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Abstract

In truncated polynomial spline or B-spline models where the covariates are measured with error, a 

fully Bayesian approach to model fitting requires the covariates and model parameters to be 

sampled at every Markov chain Monte Carlo iteration. Sampling the unobserved covariates poses a 

major computational problem and usually Gibbs sampling is not possible. This forces the 

practitioner to use a Metropolis–Hastings step which might suffer from unacceptable performance 

due to poor mixing and might require careful tuning. In this article we show for the cases of 

truncated polynomial spline or B-spline models of degree equal to one, the complete conditional 

distribution of the covariates measured with error is available explicitly as a mixture of double-

truncated normals, thereby enabling a Gibbs sampling scheme. We demonstrate via a simulation 

study that our technique performs favorably in terms of computational efficiency and statistical 

performance. Our results indicate up to 62 and 54 % increase in mean integrated squared error 

efficiency when compared to existing alternatives while using truncated polynomial splines and B-

splines respectively. Furthermore, there is evidence that the gain in efficiency increases with the 

measurement error variance, indicating the proposed method is a particularly valuable tool for 

challenging applications that present high measurement error. We conclude with a demonstration 

on a nutritional epidemiology data set from the NIH-AARP study and by pointing out some 

possible extensions of the current work.
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 1 Introduction

Nonparametric regression problems where the covariates are measured with error have 

received considerable attention in the statistics literature. Carroll et al. (1999) proposed a 

Correspondence to: Anindya Bhadra, bhadra@purdue.edu.

HHS Public Access
Author manuscript
Stat Comput. Author manuscript; available in PMC 2016 July 12.

Published in final edited form as:
Stat Comput. 2016 July ; 26(4): 827–840. doi:10.1007/s11222-015-9572-7.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



semi-parametric estimator based on the SIMEX method of Cook and Stefanski (1994) and a 

parametric estimator assuming that the unobserved covariates can be represented via a 

mixture of normals. Carroll et al. (2004) established important identifiability results for 

estimating the model parameters under mild conditions. In related developments in a 

Bayesian framework, Berry et al. (2002) established a fully Bayesian approach to fit spline 

models to measurement error problems as an attractive computational alternative to the 

SIMEX-based approach of Carroll et al. (1999) and the iterative conditional modes (ICM) 

approach of Besag (1986). In simulations, the Bayesian approach of Berry et al. (2002) 

demonstrated marked performance improvement over competing methods. Carroll et al. 

(2004) and Ganguli et al. (2005) extended the Bayesian approach presented by Berry et al. 

(2002). Detailed discussion on software implementation for fitting Bayesian penalized spline 

models can be found in Crainiceanu et al. (2005).

However, in fully Bayesian approaches, sampling the unobserved covariates measured with 

error requires a Metropolis–Hastings step. Designing a Metropolis–Hastings sampler 

requires careful tuning and is known to be difficult in high dimensions, often resulting in 

slow convergence of the sampler (Roberts and Rosenthal 2001). This has been recognized as 

a major computational hindrance to practical Bayesian approaches to fitting nonparametric 

regression models in measurement error problems (Berry et al. 2002; Carroll et al. 2004), 

and the complete conditional distribution of the unobserved covariates measured with error 

has been intractable so far. In some of the more recent works, Marley and Wand (2010) 

demonstrated the computational aspects and implementation of a Bayesian semi-parametric 

regression in presence of missing data and measurement error using the BRugs software 

package that uses an underlying Metropolis–Hastings step for the unobserved covariates. 

Alternatively, Pham et al. (2013) considered an approximate sampling technique via a grid-

based mean field variational Bayes approach to sample from a tractable approximation of the 

posterior of the unobserved covariates in a measurement error problem. This can be useful in 

a number of situations and might provide a reasonable approximation of the posterior. 

However, unlike Markov chain Monte Carlo (MCMC) approaches, such mean field 

approximations do not sample from the exact posterior distribution as the target distribution 

of a Markov chain and can lead to inconsistent parameter estimates under certain situations, 

for example, in state-speace models (Wang and Titterington 2004).

