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Abstract

Abstract. This paper considers the problem of estimating the structure of multiple
related directed acyclic graph (DAG) models. Building on recent developments in exact
estimation of DAGs using integer linear programming (ILP), we present an ILP ap-
proach for joint estimation over multiple DAGs, that does not require that the vertices
in each DAG share a common ordering. Furthermore, we allow also for (potentially
unknown) dependency structure between the DAGs. Results are presented on both
simulated data and fMRI data obtained from multiple subjects.
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1 Introduction

This paper considers joint estimation of multiple directed acyclic graph (DAG) models us-
ing integer linear programming (ILP). Graphical models are multivariate models in which
vertices in a graph G represent random variables with edges between the vertices describing
conditional independence statements concerning the variables. In many settings the edge
structure of the graph is itself uncertain and then an important challenge is to estimate
this structure from data. There has been considerable research into structural inference for
graphical models over the last decade, including Bayesian networks (BNs; Friedman and
Koller, 2003; Ellis and Wong, 2008; He et al., 2013), Gaussian graphical models (GGMs;
Meinshausen and Bühlmann, 2006; Friedman et al., 2008) and discrete graphical models
(Loh and Wainwright, 2013). Many graphical models are based on DAGs and these are the
focus of this paper.

In many applications, data D(k) are collected on multiple units k ∈ {1, 2, . . . , K} that
may differ with respect to conditional independence structure, such that corresponding DAGs
G(k) may be non-identical. At the same time, when the units of study are related, the graphs
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G(k), while potentially non-identical, are expected to have similarities. It is then natural to
ask whether such similarity can be exploited by borrowing strength across the estimation
problems indexed by k and that is the aim of the present paper. Specifically we seek to
construct a joint estimator Ĝ(1:K) = Ĝjoint(D(1), . . . ,D(K)) that estimates a collection of

DAGs together. We contrast such an estimator with the independent estimator Ĝ(k) =
Ĝindep(D(k)) that estimates each DAG from the associated data only.

The best known class of DAG models are BNs, but more exotic DAG models exist (e.g.
Queen and Smith, 1993). BNs admit an extensive theory of inferred causation that has
contributed to their popularity (Pearl, 2009). Structure learning for individual BNs is a
well-studied problem, with contributions including Friedman and Koller (2003); Silander
and Myllymäkki (2006); Tsamardinos et al. (2006); Cowell (2009); Cussens (2010); Jaakola
et al. (2010); Yuan and Malone (2013). Structure learning is NP-hard, but an approach that
has attracted much recent attention is to cast maximum a posteriori (MAP) DAG estimation
as a problem in integer linear programming (ILP), as developed simultaneously by Cussens
(2010); Jaakola et al. (2010) and subsequently extended in Cussens (2011). In brief, this
approach solves a sequence of linear relaxations of the MAP estimation problem via the
introduction of cutting planes and combines this with a branch-and-bound search to produce
an optimal solution. If the algorithm terminates, the result is guaranteed to be a global
maximum of the posterior distribution and hence inherits theoretical guarantees associated
with the MAP estimator (see e.g. Chickering, 2003). (In this paper, algorithms with this
property are termed “exact”.) Coupled with powerful techniques from discrete optimisation
(Nemhauser and Wolsey, 1988; Wolsey, 1998; Achterberg, 2009), ILPs represent an efficient
and attractive methodology for structural inference, as demonstrated also by recent empirical
results (e.g. Sheehan et al., 2014). Recent advances in this area are discussed in Bartlett and
Cussens (2013).

The joint estimation of graphical models has recently received attention, for example
Danaher et al. (2014) put forward a penalised likelihood formulation that couples together
estimation for multiple (undirected) GGMs. However, joint estimation of multiple DAGs
has so far received relatively little attention. The first discussion of this problem that we
are aware of is Niculescu-Mizil and Caruana (2007); here a greedy search was used to locate
a local maximum of a joint Bayesian posterior. Werhli and Husmeier (2008) described a
Markov chain Monte Carlo (MCMC) method for sampling from a joint posterior over graph-
ical structures. However, the generic difficulties associated with stochastic search/sampling
in large discrete spaces are well known; these are exacerbated in the joint case by the size of
the joint model space and stochastic search/sampling remains challenging in this setting.

The focus of this paper is instead on exact, deterministic algorithms. Oyen and Lane
(2013) proposed an exact algorithm based on Bayesian model averaging and belief prop-
agation, under the strong assumption that an ordering of the variables 1, . . . , P applies
simultaneously to all units. At the same time Oates et al. (2014a) proposed essentially the
same algorithm, applied to the specific class of feed-forward dynamic BNs, where an ordering
of the variables is implicitly provided by the time index. The algorithmic contributions of
the present paper are two-fold. First, we show how to cast exact inference over multiple
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DAGs as an ILP problem. We consider MAP-Bayesian estimation for multiple DAGs and
require no restriction on the ordering of the variables. This is done by extending methodol-
ogy presented in Bartlett and Cussens (2013) to the case of multiple DAGs via a hierarchical
Bayesian formulation. Second, we exploit structural constraints that are imposed by the
DAGs in order to improve computational efficiency. As a illustrative example, our methods
currently allow estimation of 10 related DAGs, each with 10 nodes, in time typically less
than one minute on a standard laptop.

In addition, we extend previous work by allowing for dependencies between the DAGs
themselves and consider also estimation of this dependency structure. Previous work on
multiple DAGs has focused on the special case where the units are exchangeable and all
pairs of units undergo an equal amount of regularisation (including Werhli and Husmeier,
2008; Oates et al., 2014a). However, in practice, relationships between units (and their
underlying graphical models) may be complex, e.g. hierarchical, with group and sub-group
structure, and such structure may itself be subject to uncertainty. Oates and Mukherjee
(2014) performed exact inference for non-exchangeable feed-forward dynamic BNs for the
case where the relationships between units are known a priori. Oyen and Lane (2012)
addressed non-exchangeability in the context of general DAG models but did not provide an
exact algorithm and, again, assumed that the relationships between units are known at the
outset. Our approach provides a framework that allows for simultaneous learning of both
unit-specific DAGs and the dependency structure that relates them. However, our empirical
results suggest that such simultaneous learning may be extremely challenging in practice.

The remainder of the paper is organised as follows: Section 2 introduces a statistical
framework for multiple DAGs and discusses regularisation based on graphical structure.
Section 3 gives exact, ILP-based estimators for multiple DAGs. Section 4 presents a sim-
ulation study and results on fMRI data from a multi-subject study. Finally we close with
a discussion of directions for further research. A companion paper that explores the fMRI
application in more detail is available as Oates et al. (2014b).

