilinear model [Mandel,
1969] in analysis of variance, as fixed factor score model [de Leeuw et al., 1985]
or fixed effect models [Caussinus, 1986] in principal component analysis. Such
models describe well data in many sciences, such as genotype-environment data
in agronomy, or relational data in social science and in biological networks,
where the variation between rows and columns is of equal interest [Hoff, 2007].
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To denoise the data, an old approach consists in performing the SVD of
the matrix X = UΛVT and defining Ŵ = P̂D̂Q̂T with P̂ = U, Q̂ = V and
keeping the first R singular values while setting the others to zero. In other
words, the so-called truncated SVD keeps the empirical directions U and V,
and estimates the singular values by

d̂i = λi · 1(i ≤ R) = λi · 1(λi ≥ τ), (2)

which can be parametrized either in the rank R or the threshold τ (here 1() is
the indicator function). This estimate is also solution [Eckart and Young, 1936]
to

min
W∈RN×P

1

2
‖X−W‖2F s.t. rank(W) ≤ R, (3)

where ‖M‖F is the Frobenius norm of the matrix M. The truncation (2) and its
penalty formulation (3) are reminiscent of the hard thresholding [Donoho and
Johnstone, 1994] solution to best subset variable selection in regression. The
truncated SVD requires R as tuning parameter, which can be selected using
cross-validation [Owen and Perry, 2009, Josse and Husson, 2012] or Bayesian
considerations [Hoff, 2007]. While this approach is still extensively used, recent
studies [Chatterjee, 2013, Donoho and Gavish, 2014a] suggested an optimal hard
threshold for singular values with better asymptotic mean squared error than
thresholding at R or at the bulk edge (the limit of detection). More precisely,
Donoho and Gavish [2014a] considered the asymptotic framework, in which the
matrix size is much larger than the rank of the signal matrix to be recovered, and
the signal-to-noise ratio of the low-rank piece stays constant while the matrix
grows, and showed that the optimal threshold is

(
4/
√

3
√
pσ
)

in the case of
a square (p × p) matrix and σ known. The other thresholds for the cases of
rectangular matrices and unknown σ are also detailed in their paper.

Another popular and recent estimation strategy consists in applying a soft
thresholding rule to the singular values

d̂i = λi max(1− τ/λi, 0), (4)

where any singular value smaller than the threshold τ is set to zero. The estimate
Ŵ = UD̂VT with d̂i in (4) is also the closed form solution [Mazumder et al.,
2010, Cai et al., 2010] to

min
W∈RN×P

1

2
‖X−W‖2F + τ‖W‖∗, (5)

where ‖W‖∗ =
∑min(N,P )
i=1 di is the trace norm of the matrix W. The regu-

larization (4) and its penalty formulation (5) are inspired by soft thresholding
[Donoho and Johnstone, 1994] and lasso [Tibshirani, 1996]. The tuning parame-
ter τ is often selected by cross-validation. Recently, Candes et al. [2013] defined
a Stein unbiased risk estimate (SURE) [Stein, 1981] to select τ more efficiently
considering the noise variance σ2 as known.

Finally, other reconstruction schemes involving nonlinear shrinkage of the
singular values have been proposed in the literature [Verbanck et al., 2013,
Raj Rao, 2013, Shabalin and Nobel, 2013]. More precisely, using the same
asymptotic framework as previously and asymptotic results on the distribution
of the singular values and singular vectors [Johnstone, 2001, Baik and Silver-
stein, 2006, Paul, 2007], Shabalin and Nobel [2013] and Gavish and Donoho
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[2014] showed that the shrinkage estimator Ŵ closest to W in term of mean

squared error has the form Ŵ = UD̂VT with, when σ = 1,

d̂i =
1

λi

√
(λ2
i − β − 1)

2 − 4β · 1
(
i ≥ (1 +

√
β)
)
, (6)

and N/P → β ∈ (0, 1]. The case with unknown σ is also covered in their paper.
With different asymptotics, considering that the noise variance tends to zero

and N and P are fixed, Verbanck et al. [2013] also reached similar estimates
and suggested the following heterogeneous shrinkage estimate

d̂i = λi

(
1− σ2

λ2
i

)
· 1(i ≤ R). (7)

Unlike soft thresholding, the smallest singular values are more shrunk than the
largest ones. It is a two-step procedure: first select R, then shrink the R largest
singular values. It is a compromise between hard and soft thresholding.