It is generally recognized that when available, the Gibbs sampler enjoys a number of 

advantages over alternative MCMC techniques (Gelfand and Smith 1990). It requires no 

tuning and samples are not rejected since they come from the complete conditional 

distributions. To the practitioner, the benefits enjoyed by the Gibbs sampler often make it the 

default choice among the full repertoire of MCMC techniques. However, establishing a 

Gibbs sampler has so far not been possible for the unobserved covariates in a Bayesian 

setting using splines. In this article, we offer an exact sampling procedure for the covariates 

measured with error for truncated polynomial and B-splines of degree equal to one, resulting 

in a Gibbs sampler. In both cases, we establish the required conditional posterior as a 

mixture of double-truncated normal distributions. Efficient sampling from a truncated 

normal distribution has itself been a source of investigation by multiple researchers in the 

statistics literature, with a naive rejection sampling method replaced by an efficient 

implementation by Robert (1995) and improved upon further by Chopin (2011). We use 
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Chopin’s implementation of the truncated normal sampler and apply it to draw our required 

conditional posterior samples. We conduct a simulation study where we compare 

performances of the SIMEX-based technique of Carroll et al. (1999) and the Metropolis–

Hastings approach of Berry et al. (2002) versus Gibbs sampling using the complete 

conditional posterior, and establish the superior statistical and computational properties of 

our method. Specifically, we demonstrate that the proposed method results in up to 62 and 

54 % increase in mean integrated squared error efficiency over the method of Berry et al. 

(2002) while using truncated polynomial splines and B-splines respectively. We also obtain 

far greater efficiency compared to non-Bayesian approaches. We find evidence that the gain 

in efficiency increases with the measurement error variance and thus the proposed method is 

particularly suited for difficult problems with high measurement error.

We apply the proposed technique to a nutritional epidemiology data set arising from the 

NIH-AARP Diet and Health Study (http://dietandhealth.cancer.gov). Such data are usually 

collected via food frequency questionnaires (FFQ) and are well-known to be prone to high 

measurement error. We again find evidence of superior performance of the proposed 

techniques over the technique of Berry et al. (2002).

The rest of the article is organized as follows: in Sect. 2, we start out by providing the 

necessary background on Bayesian approaches to measurement error models. We then 

establish the Gibbs samplers for the cases where a degree-one truncated polynomial spline 

and a degree-one B-spline are used. Implementational issues of number and placement of 

knots for spline models are described in Sect. 2.3. We provide an outline of the SIMEX-

based approach in Sect. 2.4 which serves as the basis of comparison of the proposed 

Bayesian technique with non-Bayesian alternatives. In Sect. 2.5 we provide the necessary 

background for efficiently sampling from a truncated normal distribution that appears in our 

Gibbs sampler. We conduct a simulation study detailing the performances of the competing 

methods in Sect. 3 and discuss the application on the NIH-AARP data in Sect. 4. We 

conclude by pointing out several possible extensions in Sect. 5.

 2 Bayesian approaches to spline models for measurement error problems

Consider the measurement error model

(1)

(2)

where n is the sample size and mi is the number of replicates for individual i for i = 1, …, n. 

We assume εi are independent and identically distributed normal random variables with 

mean 0 and variance ; Ui j are independent and identically distributed normal random 

variables with mean 0 and variance ; Uij and εi are uncorrelated; and g(·) is the true, 
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unknown, smooth, mean function. The observed data are the pairs (Yi, Wi1, …, Wimi) while 

Xi are unobserved and hence latent. An efficient approach for modeling g(·) to approximate 

it to a desired degree of smoothness is via penalized truncated polynomial splines (P-splines) 

or B-splines bases (Eilers and Marx 1996). The chief advantage of using penalized P-splines 

or B-splines over smoothing splines is that one needs the number of basis functions to be 

equal to the number of knot points for penalized P-splines; and equal to the number of 

internal knots + degree + 1 for penalized B-splines. Whereas, the number of basis functions 

is equal to the number of data points for smoothing splines, which can be large. Ruppert and 