2 A Statistical Model for Multiple DAGs

We begin by introducing the statistical model, deferring discussion of computation to the
next section. Throughout the shorthand 1 : P will be used to denote the list of integers
1, 2, . . . , P . A (directed) graph G on vertices 1 : P is characterised by a collection of sets
Gi, such that Gi ⊆ {1 : P} \ {i} contains precisely the parents of vertex i according to G.
We say G is acyclic if G contains no sequence of directed edges that begins and ends at the
same vertex. Write G for the space of all directed acyclic graphs (DAGs) with P vertices.
In this paper vertices i in a DAG G will be associated with random variables Yi. We will
use Y

(k)
i (n) to denote the nth observation of variable Yi for unit k and Y

(k)
π (n) to denote the

collection {Y (k)
i (n) : i ∈ π} of these variables.

3



2.1 MAP Estimation

We present our approach from a MAP-Bayesian perspective, but it could also be described
as a penalised likelihood approach. We consider DAG models for which the conditional dis-
tribution of the variables Y

(k)
1:P = Y

(k)
1:P (1 : N), given the DAG G(k) and associated parameters

θ
(k)
1:P = θ

(k)
1:P (1 : N), factorises as

p(Y
(k)
1:P |θ

(k)
1:P , G

(k)) =
P∏
i=1

N∏
n=1

p(Y
(k)
i (n)|Y (k)

G
(k)
i

(n),θ
(k)
i (n), G

(k)
i ). (1)

Here G
(k)
i denotes the parents of the ith variable in the DAG G(k) and Y

(k)

G
(k)
i

(n) are the

observed values of these parent variables in sample n. Additionally, θ
(k)
i (n) are parameters

associated with the conditional distribution for the ith variable that may depend on sample
index n, unit k and model G

(k)
i , though this latter dependence is suppressed in the notation.

The joint likelihood that we consider below follows from Eqn. 1 and the assumption that
the observations Y

(k)
1:P for each unit k are conditionally independent given the DAGs G(k)

and associated parameters θ
(k)
1:P . Specifically, we have that the full likelihood factorises over

units, variables and samples:

p(Y
(1:K)
1:P |θ(1:K)

1:P , G(1:K)) =
K∏
k=1

P∏
i=1

N∏
n=1

p(Y
(k)
i (n)|Y (k)

G
(k)
i

(n),θ
(k)
i (n), G

(k)
i ). (2)

For expositional simplicity, we take the number N of samples to be the same for each unit,
though this is not strictly required for our methodology. Within a Bayesian framework
we place a prior distribution p(θ

(k)
i |G

(k)
i ) over parameters θ

(k)
i , such that parameter sets

corresponding to units k and l are independent conditional upon the two DAGs G(k) and
G(l). Integrating out the unknown parameters provides the evidence in favour of the joint
model G(1:K) ∈ GK :

p(Y
(1:K)
1:P |G(1:K)) =

∫
p(Y

(1:K)
1:P |θ(1:K)

1:P , G(1:K))p(θ
(1:K)
1:P |G

(1:K))dθ
(1:K)
1:P (3)

Below we introduce our prior distribution over all DAGs G(1:K) ∈ GK that encodes the
notion of dependency that we wish to exploit during estimation. Write A for the space of
undirected networks on vertices 1 : K. The hierarchical prior that we propose factorises
along edges of a network A ∈ A whose K vertices correspond to the individual units:

p(G(1:K)|A) ∝

 ∏
(k,l)∈A

r(G(k), G(l))

×( K∏
k=1

m(G(k))

)
(4)

Here the first product ranges over all edges (k, l) in the network A. The (positive, symmetric)
function r(G(k), G(l)) is interpreted as a measure of regularity (i.e. similarity) between the
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G(1) G(2) G(3) G(K)G(K−1)

Y
(1)
1:P Y

(2)
1:P Y

(3)
1:P

. . .

Y
(K−1)
1:P Y

(K)
1:P

θ(1) θ(2) θ(3) θ(K)θ(K−1)

. . .

Network A

DAGs

Observations

Parameters

Figure 1: A hierarchical model for multiple directed acyclic graphs (DAGs), with relation-
ships between the DAGs encoded by an undirected network A (shown as edges at top of
figure). [Shaded nodes are unobserved. G(1:K) = latent DAGs, θ(1:K) = data-generating

parameters, Y
(1:K)
1:P = observations.]

DAGs G(k) and G(l); specific choices for this function are discussed in Section 2.2 below,
motivated by computational convenience in the sequel. The graph A indicates which pairs
of units have similar graphical structure (Fig. 1). For example, A may describe a time-
ordering of the units, such that consecutive units are expected to have more similar graphical
structures, or may indicate group membership within a mixture model. In most existing
literature an exchangeability assumption is placed on G(1:K) that corresponds (implicitly)
to specifying A as the complete network (Werhli and Husmeier, 2008; Oates et al., 2014a;
Danaher et al., 2014, etc.), though Oyen and Lane (2012); Oates and Mukherjee (2014)
considered general (known) forms for A. In this paper we allow for general and potentially
unknown A ∈ A. The remaining terms m(G(k)) are necessary for multiplicity correction and
are discussed in Section 2.3 below, again motivated by computational convenience in the
sequel.

Consider the MAP estimator under the multiple DAG prior:

Ĝ(1:K)|A := arg max
G(1:K)∈GK

p(G(1:K)|Y (1:K)
1:P , A) (5)

When A is the complete network all pairs of graphs are regularised equally and we refer to
this case as “exchangeable learning”. More generally, we consider the setting where A itself
is unknown. Then, we impose a prior distribution over A ∈ A (described below in Section
2.4) and estimate both the G(k)’s and A; we refer to this as “non-exchangeable learning” and
use the MAP estimator

(Ĝ(1:K), Â) := arg max
G(1:K)∈GK

A∈A

p(G(1:K), A|Y (1:K)
1:P ). (6)
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One of the main contributions of this paper, in Section 3, is to prove that for certain choices
of the regularity function r(G(k), G(l)) discussed below, both Ĝ(1:K)|A and (Ĝ(1:K), Â) are
characterised as the solutions to ILPs and hence are amenable to exact computation using
advanced techniques such as constraint propagation and cutting plane algorithms.

2.2 A Default Choice of Regularity Function

Below we discuss choices for the regularity function r(G(k), G(l)) that forms the basis for

the multiple DAG prior and captures similarity between DAGs G(k) and G(l). Write
+C
= for

equality up to an unspecified additive constant. The default choice that we consider for r is

log(r(G(k), G(l)))
+C
= −

P∑
i=1

P∑
j=1

λ
(k,l)
j,i [(j ∈ G(k)

i )⊕ (j ∈ G(l)
i )]. (7)

Here ⊕ is the logical XOR operator, [·] ∈ {0, 1} is an indicator associated with its (logical)

argument and the λ
(k,l)
j,i are (constant) penalty terms associated with the inclusion of the

edge (j, i) in exactly one of the DAGs G(k) and G(l). Combined with the default multiplicity
correction discussed below, the prior defined by Eqn. 7 is hyper-Markov with respect to any
DAG G(k) when G(l) is held fixed (Dawid and Lauritzen, 1993); we will see in Section 3 that
such priors permit a particularly simple construction of an ILP for the multiple DAG model.
For many scientific applications where graph structure represents a physical mechanism, Eqn.
7 can often be motivated from physical considerations. For example in neuroscience, an edge
in a graphical model may have the interpretation of physical or functional connectivity and
transfer of information between regions of the brain (so-called “reification”; e.g. Costa et al.,
2013).