In regression, Zou [2006] also bridged the gap between soft and hard thresh-
oldings by defining the adaptive lasso estimator governed by two parameters
chosen by cross-validation to control thresholding and shrinkage. To avoid ex-
pensive resampling, Sardy [2012] selected them by minimizing a Stein unbiased
estimate of the risk. Adaptive lasso has oracle properties and has shown good
results in terms of prediction accuracy, especially using Stein unbiased risk.

In this paper, we propose in Section 2.1 an estimator inspired by adaptive
lasso to recover W. It thresholds and shrinks the singular values in a single
step using two parameters that parametrize a continuum of thresholding and
shrinking functions. We propose in Section 2.2 simple though efficient strate-
gies to select the two tuning parameters from the data, without relying on the
unstable and costly cross-validation. One approach consists in estimating the
`2-loss, the other in selecting the threshold at the detection limit, estimated
empirically given the data matrix X, and the last one can be applied when the
variance σ2 is unknown. Finally, we assess the method on simulated data in
Section 3 and show that it outperforms the state of the art methods in terms of
mean squared error and rank estimation.

2 Adaptive trace norm

2.1 Definition

The past evolution of regularization for reduced rank matrix estimation reveals
that the empirical singular values should not simply be thresholded (with hard
thresholding), but should also be shrunk (with soft thresholding) or more heav-
ily shrunk, as in (6) and (7). Inspired by adaptive lasso [Zou, 2006], we propose a
continuum of functions indexed by two parameters (τ, γ). The following thresh-
olding and shrinkage function,

d̂i = λi max

(
1− τγ

λγi
, 0

)
, (8)
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is defined for a positive threshold τ , and encompasses soft thresholding (4) for
γ = 1 and hard thresholding (2) when γ →∞. We call the associated estimator

Ŵτ,γ =

min(N,P )∑
i=1

Uiλi max

(
1− τγ

λγi
, 0

)
V ′i (9)

the adaptive trace norm estimator (ATN) with τ ≥ 0 and γ ≥ 1. Note that as a

byproduct, the rank of the matrix is also estimated as R̂ =
∑min(N,P )
i 1(d̂i ≥ 0).

In comparison to the hard and soft thresholding rules, the advantage of using
the single and more flexible thresholding and shrinkage function (8) is twofold.
First (8) parametrizes a rich family of functions that can more closely approach
an ideal thresholding and shrinking function to recover well the structure of
the underlying matrix W, given the noise level σ2. Second, the specific mul-
tiplicative factors (1 − τγ/λγi ) fit the rationale that the largest singular values
correspond to stable directions and should be shrunk mildly. In comparison to
other non linear thresholding rules, (8) does not rely on asymptotic derivations.
Instead it selects its parameters (τ̂ , γ̂) from the data, which leads to smaller
MSE in many scenarii as illustrated in Section 3.

Our estimator is related to penalized Frobenius norm regularization. In a
matrix completion and regression context, Mazumder et al. [2010], Gaiffas and
Lecue [2011] and Chen et al. [2013] proved that, for a weakly increasing weight
sequence ω, the optimization problem

min
W∈RN×P

1

2
‖X−W‖2F + α‖W‖∗,ω with ‖W‖∗,ω =

min(N,P )∑
i=1

ωidi (10)

has the closed form solution Ŵ = UD̂VT with d̂i = max(λi − αωi, 0). So
the adaptive trace norm estimator (9) has weights inversely proportional to the
empirical singular values, and corresponds to α = τγ and ωi = 1/λγ−1

i .