Carroll (2000) and Berry et al. (2002) showed that via an appropriate choice of normally 

distributed priors over the spline coefficients, one can penalize the sum of squared jumps at 

the knots to control the degree of smoothness in a Bayesian implementation of P-splines. If a 

degree one truncated polynomial spline is used to model g(·), the set of basis functions is 

given by B(x) = {1, x, B1(x), …, BK (x)} where

(3)

for k = 1, …, K, where ω1, …, ωK are the known knot points. The complete Bayesian 

hierarchical model can then be described as

(4)

(5)

(6)

where we assume the following conjugate prior distribution on the parameters:

and the priors on the spline coefficients are given by

(7)
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Define , W̄
i• = Wi•/mi, Θ = (β0, β1, θ1, …, θK)T and let IG(a, 

b) denote an inverse gamma distribution with shape parameter a and scale parameter b. For 

this model, Berry et al. (2002) showed that the posterior mean for the fit has the same 

expression as the penalized P-spline fit of Eilers and Marx (1996) for  and in 

practice one can use a large value for that parameter. They also derived the posteriors of all 

the model parameters in closed form and specified the complete conditionals required for 

Gibbs sampling. These are available through standard algebraic manipulations and we report 

them here for the sake of completeness. In particular, they derived that

(8)

(9)

(10)

(11)

(12)

where the n × (K + 2) matrix Z is given by

However, they resorted to a Metropolis–Hastings step for the unobserved Xi and commented 

on the associated computational difficulties due to convergence problems of the sampler and 
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careful tuning necessary to design a good candidate density. Therefore, it is worth 

investigating whether it is possible to design a Gibbs sampler for Xi. We show this is indeed 

the case for truncated polynomial splines or B-splines of degree equal to one in the 

hierarchical setting specified above.

The model using B-spline bases is similar, even though this was not treated in the works of 

Berry et al. (2002) or Carroll et al. (2004). In this case, the basis does not include an 

intercept and Xi and therefore we do not need the terms β0 and β1 in Eq. (4) and they can be 

set to 0. Also, unlike truncated polynomial splines, B-splines are defined on a compact 

support. For measurement error problems, one needs to choose this support judiciously so 

that the unobserved covariate Xi has negligible probability of lying outside this interval. A 

reasonable choice is [mini (W̄
i•), maxi (W̄

i•)]. Set ω0 to be the minimum of this support and 

ωK to be the maximum of the support. Let (ω1, …, ωK−1) be K − 1 internal knots. The set of 

K + 1 degree one B-spline basis functions is now B̃(x) = {B̃
1(x), …, B̃

K+1(x)} where

(13)

(14)

and

(15)

for k = 2, …, K. The other difference is that, according to Eilers and Marx (1996), the prior 

on the corresponding (K + 1) parameter vector Θ is now

(16)

where for a first order difference penalty , where D1 is the matrix representation of 

the first difference operator. Computational details for this operator are described in the 

appendix of Eilers and Marx (1996). Here P− is the generalized inverse of P. With these 

changes, the calculations of the posteriors of the parameters have forms very similar to the 

case of truncated polynomial splines. Figure 1 plots the basis functions for degree 1 

truncated polynomial splines and B-splines in the interval [0, 1]. The choice of basis 

functions has received a lot of attention in nonparametric literature and detailed discussion 

can be found, for example, in Hastie and Tibshirani (1990). We do not treat these issues 

further in this article. Instead, we focus on our main finding: that any measurement error 
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model with additive Gaussian error terms where the basis functions contain terms that are 

only linear in the unobserved covariate Xi, the complete conditional distribution of Xi 

follows a mixture of truncated normal random variables. Below, we formalize our results in 

the form of two propositions that give the parameters and the mixture proportions associated 

with the truncated normals for truncated polynomial splines and B-splines respectively. The 

proofs of the propositions are given in Appendix A. Numerical results are discussed in Sect. 