A special case, that treats both units and edges as exchangeable, is the structural Ham-
ming distance (SHD) obtained by setting λ

(k,l)
j,i = λ ∈ [0,∞) ∀i, j, k, l in Eqn. 7. SHD has

previously been used to regularise between graphical models by Niculescu-Mizil and Caruana
(2007); Penfold et al. (2012); Oyen and Lane (2013); Oates et al. (2014a) and to integrate
prior knowledge into BNs by Acid and de Campos (2003); Tsamardinos et al. (2006); Perrier
et al. (2008); Hill et al. (2012). An extension of SHD with two degrees of freedom was also
considered in this context by Werhli and Husmeier (2008). The empirical results presented
in this paper focus on SHD due to its interpretability and simplicity, but the methodology
is compatible with the general form Eqn. 7 and the λ

(k,l)
j,i ’s could be used to encode prior

information on the similarity between units or the propensity for the presence of a particular
edge to be conserved between units.

2.3 A Default Choice of Multiplicity Correction

The function m(G) in the multiple DAG prior (Eqn. 4) is required to adjust for the fact that
the size of the space G grows super-exponentially with the number P of vertices (Consonni
and La Rocca, 2010). We follow Scott and Berger (2010) and control multiplicity using the

6



default binomial correction

m(G) =
P∏
i=1

mi(Gi), mi(π) =

(
P

|π|

)−1
[|π| ≤ dmax]. (8)

Here dmax is an upper bound on the (maximum) in-degree of G (such upper bounds are widely
used to control the computational intensity of structural inference). This specification has
the desirable property that the collective prior probability of all models with d predictors is
(1 + dmax)

−1, which is independent of both d and P .
We note that the methods presented in this paper are compatible with the inclusion of

additional terms in Eqn. 4 that encode specific informative priors on the DAGs G(k) but we
do not use such priors here.

2.4 A Default Choice of Hyper-prior

We use the following prior for the undirected graph A that encodes pairwise relationships
between the units 1 . . . K:

log(p(A))
+C
=

K∑
k=1

K∑
l=k+1

η(k,l)[(k, l) ∈ A]. (9)

(We adopt the convention that the adjacency matrix for A is upper triangular, hence k < l
above.) Here the η(k,l)’s encourage inclusion of the corresponding edges (k, l) in A and
could in principle be used to encode specific knowledge regarding similarity between the
units, although we do not pursue this direction here. In all empirical results below we
consider the simplest case of ∀k, l η(k,l) = η ∈ [0,∞). Then, η can be viewed as an inverse
temperature hyper-parameter, with larger values of η encouraging denser networks, which
in turn correspond to a greater amount of between-unit regularisation.

2.5 Elicitation of Hyper-parameters

All joint estimators for graphical models that we are aware of require tuning parameters (e.g.
the “fused” and “group” flavours of the joint graphical lasso each have two tuning parame-
ters; Danaher et al., 2014). Recalling that the DAGs G(1:K) give a probability model for the

observations Y
(1:K)
1:P , hyper-parameters in the priors above may be set using standard proce-

dures such as cross-validation or information criteria. Let φ denote all hyper-parameters to
be set. We recommend the use of information criteria for their computational convenience.
In particular, using the Akaike information criteria (AIC) we have

φ̂ = arg maxφ log p(Y
(1:K)
1:P |Ĝ(1:K)(φ))−

K∑
k=1

P∑
i=1

dim(θ
(k)
i |Ĝ

(k)
i (φ)) (10)

where dim(θ
(k)
i |G

(k)
i ) are the number of parameters required to specify the conditional dis-

tribution of Y
(k)
i given Y

(k)

G
(k)
i

. Thus the AIC requires only that we can obtain the MAP
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estimate Ĝ(1:K)(φ) over a range of values of the hyper-parameters φ, selecting the value that
maximises Eqn. 10. In contrast, cross-validation requires the marginal predictive likelihood
function p(Y ∗1:P |Y

(1:K)
1:P ) for held-out data Y ∗1:P , which for many models may require nontrivial

additional computation. We note that a grid search is necessary in the case of multiple tun-
ing parameters; sequential optimisation is not possible due to the non-orthogonality induced
by the joint prior p(G(1:K), A). For more complex joint priors/penalties this represents a
challenge that we do not address here.

3 Integer Linear Programs For Joint Estimation

We now consider the computational aspects of MAP estimation for the models introduced
above. We begin with the simpler case where the network A is known a priori and subse-
quently consider the more general unknown A case.

3.1 Exact Estimation of Multiple DAGs When A is Known

The methodology we present below extends the ILP formulation of Jaakola et al. (2010) to
multiple units via the inclusion of additional state variables that capture the similarities and
differences between the units. We begin by computing and caching the terms

p(Y
(k)
i |Y

(k)

G
(k)
i

, G
(k)
i ) =

∫
p(Y

(k)
i |Y

(k)

G
(k)
i

,θ
(k)
i , G

(k)
i )p(θ

(k)
i |G

(k)
i )dθ

(k)
i (11)

that summarise evidence in the data for the local model G
(k)
i for the ith variable in unit k.

These are available in closed form for many models of interest, including but not limited
to discrete BNs with Dirichlet priors (Heckerman et al., 1995), linear Gaussian structural
equation models with conjugate priors (Pearl, 2009) and multiregression dynamical models
(Queen and Smith, 1993). Since our approach is based upon these pre-computed quantities,
they could even be obtained numerically (for more complex models) using MCMC and related
techniques (e.g. Oates et al., 2014c,d). These cached quantities are transformed to obtain
“local scores”, defined as

s(k)(i, G
(k)
i ) := log(p(Y

(k)
i |Y

(k)

G
(k)
i

, G
(k)
i )) + log(mi(G

(k)
i )). (12)

These are the (log-) evidence from Eqn. 11 with an additional penalty term that provides

multiplicity correction over varying G
(k)
i ⊆ {1 : P} \ {i}.

We define binary indicator variables [G
(k)
i = π] that form the basis of our ILP. Here

π ⊆ {1 : P} \ {i} is used to denote a possible parent set for the ith variable in the DAG

G(k), so the information in the variables [G
(k)
i = π] completely characterises G(k). It will

be necessary to impose constraints that ensure these variables correspond to a well-defined
DAG: ∑

π⊆{1:P}\{i}

[G
(k)
i = π] = 1 ∀i, k (C1; convexity)
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Constraint (C1) requires that for each unit k, every vertex i has exactly one parent set (i.e.
there is a well-defined graph G(k)). To ensure G(k) is acyclic we require further constraints:∑

i∈C

∑
π⊆{1:P}\{i}
π∩C=∅

[G
(k)
i = π] ≥ 1 ∀k, ∅ 6= C ⊆ {1 : P}. (C2; acyclicity)

(C2) states that for every non-empty set C there must be at least one vertex in C that does
not have a parent in C. It is not challenging to prove (by contradiction) that (C1-2) exactly
characterise the space G of DAGs.