2.2 Selection of τ and γ

The parameters τ and γ can be estimated using cross-validation. Leave-one-out
cross-validation, first consists in removing one cell (i; j) of the data matrix X.
Then, for one pair (τ, γ), it consists in predicting its value using the estimator
obtained from the dataset that excludes this cell. The value of the predicted
cell is denoted X̂−ijij . Finally, the prediction error is computed (Xij − X̂−ijij )2

and the operation is repeated for all the cells in X and for each (τ, γ). The pair
that minimizes the error of prediction is selected. Such a procedure requires a
method which provides an estimator despite the missing values. Such methods
estimating the singular vectors and singular values from incomplete data exist
but use computationally intensive iterative algorithms [Ilin and Raiko, 2010,
Mazumder et al., 2010, Josse and Husson, 2012]. This makes the cross-validation
procedure difficult to use in practice even with a K-fold strategy.

As an alternative, we suggest three methods which strength is to select τ
and γ adapting to the signal W and the noise level σ2.

2.2.1 When σ is known

The first method seeks good `2-risk. The mean squared error MSE = E||Ŵ −
W||2, or risk, of the estimator Ŵ = UD̂VT depends on the unknown W and
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cannot be computed explicitly. However, it can be estimated unbiasedly using
Stein unbiased risk estimate (E(SURE) = MSE). For estimators that threshold
and skrink singular values, SURE still has a classical form with the residual sum
of squares (RSS) penalized by the divergence of the operator:

SURE = −NPσ2 + RSS + 2σ2div(Ŵ). (11)

However, the form of the divergence is not straightforward and Candes et al.
[2013, Theorem 4.3] showed that it has the following closed form expression:

div(Ŵ) =

min(N,P )∑
s=1

(
f ′i(λi) + |N − P |f

′
i(λi)

λi

)
+ 2

min(N,P )∑
t6=s,t=1

λif
′
i(λi)

λ2
s − λ2

t

,

where fi(λi) is the thresholding and shrinking function. The derivation of SURE
requires this function to be weakly differentiable in Stein sense, which means
differentiable except on a set of measure zero. This is for instance the case
for the soft-thresholding function used by Candes et al. [2013]. Likewise the
adaptive thresholding function (8) is differentiable on R except at λi = τ for
the range of interest γ ∈ [1,∞). Hence SURE for adaptive trace norm is

SURE(τ, γ) = −NPσ2 +

min(N,P )∑
s=1

λ2
s min

(
τ2γ

λ2γ
s

, 1

)
+ 2σ2div(Ŵτ,γ), (12)

where

div(Ŵτ,γ) =

min(N,P )∑
s=1

(
1 + (γ − 1)

τγ

λγs

)
· 1 (λs ≥ τ) + |N − P |max(1− τγ

λγs
, 0)

+2

min(N,P )∑
t6=s,t=1

λ2
s max(1− τγ

λγs
, 0)

λ2
s − λ2

t

.

A selection rule for τ ≥ 0 and γ ≥ 1 finds the pair (τ, γ) that minimizes the
bivariate function SURE(τ, γ) in (12). It is not computationally costly, unlike
cross-validation, but supposes the variance of the noise σ2 as known.

The second selection method is primarily driven by a good estimation of the
rank of the matrix W. The parameter that determines the estimated rank is
the threshold τ since any empirical singular value λi ≤ τ is set to zero by (8).
Inspired by the universal rule of Donoho and Johnstone [1994] and thresholding
tests [Sardy, 2013], we propose to use the (1−α)-quantile of the distribution of
the largest empirical singular value λ1 of X under the null hypothesis that W
has rank zero to determine the selected threshold. With α tending to zero with
the sample size, null rank estimation is guaranteed with probability tending to
one under the null hypothesis. Donoho and Johnstone [1994] implicitly used
level of order α = O(1/

√
logN) when N = P , so we choose a similar level

tending to zero with the maximum of N and P . This leads to the definition of
universal threshold for reduced rank mean matrix estimation:

τmax(N,P ) = σF−1
Λ1

(
1− 1√

log(max(N,P ))