3.

 2.1 Complete conditional distribution for Xi for degree one truncated polynomial splines

We now consider the case where degree one truncated polynomial splines of Eq. (3) are used 

as basis functions. Define the sequence of knots (ω1, …, ωK) along with the convention that 

ω0 = −∞ and ωK +1 = ∞. In this case, the following proposition establishes the required 

conditional as a mixture of double-truncated normal distributions:

 Proposition 1 (Truncated polynomial splines of degree 1)—Define

Further define

Then, the complete conditional distribution of Xi is a mixture of truncated normal random 

variables on the intervals [ωL, ωL+1] for L = 0, …, K, with means ζi1L ζi2L, variances ζi1L 

and with mixing probabilities piL.

 Proof: See Appendix A.1.

 2.2 Complete conditional distribution for Xi for degree one B-splines

Define the compact interval [ω0, ωK] with K − 1 internal knots (ω1, …, ωK −1). Let the K + 1 

degree ones B-splines basis functions B̃
k (Xi), used to model g(·), be defined by Eqs. (13–

15). Use the convention ω−1 = −∞, ωK+1 = ∞ and θ0 = θK +2 = 0. Then our results are 

similar to Proposition 1 and the required conditional is again a mixture of double-truncated 

normal distributions.

 Proposition 2 (B-splines of degree 1)—Define
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Further define

Then, the complete conditional distribution of Xi is a mixture of truncated normal random 

variables on the intervals [ωL, ωL+1] for L = −1, …, K, with means ζ̃i1L ζ̃
i2L, variances ζ̃

i1L 

and with mixing probabilities p̃iL.

 Proof: See Appendix A.2.

 Remark 1: Whereas both propositions result in similar distributions for the unobserved 

covariates, there are also important differences. In particular, while for B-splines the mean 

and the standard deviation of the unobserved covariates in a given interval depend only on 

the spline coefficients at the two neighboring knots, for truncated polynomial splines they 

depend on all the previous knots as well. The mixing probabilities follow the same pattern.

 Remark 2: The major difference in the implementation of truncated polynomial splines 

and B-splines is the prior on the spline coefficients from Eqs. (7) and (16). Whereas for 

truncated polynomial splines, we follow the choice of prior according to Sect. 2.1 of Berry et 

al. (2002), for B-splines we follow the specification given in Eilers and Marx (1996). While 

Eilers and Marx (1996) did not consider a Bayesian approach, our choice of prior results in a 

posterior mean for the spline coefficients that coincides with the penalized B-splines 

estimates in Eq. (13) of Eilers and Marx (1996). For all the other parameters, our choice of 

priors coincides with Berry et al. (2002).

The explicit conditionals for the unobserved covariates X now enables a full Gibbs sampler 

for Bayesian spline models in measurement error problems (as opposed to Metropolis–

Hastings within Gibbs). Algorithm 1 summarizes all the required steps in the proposed 

sampler.
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Algorithm 1

Gibbs sampler for Bayesian spline models for measurement error problems

 2.3 Selection of number and placement of knots

The problem of selection and placement of knots have received a lot of attention in 

nonparametrics literature. However, as noted in Ruppert (2002) and Carroll et al. (2004), 

provided that the number of knots is more than a certain minimum, the exact number of 

knots has relatively little effect on the fit compared to that of the smoothing parameter in the 

case of P-splines. We find similar numerical behavior and our proposed estimator is quite 

robust to the number of knots, once about 20 knots have been used. We experimented with 

equally placed knots and knots placed on the sample quantiles of the observed noisy 

covariate and again find that this has relatively little effect on the fit. We also note that the 

results presented in Propositions 1 and 2 do not make any assumptions about the placement 

of knots.