Next we define an indicator [j ∈ G(k)
i ] of the presence of each specific edge (j, i) in G(k).

This can be related to the parent set indicators as

[j ∈ G(k)
i ] =

∑
π⊆{1:P}\{i}

j∈π

[G
(k)
i = π] ∀i, j, k. (C3)

To decide whether units k, l agree on the presence or absence of a specific edge (j, i), we

introduce additional variables δ(k,l)(j, i) := [(j ∈ G(k)
i ) ⊕ (j ∈ G(l)

i )] where ⊕ is the logical
XOR operator. To encode this definition we use the set of linear inequalities

+δ(k,l)(j, i) −[j ∈ G(k)
i ] −[j ∈ G(k)

i ] ≤ 0 (C4.1)

−δ(k,l)(j, i) +[j ∈ G(k)
i ] −[j ∈ G(k)

i ] ≤ 0 (C4.2)

−δ(k,l)(j, i) −[j ∈ G(k)
i ] +[j ∈ G(k)

i ] ≤ 0 (C4.3)

+δ(k,l)(j, i) +[j ∈ G(k)
i ] +[j ∈ G(k)

i ] ≤ 2 (C4.4)

These inequalities are optimal in the sense that they define (in the most concise way) the
convex hull (in R3) of feasible solutions to the corresponding 3-variable XOR constraint

(Achterberg, 2007). Write x for a vector containing the binary variables [G
(k)
i = π], [j ∈ G(k)

i ]
and δ(k,l)(j, i), so that x ∈ X = {0, 1}q where q = O(KP2P ) +O(KP 2) +O(K2P 2). We can
now state our first result:

Result 1. The MAP estimate Ĝ(1:K)|A is characterised as the solution of the ILP

Ĝ(1:K)|A = arg max
x∈X

K∑
k=1

P∑
i=1

∑
π⊆{1:P}\{i}

s(k)(i, π)[G
(k)
i = π]−

∑
(k,l)∈A

P∑
i=1

P∑
j=1

λ
(k,l)
j,i δ(k,l)(j, i) (13)

subject to constraints (C1-4).

Note that under an in-degree restriction |π| ≤ dmax the dimensionality of the state space X
can be reduced from exponential in P to polynomial in P , specifically q = O(KP 1+dmax) +
O(KP 2) + O(K2P 2). It is seen that the dimensionality of X increases by a factor O(K)
when learning K DAGs jointly, as opposed to individually (assuming that the first term
dominates).
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Figure 2: Illustration of exchangeable learning on a small fMRI dataset consisting of mea-
surements of activity at 4 brain regions (nodes) in 3 subjects (rows). Structure learning
was performed using the proposed model for multiple DAGs with regularity parameter
λ ∈ {0, 0.1, 0.2, 0.3} (columns). For increasing λ the DAGs become progressively more
similar. MAP estimates Ĝ(1:3)|A are shown with A set equal to the complete network.

To illustrate the use of Result 1, consider a fixed network A that is equal to the complete
network (exchangeable learning) and regularisation based on SHD with hyper-parameter λ.
Fig. 2 displays the MAP Ĝ(1:K)|A computed (exactly) as a function of the regularity hyper-
parameter λ for a small fMRI dataset of 3 subjects containing measurements of activity in 4
neural regions. The first row, with λ = 0, is the result of performing independent estimation
on the 3 subjects to obtain MAP estimators for subject-specific DAGs. Notice that the
DAGs are quite dissimilar; the neuroscience context from which these data arise suggests
that this is most likely an artefact (i.e. due to variance in estimation). As the regularity
parameter λ is increased, the subject-specific DAGs become more similar until they are
eventually identical at λ = 0.3 and above. In simulation studies below we demonstrate that
this kind of exchangeable learning can lead to improved estimation of unit-specific graphical
structure.

3.2 Exact Estimation of Multiple DAGs When A is Unknown

The previous section addressed the case where the interdependency structure A among the
units was known. Below we formulate an ILP for the more general case where A is unknown
and must be estimated jointly with the unit-specific DAGs.

3.2.1 Exact Estimation of G(1:K) and A

We introduce additional binary indicator variables [(k, l) ∈ A] that directly encode those
edges that are present in the network A. Taking together the variables δ(k,l)(j, i) and [(k, l) ∈
A] allows us to determine whether or not an edge (j, i) differs between an unit k and its
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neighbour l in A. Specifically, we represent this information by defining a new binary variable
∆(k,l)(j, i) := [((j ∈ G(k)

i ) ⊕ (j ∈ G(l)
i ))&((k, l) ∈ A)] where & is the logical AND operator.

To encode this definition in an ILP we use the following set of linear inequalities

+∆(k,l)(j, i) −[(k, l) ∈ A] ≤ 0 (C5.1)

+∆(k,l)(j, i) −δ(k,l)(j, i) ≤ 0 (C5.2)

−∆(k,l)(j, i) +[(k, l) ∈ A] +δ(k,l)(j, i) ≤ 1. (C5.3)

The linear inequalities are again optimal, in the sense that they define (in the most concise
way) the convex hull (in R3) of feasible solutions (Achterberg, 2007). In this case we write
x for a binary vector that additionally contains the variables [(k, l) ∈ A] and ∆(k,l)(j, i), so
that x ∈ X = {0, 1}q with q larger than in the exchangeable setting, but with the same
asymptotic scaling. We can now state our second result:

Result 2. The MAP estimate (Ĝ(1:K), Â) is characterised as the solution of the ILP

(Ĝ(1:K), Â) := arg max
x∈X

K∑
k=1

P∑
i=1

∑
π⊆{1:P}\{i}

s(k)(i, π)[G
(k)
i = π] (14)

−
P∑
i=1

P∑
j=1

K∑
k=1

K∑
l=k+1

λ
(k,l)
j,i ∆(k,l)(j, i) +

K∑
k=1

K∑
l=k+1

η(k,l)[(k, l) ∈ A]

subject to constraints (C1-5).

The dimensionality of X can again be reduced from exponential in P to polynomial in P
through the adoption of an in-degree restriction.

3.3 An Efficient Computational Implementation

Our computational implementation is built on the C package GOBNILP that performs infer-
ence for individual DAGs (Bartlett and Cussens, 2013), available at http://www.cs.york.
ac.uk/aig/sw/gobnilp/. GOBNILP, originally described in Cussens (2011), computes the
MAP estimate on a per-unit basis; we therefore created an interface that interacts with
GOBNILP and enforces additional constraints (C3-5) that couple together multiple DAGs
as described above. Below we elaborate on how such an interface was constructed and sum-
marise additional optimisation routines that underpin associated computational efficiency in
the joint setting.