)
, (13)
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where FΛ1
is the cumulative distribution function of the largest singular value

under Gaussian white noise with unit variance. We then select the shrinkage
parameter γ by minimizing SURE (12) in γ for τ = τmax(N,P ). In practice the
finite sample distribution of Λ1 of anN×P matrix of independent and identically
distributed Gaussian random variables N(0, 1) is known [Zanella et al., 2009] but
difficult to use. Thus, we simulate random variables from that distribution and
take the appropriate quantile to estimate τmax(N,P ) in (13). Alternatively, we
could use results of Shabalin and Nobel [2013], who derived the asymptotic
distribution of the singular values of model (1) based on results from random
matrix theory [Johnstone, 2001, Baik and Silverstein, 2006, Paul, 2007].

2.2.2 When σ is unknown

Both previous methods need as an input the noise variance σ2. In some applica-
tions such as image denoising [Talebi and Milanfar, 2013, Candes et al., 2013],
it is known or a good estimation is available. However, very often, this is not
the case and the formula (12) cannot be used as such. Inspired by generalized
cross validation [Craven and Wahba, 1979], we propose generalized SURE:

GSURE(τ, γ) =

∑min(N,P )
s=1 λ2

s min
(
τ2γ

λ2γ
s
, 1
)

(1− div(Ŵτ,γ)/(NP ))2
. (14)

Using a first order Taylor expansion 1/(1− ε)2 of (14), we get that GSURE ≈
RSS

(
1 + 2 div(Ŵτ,γ)/(NP )

)
; then considering the estimate of variance σ̂2 =

RSS/(NP ), one sees how GSURE approximates SURE (11).
The GSURE criterion has the great advantage of not requiring any input

value and can be applied straightforwardly to select both tuning parameters.

3 Simulations

3.1 Gaussian setting with large N and P

We compare the adaptive trace norm estimator to existing ones by reproducing
the simulation of Candes et al. [2013]. Here, matrices of size 200×500 are gener-
ated according to model (1) with four signal-to-noise ratios SNR ∈ {0.5, 1, 2, 4}
(calculated as one over σ

√
NP ) and two values for the rank R ∈ {10, 100}. For

each combination, 50 datasets are generated. We consider five estimators:

• Truncated SVD (TSVD). We use the common one with the true rank R
for (2) as well as the ones proposed by Donoho and Gavish [2014a] with
asymptotic MSE optimal choices of hard threshold τ = λ∗(

N
P )
√
Pσ when

σ is known, and τ = w(NP )median(λi) when σ is unknown. The values for

the coefficients λ∗(
N
P ) and w(NP ) are given in their Tables 1 and 4.

• Optimal shrinkage (OS) of Shabalin and Nobel [2013] and Gavish and
Donoho [2014] when σ is known as well as when σ is unknown as defined
in Section 7 of Gavish and Donoho [2014].

• Singular value soft thresholding (SVST) with τ selected to minimize SURE
[Candes et al., 2013] for (4), knowing σ.



Adaptive shrinkage of singular values 7

R SNR ATN TSVD OS Lower
GSURE τ bound

MSE
10 4 0.004 0.004 0.004 0.0012

100 4 0.037 0.409 0.335 0.0106
10 2 0.017 0.017 0.017 0.0024

100 2 0.142 0.755 0.606 0.0212
10 1 0.067 0.072 0.067 0.0048

100 1 0.454 1.000 0.892 0.0424
10 0.5 0.254 0.321 0.250 0.0097

100 0.5 0.978 1.000 0.994 0.0845
Rank

10 4 11 (1.8) 10 (0.0) 10 (0.0)
100 4 102 (1.7) 49 (1.2) 78 (0.7)
10 2 11 (1.4) 10 (0.0) 10 (0.0)

100 2 112 (2.8) 20 (1.6) 48 (1.3)
10 1 11 (1.3) 10 (0.0) 10 (0.0)