 2.4 Alternatives to Bayesian techniques: the simulation-extrapolation (SIMEX) approach

We compare the proposed Bayesian technique to the SIMEX technique of Cook and 

Stefanski (1994) and in this section we give a description of the SIMEX algorithm. As noted 

in Carroll et al. (2004), the SIMEX method needs a base model that results from considering 

the case where there is no measurement error and the resultant estimators in this case form 

the base estimates. Similar to Carroll et al. (2004), one can then apply the iterations of the 

SIMEX method with the estimated  for the measurement error variance and simulated 

Normal(0, ) terms added to W in in each iteration of the method for ξ > 0. Of course ξ 

needs to be bigger than 0 for the variance term to be defined. The idea of the SIMEX method 

is to plot the resultant estimates against ξ and extrapolate to ξ = −1. The asymptotic 

justifications for the SIMEX method are described in Stefanski and Cook (1995) and Carroll 

et al. (1996) and we refer the interested readers to the references therein. In addition to 

comparing performance of our proposed technique to the Bayesian technique utilizing 

MCMC as in Carroll et al. (2004), we also provide numerical performance comparisons with 

the SIMEX method in Sect. 3.
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 2.5 Simulating from a double-truncated normal distribution

While the closed-form expression for the complete conditional for Xi as a mixture of 

double-truncated normals in Propositions 1 and 2 is an interesting analytic result, its 

practical usefulness depends of course on how efficiently such random variables can be 

simulated. A simple rejection sampling scheme to simulate a normal random variable 

truncated from the left at a is as follows: generate a sample Xi from a standard Gaussian, 

accept the sample if Xi > a. While this approach has at least 50 % acceptance rate if a < 0, it 

obviously performs poorly for large positive values of a. A more efficient algorithm was 

proposed by Robert (1995) who used a rejection sampling scheme with an exponential 

proposal density and outlined the steps to choose the parameter of the proposal density in 

order to achieve the optimal acceptance rate. Chopin (2011) proposed another approach 

where one essentially samples a random digit and then performs a table look-up to simulate 

the required truncated normal random variable where the entries of the table have been pre-

computed. This approach achieves up to two-fold speedup over Robert (1995). There are 

other possible approaches for simulating from a truncated normal and while Chopin (2011) 

is our method of choice for the purpose of this article, we refer the interested reader to the 

references therein for a performance comparison of various truncated normal samplers.

 3 Simulation study

 —Our simulation example is similar to one of the examples of Carroll et al. (2004). 

Specifically, we consider the true mean function to be

where sign(x) = 1 if x > 0 and 0 otherwise. We sample Xi from Normal(0, ). To generate 

the simulated data according to Eqs. (1–2), we use n = 500, mi = 2,  and . We 

consider four values of , equal to 0.33, 0.5, 0.75 and 1.0 respectively, progressively 

increasing the measurement error.

We compare the performances of four approaches: a “naive” smoothing spline fit ignoring 

the measurement error, the SIMEX approach of Cook and Stefanski (1994), a Bayesian 

approach with random walk Metropolis–Hastings algorithm for Xi due to Berry et al. (2002) 

and our Bayesian approach with truncated normal sampling from the complete conditional 

of Xi. To do this, we generate 100 simulated data sets with the parameter values specified 

above and compute the sum of squared deviations between the true mean curve and the fitted 

means for each method, computed on the interval [−2, 2] on an equally-spaced 101 grid 

points. In each case, the Bayesian approaches far outperform the naive fit and SIMEX. In 

order to compare performance of the two Bayesian approaches, we let the sampler run for 

approximately 10 seconds. We verify that this results in good mixing in both the cases. With 

the same computing time, it is possible to perform about 3000 Metropolis–Hastings 

iterations and about 300 iterations of the truncated normal sampler, i.e., Metropolis–
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Hastings is about 10 times faster. However, the truncated normal sampling generates 

samples from the full conditional posterior as part of a Gibbs step, so there is no chance of a 

sample getting rejected and unlike Metropolis–Hastings, no tuning is necessary. Therefore, it 

seems interesting to compare performances of the two Bayesian approaches.