Since there are exponentially many acyclicity constraints (C2), GOBNILP does not con-
struct an integer program (IP) containing all of them. Instead, initially, only the convexity
constraints (C1) are included in an IP. GOBNILP then (exactly) solves the linear program
(LP) relaxation of the IP where integer variables are (temporarily) allowed to take any real
value within their bounds. This produces an LP solution x∗. Crucially, the LP solution
can be found very quickly. GOBNILP then searches for (C2) acyclicity constraints that
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x∗ violates and adds them to the IP. Linear constraints added in this way are known as
“cutting planes” since they ‘cut off’ the infeasible solution x∗. GOBNILP then solves the
linear relaxation of this new IP and looks for cutting planes for the new LP solution. This
process of solving linear relaxations and adding cutting planes is then repeated. Note that
the sequence of LP solutions produced in this way provide increasingly tight upper bounds
on the objective value of the MAP estimator.

It can happen that an LP solution represents well-defined DAGs (i.e. all variables have
integer values and the graphs they represent are each acyclic). In this case, the problem is
solved exactly, since any LP solution provides an upper bound on the objective function.
More typically (at least on larger problems) a fractional LP solution is generated that satisfies

all the constraints. In such a situation GOBNILP selects a fractional variable, e.g. [G
(k)
i = π],

to branch on, creating two subproblems, one where [G
(k)
i = π] = 0 (ruling out parent set π for

vertex i for unit k) and one where [G
(k)
i = π] = 1 (setting the parent set of vertex i for unit

k to be π). The GOBNILP algorithm is then applied recursively on both branches. When

an IP variable [G
(k)
i = π] is set to 1, GOBNILP performs constraint propagation by setting

to 0 those IP variables that indicate other parent sets for vertex i or parent set choices for
other vertices in the DAG that are no longer possible under the acyclicity constraints.

This approach to IP solving is known as “branch-and-cut” since both branching on vari-
ables and adding cutting planes are used. GOBNILP is implemented using the SCIP frame-
work due to Achterberg (2009). The basic GOBNILP algorithm described above has been
optimised in a number of ways: e.g. extra linear constraints are added to the initial IP
and additional cutting plane algorithms (some built into SCIP, some GOBNILP-specific)
are used. In addition, a heuristic algorithm (based on ‘rounding’ the current LP solution)
is used to generate ‘good’ but probably sub-optimal DAGs. This can help prune the search
tree produced by branching on variables (but does not affect exactness of the algorithm).
See Bartlett and Cussens (2013) for further details.

For joint estimation we constructed an interface for GOBNILP that interlaces with
SCIP to include additional constraints that couple together estimation problems for mul-
tiple DAGs. In practice (C4) are implemented using SCIP’s XOR constraint handler. This
handles any constraint of the form r = x1 ⊕ x2 ⊕ · · · ⊕ xn where r, xi ∈ {0, 1} and the
constraint is satisfied if either r = 1 and an odd number of the xi are 1, or r = 0 and an
even number of the xi are 0. We set 0 = δ(k,l)(j, i)⊕ [j ∈ G(k)

i ]⊕ [j ∈ G(l)
i ]. SCIP generates

these inequalities internally and also provides a propagator for XOR constraints; in the sim-
plest case, as soon as any two of δ(k,l)(j, i), [j ∈ G(k)

i ] and [j ∈ G(l)
i ] have their values fixed

then SCIP will immediately fixed the value of the third appropriately. Similarly (C5) are
implemented using SCIP’s AND constraint handler. This handles any constraint of the form
r = x1&x2& . . .&xn, where r, xi ∈ {0, 1}. We set ∆(k,l)(j, i) = [(k, l) ∈ A]&δ(k,l)(j, i). SCIP
provides a propagator for AND constraints that works analagously as for XOR constraints.

A naive implementation of our methodology can be quite effective, but with some ad-
ditional consideration we can reduce computational effort by about an order of magnitude.
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P = 4 8 12
K = 4 232/4 1,488/14 4,536/503

8 656/5 3,872/419 11,184/∗
12 1,272/10 7,152/7,992 19,944/∗

(a) Exchangeable Learning

P = 4 8 12
K = 4 310/1 1,830/59 5,334/89

8 1,020/9 5,468/30,112 14,908/∗
12 2,130/17 10,914/193,047 28,722/∗

(b) Non-exchangeable Learning

Figure 3: Worst-case analysis: Length q of the binary state vector (after pre-solving; Ma-
hajan, 2010) / solving time (in seconds), for a single ILP with P vertices and K units.
[Here an in-degree restriction dmax = 2 was used and local scores s(k)(i, π) were generated
independently from N(0, 1), leading to very many DAG models attaining similar posterior
probabilities. An asterisk ∗ is used to indicate an “out of memory” error, due to an in-
tractable number of branches in the search tree. All simulations were performed on a single
core CPU @ 3GHz with 3877MB RAM.]

Specifically, we introduce additional (redundant) constraints

[j ∈ G(k)
i ] +

∑
π⊆{1:P}\{i}

j /∈π

[G
(k)
i = π] = 1 ∀i, j, k. (C6; efficiency)

These do not change the definition of the ILP, since intuitively (C6) states that if the edge

(j, i) is present in G(k) then the parent set G
(k)
i for vertex i must contain the vertex j, which

is trivially true. Nevertheless the inclusion of (C6) can greatly reduce search time in practice
since it allows for more effective propagation. This is because when (C6) are included then

the edge-indicators [j ∈ G(k)
i ] become particularly good variables to branch on, producing a

more balanced and consequently smaller search tree.
In this work we restricted attention to the MAP estimator, but the GOBNILP software

and our interface allow efficient computation of the top n solutions to the ILP, that is the n
best joint estimates of the DAGs, along with their associated values for the objective function
(and hence Bayes factors). The interfacing software is written for MATLAB R2014b and is
provided in the supplementary materials.

4 Applications

In this Section we investigate the performance of the proposed joint estimators, using sim-
ulated data and data from a neuroscience study. In all examples, we restrict attention to a
single regularity hyper-parameter λ and a single density hyper-parameter η.

4.1 Simulation Study

The performance of structure learning algorithms for graphical models can be quantified in
many ways (e.g. Peters and Bühlmann, 2014; Oates et al., 2014e). Structural estimation
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can be viewed as a binary classification task on individual edges and performance can be
measured by the Matthews correlation coefficient (MCC) which is popular in scenarios where
the number of negative samples (i.e. non-edges) can out-weigh the number of positive samples
(i.e. edges).

All experiments below were repeated 10 times based on independently generated datasets.
In order to generate multiple related DAGs we employed a MCMC sampling scheme that
targets the multiple DAG prior p(G(1:K)|A). Metropolis-Hastings proposals that switch the
status (i.e. present or absent) of an edge (selected uniformly at random) within a unit (se-
lected uniformly at random), subject to DAG constraints, achieved an average acceptance

probability of 83%. Then, conditional on a DAG G(k), we simulated data Y
(k)
1:P . This could

be achieved using essentially any likelihood model and in principle this choice will affect
the properties of our estimators. We therefore took the simplest approach of directly sim-
ulating the evidence terms (Eqn. 11) from log-normal distributions. Full pseudocode and
convergence diagnostics are provided in the supplementary materials.