100 1 140 (4.3) 0 (0.0) 16 (1.6)
10 0.5 15 (1.6) 10 (0.0) 10 (0.0)

100 0.5 14 (7.6) 0 (0.0) 2 (1.2)

Table 1: Monte Carlo results in terms of mean squared errors (top) and rank
estimation with its standard deviation (bottom). R is the true rank (10 or 100)
and SNR is the signal-to-noise ratio. Three fully automatically estimators are
considered: adaptive trace norm (ATN) based on GSURE (14), truncated SVD
(TSVD) using τ = ω(0.4)median(λi) [Donoho and Gavish, 2014a] and optimal
shrinkage (OS) using the estimation for the noise variance [Gavish and Donoho,
2014]. The lower bound of Donoho and Gavish [2014b] is indicated. Sample size
is N = 200 individuals and number of variables is P = 500. Results correspond
to the mean over the 50 simulations. Best results linewise are indicated in bold.

• the 2-step estimator with the true rank R [Verbanck et al., 2013] for (7).

• Adaptive trace norm (ATN) with three selections of the two parameters
indexing a family of shrinkers. With σ known: SURE (12), and SURE
as a function of γ only (τ is set to the universal threshold (13)). With σ
unknown: GSURE (14).

We report in Table 1 and 2 the estimated mean squared error between the
fitted matrix Ŵ and the true signal W, and the estimated rank (the number
of singular values that are not set to zero). We also include the lower bound on
worst-case MSE for any matrix denoiser as given in Donoho and Gavish [2014b]
which can be used as a baseline. The standard deviations of the MSEs are very
small for all the estimators and vary from the order of 10−5 for high SNR to
10−3 for small SNR. Thus, the MSEs can be directly analysed to compare the
estimators. We indicate the standard deviations for the rank.

Table 1 reports the performance with no oracle information, while Table 2
is when some parameters are known, either the true rank or the true noise
variance. Comparing the two Tables allows to assess the performance loss by
having to estimate all parameters, like in most real life applications.

Looking at Table 1, we see that the proposed adaptive trace norm estimator
performs remarkably well, owing to its flexibility (with two parameters) and to
a good selection of the appropriate model with GSURE. It can even outperform
oracle estimators (in Table 2) that are governed by a single parameter. Here
GSURE results are very similar to its corresponding SURE results, showing that
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R SNR ATN TSVD OS SVST 2-steps
SURE universal R τ SURE

MSE
10 4 0.004 0.004 0.004 0.004 0.004 0.008 0.004

100 4 0.037 0.037 0.038 0.038 0.037 0.045 0.037
10 2 0.017 0.017 0.017 0.017 0.017 0.033 0.017

100 2 0.142 0.147 0.152 0.158 0.146 0.156 0.141
10 1 0.067 0.067 0.072 0.072 0.067 0.116 0.067

100 1 0.448 0.623 0.733 0.856 0.600 0.448 0.491
10 0.5 0.253 0.251 0.321 0.321 0.250 0.353 0.257

100 0.5 0.852 0.957 3.164 1.000 0.961 0.852 1.477
Rank

10 4 11 (1.6) 10 (0.0) 10 10 65 (2.3)
100 4 103 (1.9) 100 (0.0) 100 100 193 (0.8)
10 2 11 (1.0) 10 (0.1) 10 10 63 (2.2)

100 2 114 (2.2) 100 (0.0) 100 100 181 (1.1)
10 1 11 (1.2) 10 (0.0) 10 10 59 (1.7)

100 1 154 (1.8) 65 (0.8) 38 (0.6) 64 (0.7) 154 (1.2)
10 0.5 15 (1.6) 10 (0.0) 10 10 51 (2.7)

100 0.5 87 (3.3) 16 (0.8) 0 15 (0.8) 86 (2.6)

Table 2: Same setting as for the Monte Carlo simulations of Table 1. The same
estimators are considered, except that oracle quantities, either the true rank
R or the true variance σ2, are used. Considered estimators are: ATN with
two selection rules, SURE and universal, for the two parameters, assuming σ
is known; TSVD knowing true rank R and τ = λ∗(0.4)

√
500σ [Donoho and

Gavish, 2014a]; Optimal shrinkage (OS) with σ known [Gavish and Donoho,
2014]; singular value soft thresholding (SVST) with σ is known [Candes et al.,
2013]; two-steps knowing true rank R [Verbanck et al., 2013].