The results using truncated polynomial splines are summarized in Table 1, where we 

compute the mean integrated squared error efficiency of the Bayesian fit with truncated 

normal sampling compared to the other methods, defined as the ratio of average integrated 

squared error for the competing methods divided by the average integrated squared error for 

Bayesian fit with truncated normal sampling, where the average is computed over the 100 

simulated data sets. For the splines, we use 25 knots and place them evenly on the sample 

quantiles of W̄
i•. We see that for Metropolis–Hastings, the acceptance rate of the sampler is 

around 69–74 % for the different scenarios, which is much higher than the theoretically 

optimal 23.4 % acceptance rate suggested by Roberts et al. (1997) for random walk 

Metropolis algorithms, leading us to believe the sampler of Berry et al. (2002) is slow to 

converge. One must also note that the figure of 23.4 % given by Roberts et al. (1997) is an 

asymptotic result and in a given problem, while it is well-known that both very high and 

very low acceptance rates indicate poor performance of Metropolis–Hastings, it remains a 

major challenge to design good proposals. Figure 2 shows the average fitted mean curves for 

the different approaches. We observe from Table 1 that for the same computing time, the 

truncated normal sampler provides improved performance as the measurement error variance 

increases, with between 18–62 % increase in mean integrated squared error efficiency over 

the Bayesian method using Metropolis–Hastings, and of course has much greater efficiency 

than the naive fit or SIMEX.

We provide performance comparisons when B-spline basis functions are used in Table 2. We 

have used the same number of knots as before, but the knots are now equally placed between 

the minimum and maximum of W̄
i• due to the ease of computing the B-spline basis 

functions on equally spaced knots. We see that the truncated normal sampler again 

outperforms SIMEX and the naive method quite easily. Furthermore, we see an 

improvement between 13 and 54 % over Bayesian approach with Metropolis–Hastings. 

Figure 3 shows the average fitted mean curve for the competing methods in this case. We 

verified that the placement of the knots, whether evenly placed or placed on sample 

quantiles of W̄
i•, has relatively little effect on the fit.

In Figure 4 we plot the sample autocorrelation function (ACF) of the parameters μx, 

and  for the Bayesian approaches with Metropolis–Hastings and the Gibbs sampling based 

approaches. For each of the parameters, the ACF shows faster decay while using the 

proposed approach compared to Metropolis–Hastings. This indication of better mixing with 

the proposed approach, especially when the measurement error variance is high, provides a 

justification for the improved performance seen in terms of the mean integrated squared 

error efficiency in Tables 1 and 2.

Therefore, our main finding from the simulation study is that sampling the unobserved 

covariates from the complete conditionals can result in major computational advantages over 

Metropolis–Hastings for Bayesian treatment to spline models in measurement error 
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problems. This resultant technique offers significant improvement in mean integrated 

squared error efficiency. There is evidence that this increase in efficiency is more 

pronounced as the measurement noise variance  increases, i.e., the proposed method 

performs better for more difficult problems. In contrast, the choice of basis functions 

(truncated polynomial splines versus B-splines) or the placement and number of knots do 

not appear to have a substantial effect on the fit.

 Remark 3: MATLAB code for the simulation example is freely available on the website 

of the first author at http://www.stat.purdue.edu/~bhadra/software.html as a .zip archive. A 

README file documents the use of the software.

 4 Application on the NIH-AARP diet and health study data

To demonstrate the performance of the proposed methodology, we consider the nutritional 

epidemiology data analyzed previously by Sinha et al. (2010). The motivating data arises 

from the NIH-AARP Diet and Health Study (http://dietandhealth.cancer.gov) and the details 

can be found in Schatzkin et al. (2001). In large scale nutritional epidemiology studies such 

as this, it is customary to measure the dietary intake of the individuals via a food frequency 

questionnaire (FFQ). However, the FFQ, which may span over several months, is well-

known to be subject to substantial measurement error (Thompson and Subar 2001; Thomson 

et al. 2003). In order to adjust for the measurement error in the FFQ, the NIH-AARP study 

includes a calibration study of approximately 2000 men and women who are administered 

two consecutive 24-h recalls, when they are interviewed on their dietary intakes over the past 

24 h. Among the subjects of the calibration study, we specifically focus on the women who 

completed both the 24-h recall interviews, leaving us with n = 934 subjects. We define Yi = 

log(% of non alcohol energy from total fat in the FFQ) and Wij = log(% of non alcohol 

energy from total fat in the 24-h recall) for individual i in recall j. The reason to focus on the 

fat energy intake is that this has been suspected to play a role in several types of cancer. 