We emphasise that the multiple rounds of estimation performed in the simulation study
below preclude comparison with more computationally intensive approaches such as Werhli
and Husmeier (2008). On the other hand, methods that require a shared ordering of the
variables such as Oyen and Lane (2013); Oates and Mukherjee (2014) do not apply in this
general setting. In all experiments below we select hyper-parameters using a brute-force grid
search over the (coarse) grid λ ∈ {0, 1

2
, 1, 2,∞}, η ∈ {0, 1

2
, 1, 2,∞}. That is, we solve up to

25 ILPs for each evaluation of the AIC-based estimator. These candidate values for hyper-
parameters were deliberately chosen to match the scale of the simulated data, as explained
in the supplementary material. In practice the combinations of hyper-parameters that yield
poor estimates (i.e. low AIC) tend to correspond to ILPs that are quickly solved, so that
this grid search does not substantially affect computational complexity. To establish an
(approximate) upper bound on the computational time required to evaluate our proposed
estimators, we generated scores s(k)(i, π) independently from N(0, 1), leading to very many
DAG models attaining similar posterior probabilities. This is a “worst case scenario” for the
ILP solver, in the sense that maximum effort is required to distinguish between the models.
An indication of these upper bounds on the computational times for a single ILP solve
is provided in Fig. 3. It is seen that the operating range of our procedure is restricted to
approximately P,K ≤ 10, though in practice the worst-case scenario is unlikely to be realised
and it may be possible to solve larger problems (this is highly dependent on the values taken
by the local scores). We make two further observations: Firstly, in the exchangeable case
with P = 12, K = 8 the program was terminated due to insufficient RAM. However the
current best solution up to that point achieved an objective value of 71.49 and the upper
bound provided by the ILP was 93.31. This ability to provide a sure upper bound enables
a heuristic MAP search for more challenging problems (though in the sequel we considered
only exact solutions). Secondly, although the non-exchangeable case with P = 8, K = 12
required 193,047 seconds to terminate (about 54 hours), the MAP estimate was actually
found after 31,020 seconds (16% of the total time), with the remaining time used to confirm
that this was indeed the MAP. This suggests that computational time could be reduced if
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Figure 4: Exchangeable learning of multiple DAGs. [In regime (i) the data-generating DAGs
satisfy an exchangeability assumption. In regime (ii) the data-generating DAGs strongly
violate exchangeability (see main text for details). Here P is the number of variables, K is the
number of units, MCC is the Matthews correlation coefficient and λtrue is the data-generating
regularity parameter. Horizontal lines are the median MCC achieved under independent
inference. For fair comparison the same 10 datasets were subject to estimation using each
of the three approaches; these are shown as dashed lines.]

we are willing to sacrifice the guarantee of exactness.
Exchangeable learning: Firstly we considered the case where the network A (that de-

scribes relationships between the units k) is fixed equal to the complete network (exchange-
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able learning). We focussed on two distinct data-generating regimes: (i) The data-generating
process has A complete with related but non-identical DAGs, and (ii) the data-generating
process has A as two disconnected complete components of equal size and therefore DAGs
more similar within each component than between components. Regime (i) employs ex-
changeable learning in a favourable setting where information is shared between all DAGs,
whilst regime (ii) employs exchangeable learning in an unfavourable setting, where the as-
sumption of exchangeability is violated. Results for regime (i) in Fig. 4 (a-d) demonstrate
that substantially improved performance is achieved by the proposed joint estimators com-
pared with independent estimation. We also compared against the pooled estimator that
requires all DAGs to have identical structure - a crude form of information sharing. Results
showed that this “Same DAG” estimator performed worse in general than inference based
on hyper-parameters selected using AIC, as expected. The same datasets were employed
for each estimator, indicated by dashed lines, to ensure a fair comparison. Results from
regime (ii) in Fig. 4 (e-f) show that, despite the exchangeability assumption being violated,
exchangeable learning remains competitive with independent estimation, but “Same DAG”
performs poorly, as expected.

Non-exchangeable learning: Secondly we considered the case where the network A
is unknown and must be learned along with the unit-specific DAGs G(1:K). In general the
data-generating A could have any topology; we again focussed on the two distinct regimes
described above. Regime (i) aims to examine the loss of statistical efficiency that results from
employing non-exchangeable learning when exchangeable learning would be more suitable,
whilst regime (ii) explores the challenging case where the unknown A is highly informative, so
that the loss of information that comes from not knowing A is greatest. Results for regime (i)
in Fig. 5(a-b) demonstrate that, despite being extremely general, non-exchangeable learning
still achieves improved estimation compared to both independent inference and the Same
DAG estimator. For regime (ii), shown in Fig. 5(c-d), we see that estimation is more
challenging. Indeed the gains in performance compared with independent estimation were
small, perhaps reflecting the increased difficulty of jointly learning both G(1:K) and A. (As
before, the Same DAG procedure performed poorly in regime (ii).)

For regime (ii) it is interesting to ask whether the network A is itself accurately esti-
mated; results indicated that A is not well estimated, with the MAP network Â typically
being equal to the complete network. Results in Fig. 6 compare the ability to estimate G(1:K)

with the ability to estimate A, showing that A was typically more difficult to estimate com-
pared with the unit-specific DAGs G(1:K). This may explain why we do not see substantive
gains over independent estimation in the non-exchangeable case, with performance similar
to exchangeable learning. The difficulty in estimating A is perhaps unsurprising: A is latent
for the DAGs G(1:K) that are themselves latent, so that the “doubly latent” A may be only
weakly identifiable. Thus, while DAG estimation results in the unknown A formulation seem
at worst competitive with the simpler exchangeable set-up, we would recommend caution in
interpreting the estimate Â itself.

16



0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Independent Proposed Same DAG

P = 5, K = 4
M

C
C

(a) Regime (i); P = 5, K = 4, λtrue = 0.65

0.4

0.5

0.6

0.7

0.8

0.9

Independent Proposed Same DAG

P = 5, K = 8

M
C

C

(b) Regime (i); P = 5, K = 8, λtrue = 0.3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Independent Proposed Same DAG

P = 5, K = 4

M
C

C

(c) Regime (ii); P = 5, K = 4, λtrue = 0.65
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Figure 5: Non-exchangeable learning of multiple DAGs. [In regime (i) the data-generating
DAGs satisfy an exchangeability assumption, whereas in regime (ii) the data-generating
DAGs violate exchangeability (see main text for details). Here P is the number of variables,
K is the number of units, MCC is the Matthews correlation coefficient and λtrue is the
data-generating regularity parameter. Horizontal lines are the median MCC achieved under
independent inference. For fair comparison the same 10 datasets were subject to estimation
using each of the three approaches; these are shown as dashed lines.]