(14) is a good approximation to (11) thanks to a large value for NP . Figure 1
illustrates the striking ability of GSURE to approximate the true loss in different
regimes. On the top, the estimated risk of ATN GSURE is represented as a
function of (τ, γ) for R=10 and SNR=1 on the left (row 6 of Table 1) and for
R=100 and SNR=0.5 (last row of Table 1) on the right. On the bottom, the
true loss function is plotted as a function of τ and γ. The estimated values (top)
and the optimal choice (bottom) located by a cross are close.

Looking at Table 2, we see that when the SNR is high (equal to 4 and
2), the ATN, 2-step, TSVD (with R and τ) and OS estimators give results
in term of MSE of the same order of magnitude and clearly outperform the
SVST approach. When the SNR decreases, the TSVD, and the 2-step and OS
methods to a lower extend, collapse; this is when the SVST provides better
results especially for the difficult setting when the rank R = 100. The good
behavior of the 2-step approach in many situations highlights the fact that it is
often a good strategy to apply a different amount of shrinkage to each singular
value. These simulations provide good insights into the regimes for which each
estimator is well suited: low noise regime for the TSVD, moderate noise regime
for the 2-step, and high noise for the SVST. But, if one is interested in a single
estimator, regardless of the unknown underlying structure, then ATN becomes
the method of choice. Figure 2 illustrates the adaptation of ATN to various
SNR and rank by representing a typical shrinking and thresholding function
selecting (τ, γ) with SURE. As expected when SNR is 0.5, ATN is close to soft
thresholding, whereas when SNR is 4, it is close to hard thresholding.

As far as rank estimation is concerned, even if it is not the primary objective,
ATN gives a very good estimation of the rank and SVST considerably over-
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Figure 1: Top: Generalized Stein unbiased risk estimate (GSURE); Bottom:
corresponding true `2-loss. Both are plotted as a function of (τ, γ) for data
generated as in Table 1. Left: true rank R = 10 and signal to noise ratio
SNR = 1; Right: R = 100 and SNR = 0.5. The cross ’x’ points to the minimum
of the bivariate curve. Comparing columnwise, we see good fit between the
location of the minima, especially on the left.
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estimates. This phenomenon is also known in the setup of regression where the
lasso tends to select too many variables [Zou, 2006, Zhang and Huang, 2008].
Note that ATN using the universal threshold (column 2 of Table 2) was designed
for estimating the rank and indeed provided a very good estimate.

Finally, the results of TSVD and OS (oracle or not) when R = 100 are not as
competitive as when R = 10, because these methods are based on asymptotics
and assume low rank compared to matrix size. In addition, the MSEs are very
similar across both Tables for R = 10 whereas there are differences for R = 100
which indicates that the estimation of σ encounters difficulties.

The case SNR=0.5 and R=100 in Table 2 is also worth a comment. Here,
the data are so noisy that part of the signal is indistinguishable from the noise:
only 16 singular values are greater than the ones that would be obtained under
the null hypothesis that the rank of the N ×P matrix W is zero. Nevertheless,
ATN with SURE estimates on average a matrix of rank 87, which is quite
remarkable. In this situation, the same amount of shrinkage is applied to all the
singular values with soft thresholding (see that the selected γ̂ = 1 on Figure 2
in this situation) leading to the smallest MSE.

3.2 Non-Gaussian noise

The methods considered above are all based on the assumption of Gaussian
noise. We now assess their sensitivity to Student noise with 5 degrees of freedom,
based on the same simulations as for Table 1. We also considered a more difficult
situation with a matrix size divided by 10, that is N = 20 and P = 50. Figure 3
points to two noticeable consequences: the boxplots are more variable with
Student, yet centered around the same median, except for ATN with GSURE
that sees its efficiency drop when both N and P are small (bottom right).