Figure 5 plots the calibrated fit θcal(x) against x obtained using the three Bayesian methods 

(Metropolis–Hastings, truncated polynomial splines and B-splines). The three Bayesian 

methods result in almost identical fits, which are quite similar to Fig. 2 of Sinha et al. 

(2010). The departure from the dashed y = x straight line in the figure provides evidence of a 

nonlinear effect in the fit, justifying the need for using a flexible non-parametric model. 

Figure 6 plots the sample ACF for the parameters μx,  and  and once again, the 

Gibbs samplers show evidence of better mixing over Metropolis–Hastings for all the 

parameters.

 5 Conclusions

We propose a computationally attractive method for fitting spline models of degree one in 

measurement error problems. In a conjugate prior setting, we establish the required complete 

conditional distribution of the unobserved covariates as a mixture of double-truncated 

normals, thus enabling Gibbs sampling for the unobserved covariates using efficient 

simulation techniques for truncated normals. The gain in mean integrated squared error 

efficiency over competing approaches is substantial and there is evidence that the gain 

increases with the measurement error variance, i.e., as the problem becomes more 

Bhadra and Carroll Page 12

Stat Comput. Author manuscript; available in PMC 2016 July 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.stat.purdue.edu/~bhadra/software.html
http://dietandhealth.cancer.gov


challenging. This is perhaps not surprising since designing an efficient Metropolis–Hastings 

sampler in such settings is difficult. Though we have not investigated it in this article, 

another case where one might expect to see the benefit of the proposed approach over 

Metropolis–Hastings is with high-dimensional unobserved covariates. Though our technique 

does not generalize to splines of degree more than one, we note that in many cases splines of 

lower degree provide adequate performance in terms of smoothing and interpolation of 

highly nonlinear functions, such as the true mean function considered in our simulation 

example. In fact, they may actually be preferred over splines of higher degree, since fewer 

coefficients need to be estimated. We demonstrate that the proposed technique is applicable 

to degree one truncated polynomial splines and B-splines and it is in fact true to that similar 

results can be found whenever the basis functions consist of degree one terms in the 

unobserved covariate Xi, regardless of the exact form of the basis function. Thus, it is not 

hard to see that the technique presented in this article could be easily extended to additive 

models of multiple covariates and to nonparametric regression models involving tensor 

products of truncated power basis functions, as examples of two immediate possible 

extensions of the current work. Furthermore, the technique could also be extended to 

mixture models, specifically where the covariates can be represented as a mixture of normals 

or the responses can be represented as a normal location scale-mixture. It is therefore quite 

reasonable to expect our technique to be an important addition to the toolbox of the 

practitioners working with measurement error problems and to stimulate future research in 

the directions identified above.
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 Appendix A: Proofs of Proposition 1 and 2

Recall that Θ denotes the (K + 2) parameter vector (β0, β1, θ1, …, θK)T. The log likelihood 

of the complete data is given by

where “constant” is a collection of all terms that are independent of data as well as model 

parameters. Collecting the terms containing X in , except for an irrelevant constant,
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We also have

and

Thus in  the terms corresponding to Xi are

(17)

Recall that . In the next two subsections, we treat the special cases of 

polynomial splines of degree 1 and B-splines of degree 1 respectively.