4.2 MDMs for Neural Activity in a Multi-Subject Study

We illustrate the methodology by analysing data from a functional magnetic resonance imag-
ing (fMRI) experiment. Graphical models are widely used to represent neural connectivity in
such studies and it is typical for fMRI experiments to involve multiple subjects. A statistical
analysis should therefore take into account not only the interaction between areas of one
brain but also the similarities and differences among subjects (Mechelli et al., 2002). For
instance, using fMRI data derived from a writing experiment Sugihara et al. (2006) showed
that the communication pattern among brain regions may be subject-specific, while Li et
al. (2008) argue that the causal relations between brain regions can vary in disease states
according to the severity of the disease. We analysed a small fMRI dataset consisting of
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Figure 6: Comparing estimation of unit-specific DAGs G(1:K) with estimation of the network
A that describes relationships between units. [Data were generated from regime (ii),where
the DAGs violate exchangeability (see main text for details), with P = 5, K = 8. For clarity
we fixed hyper-parameters λ, η to values appropriate for the data-generating process. MCC
is the Matthews correlation coefficient, computed for both the DAGs G(1:K) and the network
A.]

six unrelated subjects from the Human Connectome Project (Van Essen et al., 2013). Data
were acquired on each subject while they were in a state of quiet repose and preprocessed
to obtain 10-dimensional time series representing the activity levels at 10 regions in each
subject. The specific application is discussed in greater detail in the companion paper Oates
et al. (2014b).

The interactions (or connections) among different cerebral areas are usually studied
through causal DAG models (Friston, 2011; Poldrack et al., 2011). Here we use the mul-
tiregression dynamical model (MDM) for fMRI data developed by Costa et al. (2013), in
which edges denote direct contemporaneous relationships that might exist between nodes
and the connections are represented by parameters that vary over time. Thus MDMs are a
generalisation of classical “static” BNs but, unlike BNs, are fully identifiable (i.e. the equiv-
alence classes are singletons). The MDM is defined on a multivariate time series that aims to
identify the causal structure among the variables over time (Queen and Smith, 1993; Queen
and Albers, 2009). In the MDM that we consider, a multivariate model for observable series

Y
(k)
1:P (n), for subject k at time n is characterised by a contemporaneous DAG, with informa-

tion shared across time only through evolution of the model parameters θ
(k)
i (n). Formally,

this model is described by the following observation equations and system equations:

Y
(k)
i (n) = Y

(k)

G
(k)
i

(n)Tθ
(k)
i (n) + ε

(k)
i (n), ε

(k)
i (n) ∼ N(0, V

(k)
i (n)) (15)

θ(k)(n) = Γ(k)(n)θ(k)(n− 1) + w(k)(n), w(k)(n) ∼ N(0,W(k)(n)) (16)
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where θ(k)(n)T = (θ
(k)
1 (n)T , . . . ,θ

(k)
P (n)T ) is the concatenated parameter vector and V

(k)
i (n),

Γ(k)(n), W (k)(n) must be specified. The equations of the MDM can be viewed as a collection
of nested univariate linear models, allowing the parameters to be estimated using well-known
Kalman filter recurrences over time. We refer the reader to Costa et al. (2013) for further
details regarding prior specification and computation of the local scores in this setting.

Independent learning: First, we applied independent estimation to each of the 6
subjects, with results shown in Fig. 7 (top). These results are unsatisfactory on neurological
grounds since it is anticipated that connectivity does not change grossly between subjects.

Exchangeable learning: Next, we inferred DAGs G(1:K) under an exchangeability
assumption, for various values of the regularity hyper-parameter λ (Fig. 7), subjectively set
to λ = 4. (Alternative approaches to set λ include AIC, as described above, or exploiting
technical replicate data and examination of Bayes factors, as discussed at length in Oates et
al. (2014b)).

Non-exchangeable learning: Based on λ = 4 we performed non-exchangeable learning
in order to estimate similarities and differences between the 6 subjects in terms of their
neural connectivity. Specifically, we estimate a network A on these 6 subjects, based on
various values of the density hyper-parameter η. Results, shown in Fig. 8, indicate that
at η = 60, subjects 1 and 4, 2 and 3, and 5 and 6 exhibit the most similar graphical
structures. Non-edges (k, l) /∈ A in the network A imply differences in the subjects’ graphical
structure; such information may therefore be used to identify subjects with particularly
aberrant connectivity for further scientific investigation. Going further, we see that subjects
5 and 6 are perhaps the most unusual, being totally disconnected from subjects 1 to 4 in
the network A when η = 70. However, we recommend caution in interpreting Â, due to the
difficulty in estimation that we observed in simulations. We note also that η can also be
elicited based on Bayes factors, as discussed in Oates et al. (2014b).

Further analysis and interpretation of these results can be found in the companion paper
Oates et al. (2014b). We emphasise that this analysis is exploratory and not confirmatory,
but could be used to generate hypotheses for further experimental investigation.

5 Discussion

This paper introduced a general statistical framework for joint estimation of multiple DAGs.
We considered regularisation based on graphical structure and showed how MAP estimators
in this setting could be characterised as the solutions to ILPs that admit efficient exact
algorithms based on branching-and-cutting as well as constraint propagation. We believe
these are the first exact algorithms for the general case of multiple general DAG models (i.e.
with no restriction on ordering of the variables). In our general framework for joint learn-
ing, we allowed also for dependence between the units themselves, that generalises previous
exchangeable formulations. Results obtained both from simulations and from an application
in neuroscience demonstrate that joint estimation of DAGs can offer increased statistical
efficiency relative to independent estimation. However we observed that the relationships
between the units themselves were difficult to estimate from data.
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Figure 7: Neuroscience data; exchangeable learning. [Here we simultaneously estimate
subject-specific DAGs for different values of the regularity hyper-parameter λ.]

In the neuroscience application we illustrated how sophisticated likelihood models such as
MDMs can be used within our framework. Importantly, our methodology requires only that
local scores are pre-computed and cached; it is therefore possible to apply exact algorithms
retrospectively, following independent analyses of individual datasets, without the need to
recompute local scores. In practice we anticipate that the rationale and appropriateness of
joint modelling will need be assessed by domain experts on a case-by-case basis.

Our computations were performed using the GOBNILP package (Bartlett and Cussens,
2013), that includes sophisticated routines for estimation of individual DAGs (see supple-
mentary materials). Nevertheless our simulation results for large numbers P of variables
and K of units required considerable computational time (in a worst-case scenario). It is
becoming commonplace in many applications for the number of units to become very large.
It remains to be seen whether our approach can scale up to larger problems. Recent work
where GOBNILP was able to find MAP DAGs with 1614 nodes in between 3 and 42 minutes
are encouraging (Sheehan et al., 2014). In practice, as discussed in Bartlett and Cussens
(2013), it is very hard to estimate the time required to solve an ILP in advance; rather
this depends in a highly non-trivial way on the details of the problem and is related to the
“phase-transition” in SAT solving.