3.3 Simulations based on a real small data set

We consider here a realistic simulation based on a wine dataset with N = 21
wines described by P = 30 sensory descriptors (the data are available in the R
package FactoMineR [Lê et al., 2008]). We used the fitted rank-R matrix as the
true signal matrix, and then added Gaussian noise to perform a Monte Carlo
simulation. Note that in practice, it makes sense to center the data before
using the estimators since the values are shrunk toward zero. On this small
sample case, we found the same trends as observed previously. As illustrated
in Figure 4 for a case with two levels of noise and R=8, the estimators often
manage to improve on the usual truncated SVD, the SVST fits well for high
noise regime and poor otherwise, and ATN remains very powerful. Note that
ATN with universal τ has results similar to those of the optimal shrinker (OS),
which provides an empirical interpretation of the OS estimator and highlights
the capability of ATN to find the optimal way to shrink the singular values.
Finally, GSURE, although still the best method among the blind estimators
(the last 3 estimators on the graphics) in term of median MSE, is more variable.
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Figure 3: MSE boxplots for R = 10 and SNR=1. Top: N = 200, P = 500;
bottom: N = 20, P = 50. Left: Gaussian; right: Student.
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Figure 4: Distribution of the MSE for the wine dataset simulations for R = 8.

4 Conclusions

Recovering a reduced rank matrix from noisy data is a hot topic that has aroused
the scientific community for a few years, as testified by the abundant recent liter-
ature on the subject. The adaptive trace norm estimator combines the strength
of the hard, soft and the two-step procedures by means of a shrinking and a
thresholding parameter indexing a family of shrinkers. The method adapts to
the data which ensures good estimation of both low rank and general signal
matrices, whatever the regime encountered in practice. The tuning parame-
ters are estimated without using computationally intensive resampling methods
thanks to the SURE and GSURE formulae. The latter version has the great
advantage of not requiring knowledge of the noise variance. In addition, the
rank is also estimated accurately, especially with the universal version designed
for it. Our method outperforms the competitors on simulations and thus can
be recommended to users.

We showed that Student noise affected the results, but other corruptions such
as strong outliers alter the performances of the estimators to a greater extent.
To tackle this issue, a natural extension could be to derive robust estimators
using for instance the robust Huber loss function ρ instead of the Frobenius
norm in (10). It leads to an estimator solution to

min
W∈RN×P

‖X−W‖ρ + α‖W‖∗,ω with ‖W‖∗,ω =

min(N,P )∑
i=1

ωidi, (15)
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where ‖H‖ρ =
∑N
i=1

∑P
j=1 ρ(hij) with

ρ(h) =

{
h2/2, |h| ≤ α̃
α̃|h| − α̃2/2, |h| > α̃

is the Huber loss with cutpoint α̃ [Huber, 1981]. Extending the results of Sardy
et al. [2001], we could rewrite (15) as

min
W,R∈RN×P ,

‖X−W−R‖2F + α‖W‖∗,ω + α̃‖R‖1 with ‖R‖1 =

N∑
i=1

P∑
j=1

|Rij |.

It would allow to solve the problem by block coordinate relaxation and could
be used as an alternative to the robust estimator of Candes et al. [2009].

Two others extensions should be considered. First, assessing our estimator
in a missing data framework as an alternative to iterative soft thresholding algo-
rithms [Mazumder et al., 2010]. Second, assessing our estimator to denoise inner
product matrices or covariance matrices as in [Ledoit and Wolf, 2012]. Finally,
we can mention the work of Hoff [2013] who suggested a Bayesian treatment of
Tucker decomposition methods to analyze arrays datasets. To better fit data,
he pointed to hierarchical priors learning the values of the hyper-parameters
from the data with an empirical Bayesian approach, which follows essentially
the same goal as our method.

The results are reproducible with the R code provided by the first author on
her webpage.
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