 A.1 Proof of Proposition 1

In this case, the basis functions are given by Eq. (3). We now establish the distribution of 

each Xi given all the other quantities as a mixture of truncated normals. To see this, suppose 

ωL ≤ Xi < ωL+1 where 0 ≤ L ≤ K with the convention that ω0 = −∞, ωK+1 = ∞ and (Xi − 

ω0)+ = Xi. From Equation (17), when ωL ≤ Xi < ωL+1, we have

and the relevant terms in the log likelihood for Xi are
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Thus, the density function of Xi is

(18)

This shows the density of Xi on the interval [ωL, ωL+1] is proportional to a double-truncated 

normal with mean ζ1iLζ2iL and variance ζ1iL, truncated at the boundaries and the overall 

density for Xi is a mixture of (K + 1) of these truncated normals, since 0 ≤ L ≤ K, giving (K 
+ 1) mixture components. From Eq. (18), we see that the mixing probabilities piL ∝ {Φ(biL) 

− Φ(aiL)} exp {(1/2)log(ζ1iL) + ζ3iL + ζ1iL (ζ2iL)2 /2}. Further note that it must hold that 

, so all that remains is to find the appropriate normalizations for the piL. By 

algebra, we see that

Bhadra and Carroll Page 16

Stat Comput. Author manuscript; available in PMC 2016 July 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Again by algebra, we see that the mixing probabilities then become piL, as claimed.

 A.2 Proof of Proposition 2

In this case, the (K + 1) basis functions are given by Eqs. (13–15) and β0 = β1 = 0. We again 

establish the distribution of each Xi given all the other quantities as a mixture of truncated 

normals. The fitted function is

Clearly, if Xi < ω0 or Xi ≥ ωK then . For L = 0, …, K − 1, suppose ωL ≤ 

Xi < ωL+1. Then the relevant terms in the log likelihood for Xi are

If Xi < ω0 or Xi ≥ ωK the the relevant terms in the log likelihood are

Then, by calculations similar to Appendix A.1, the proof of Proposition 2 is completed.

Bhadra and Carroll Page 17

Stat Comput. Author manuscript; available in PMC 2016 July 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
a Degree 1 P-spline basis functions on [0, 1] with knots at 0, 0.33 and 0.67 and b degree 1 

B-spline basis functions on [0, 1] with two interior knots at 0.33 and 0.67. For both a and b, 

each distinct color indicates one basis function. (Color figure online)
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Fig. 2. 
Plot of the true mean function and the fitted mean curves averaged over 100 simulated data 

sets for  and  values (a) 0.33, (b) 0.50, (c) 0.75 and (d) 1.00. Each panel shows 

the true curve (black), the mean for naive fit (red), the mean for SIMEX fit (purple), the 

mean for Bayesian fit with Metropolis–Hastings (blue) and the mean for Bayesian fit with 

truncated normal sampling using P-splines (green). (Color figure online)
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Fig. 3. 
Plot of the true mean function and the fitted mean curves averaged over 100 simulated data 

sets for  and  values (a) 0.33, (b) 0.50, (c) 0.75 and (d) 1.00. Each panel shows 

the true curve (black), the mean for naive fit (red), the mean for SIMEX fit (purple), the 

mean for Bayesian fit with Metropolis–Hastings (blue) and the mean for Bayesian fit with 

truncated normal sampling using B-splines (green). (Color figure online)
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Fig. 4. 
Sample autocorrelation plot of selected parameters for Bayesian method with Metropolis–

Hastings MCMC (left), truncated normal sampler with P-splines (center) and truncated 

normal sampler with B-splines (right) for simulated data. Truncated normal sampler 

improves mixing for both P-splines and B-splines. True 
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Fig. 5. 
Fit for the NIH-AARP calibration study data for women using the Bayesian methods with 

Metropolis–Hastings MCMC, Gibbs sampler with P-splines and Gibbs sampler with B-

splines. The broken straight line has intercept zero and slope one
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Fig. 6. 
Sample autocorrelation plot of selected parameters for Bayesian method with Metropolis–

Hastings MCMC (left), truncated normal sampler with P-splines (center) and truncated 

normal sampler with B-splines (right) for the NIH-AARP calibration study data. Truncated 

normal sampler improves mixing for both P-splines and B-splines
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