We note that the results of this paper are based on the ILP framework of Jaakola et
al. (2010) for individual DAGs. An alternative ILP formulation, known as “characteristic
imsets”, was proposed by Studený et al. (2010) specifically for BNs. Characteristic imsets
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Figure 8: Neuroscience data; non-exchangeable learning. [Here we simultaneously estimate
both subject-specific DAGs and the network A that relates subjects. The regularity hyper-
parameter λ = 4 was fixed whilst the density hyper-parameter η was varied.]

are closely related to the essential graph of a BN (Pearl, 2009) and have the property that
Markov-equivalent BNs are score equivalent. In contrast, the approaches we pursued in-
volved a non-unique representation of the essential graph. This flexibility is important when
dealing with general DAG models including MDMs, that are uniquely identifiable from data,
but are less natural in the context of BNs. At present, the computational performance of
characteristic imsets on individual BNs is inferior to the approach of Jaakola et al. (2010)
pursued here (Studený and Haws, 2013). In addition it is currently unclear how prior struc-
tural information might be incorporated into that framework. On a related note, it would
be interesting to design a joint version of the well-known PC algorithm (Spirtes et al., 2000)
that complements score-based estimation.

Interesting extensions include:

1. Information sharing for parameters. In many applications it is reasonable to
assume similarity of parameter values θ

(k)
1:P between units. At present this appears
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to be challenging to include within our framework and represents an area for further
research.

2. Computation. The applications discussed in this paper were performed on a single
CPU and limited in computational intensity to approximately P,K ≤ 10. Since many
emerging datasets, not least in biomedical applications, contain many more variables
P and many more units K than we considered here, it would be interesting to investi-
gate strategies for parallel and/or approximate computation that scale better to such
regimes. In the other direction, our methodology applies to complex local scores that
may be estimated numerically; it would be interesting to gain a theoretical understand-
ing of how any uncertainty in the estimates for the local scores would impact on the
MAP estimators described here.

3. New statistical models. By fixing the network A in our general framework we can
obtain a number of interesting statistical models: (i) Taking A to be a chain allows
us to associate units with a temporal ordering and thereby model time-evolving DAG
structures. (ii) Introducing auxiliary DAGs G(K+1:K+L) and enforcing A to be bipartite
on the partition of auxiliary/non-auxiliary DAGs produces a mixture model for DAGs,
such that each latent DAG is a graphical summary of the various DAG structures
within its cluster. (iii) Extending this idea, with λ → ∞ we recover a mixture model
for DAGs similar to Thiesson et al. (1998). These possibilities are currently being
explored, with preliminary results for mixture models presented in Oates et al. (2014b).
Preliminary indications suggest that imposing additional restrictions on A in this way
may serve to improve the identification of higher-order structure. More generally, it is
straightforward to extend our methods to the case of decomposable undirected models
by imposing additional constraints that rule out immoralities.

Supplementary Materials: The supplementary materials include additional a discus-
sion of the simulated data and the actual code used to produce the results herein.
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Supplementary Text

In simulations we sampled the network A directly from the prior p(A) and then sampled
DAGs G(1:K) from the prior conditional p(G(1:K)|A) using discrete-state-space MCMC. Lines
2-12 in Algorithm 1 provide pseudo-code for the Metropolis-Hastings scheme that was em-
ployed. Fig. 9 contains supporting convergence diagnostics.

As explained in the main text, the local likelihood p(Y
(k)
i (n)|Y

G
(k)
i

(n),θ
(k)
i (n), G

(k)
i ) is

arbitrary and its choice may influence the properties of the joint estimators that we wish to
study. We therefore took the most default approach of directly simulating the evidence terms
p(Y

(k)
i |Y

(k)

G
(k)
i

, G
(k)
i ) in Eqn. 11 from log-normal distributions. In this way we hope to obtain

results that apply quite generally, without the potential for likelihood-specific anomalies.
For the AIC we assumed that dim(θ

(k)
i |G

(k)
i ) = |G(k)

i | so that each edge is associated with
one free parameter as in, for example, a linear structural equation model.

Specifically, we appealed to the intuition that in many applications only a subset of models
will be supported by data. We therefore generated the log-evidence terms independently
according to the mixture model 100−α

100
×δ(−∞)+ α

100
×N(0, 1), whilst the log-evidence of the

true data-generating model was always simulated from N(0, 1). This ensures that the score
s(k)(i, π) of the data-generating model belongs on average to the top α% of all scores, whilst
allowing us to discard (1− α)% of all models and thereby reduce the computational burden
in this simulation study. All simulations were based on a value α = 15. To further mediate
computational complexity we imposed an in-degree restriction dmax = 2 for all simulation
experiments; this could be relaxed at additional computational effort. (Note that in the
“worst case” simulations in the main text, all models were assigned log-scores from N(0, 1).)

In principle, suitable values for the hyper-parameters will scale with both P and K. To
mitigate this effect and to allow us to employ the same candidate values λ ∈ {0, 1

2
, 1, 2,∞},

η ∈ {0, 1
2
, 1, 2,∞} in each experiment, we rescaled the local scores s(k)(i, π) by a factor of

K−1P−1. Full pseudo-code for the simulation of the local scores s(k)(i, π) is provided in lines
13-24 of Algorithm 1.



Algorithm 1 Generation of simulated data. (Inputs: P = number of variables; K = number
of units; A = network; dmax = in-degree restriction)

1: procedure [G(1:K), s(1:K)(1 : P, π ⊆ {1 : P})] = Simulate(P ,K,A,dmax)
2: Initialise G(1:K).
3: for i = 1 : 20× P 2K2 do . Use 20× P 2K2 Monte Carlo iterations.
4: k ∼ U({1 : K}). . Select a unit k.
5: (j, i) ∼ U({1 : P} × {1 : P}). . Select a pair (j, i) of variables.
6: H(1:K) ← G(1:K).
7: H(k)(j, i)← 1−H(k)(j, i). . Swap the status of the edge (j, i) in unit k.

8: r ← p(H(1:K)|A)[isDAG(H(k))][|H(k)
i | ≤ dmax]/p(G

(1:K)|A).
9: if U(0, 1) < r then . Metropolis-Hastings accept/reject step.
10: G(1:K) ← H(1:K).
11: end if
12: end for
13: for k = 1 : K do
14: for i = 1 : P do
15: for π ⊆ {1 : P} \ {i} s.t. |π| ≤ dmax do

16: if π = G
(k)
i then

17: s(k)(i, π) ∼ N(0, 1)− log
(
P
|π|

)
. . Simulate values for the local scores.

18: else
19: s(k)(i, π) ∼ 100−α

100
× δ(−∞) + α

100
×N(0, 1)− log

(
P
|π|

)
.

20: end if
21: s(k)(i, π)← 1

KP
s(k)(i, π). . Scale-adjust for hyper-parameters.

22: end for
23: end for
24: end for
25: end procedure
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Figure 9: Simulated data: Convergence diagnostics for sampling DAGs, based on P = 10
variables and K = 10 units. (a) MCMC trace plot for the total SHD between units. [Here
A is taken equal to the complete network.] (b) Autocorrelation function for the total SHD
between units, corresponding to the trace plot of (a).
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