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Abstract

This paper proposes a new factor rotation for the context of functional
principal components analysis. This rotation seeks to re-represent a functional
subspace in terms of directions of decreasing smoothness as represented by a
generalized smoothing metric. The rotation can be implemented simply and
we show on two examples that this rotation can improve the interpretability
of the leading components.

Keywords: Factor Rotation; Functional Data; Interpretability; Principal Com-
ponents Analysis

1 Introduction

This paper proposes a new factor rotation for functional principal components anal-
ysis (fPCA). In functional data analysis, the use of principal components has re-
ceived considerable attention; means of defining principal components were studied
in Rice and Silverman (1991) and Silverman (1996) and for sparsely observed curves
in Yao et al. (2005a); Peng and Paul (2009) and Paul and Peng (2011). Follow-
ing carrying out fPCA, one of the most common means of dealing with functional
covariates has been by employing principal components scores within multivariate
methods. Particular examples include linear models (Yao et al., 2005b; Hall et al.,
2006; Goldsmith et al., 2011), as responses (Chiou et al., 2004; Sentürk and Müller,
2006) and additive models (Müller and Yao, 2008). In some of these cases, inter-
pretation is gained by combining coefficients from the multivariate model with the
principal component functions to create a functional parameter – see the functional
linear models in Yao et al. (2005b) – but this is not always possible, as in the addi-
tive models in Müller and Yao (2008), in which case the model must be interpreted
by treating the principal component directions as having particular meanings.

Despite this interest in fPCA, little has been proposed by the way of factor ro-
tations that might make principal components directions more interpretable. Ram-
say and Silverman (2005) examine an extension of the VARIMAX rotation (Kaiser,
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1958) from multivariate factor analysis which has the tendency to produce com-
ponents that focus on particular ranges of the domain of the functions. Liu et al.
(2012) propose a rotation towards periodic components in a remote sensing exam-
ple with functions that cover multiple years with a distinct annual signal. Other
methods from the multivariate factor rotation literature could be considered, but
we have found no other suggested factor rotations that make use of the struc-
ture of functional data. In this paper, we propose a rotation towards maximally
smooth principal components. These are the directions in which there is greatest
predictability over time and which are also more interpretable.

The factor rotation that we propose is derived from the definition of Min/Max
Autocorrelation factors (MAF) introduced by Shapiro and Switzer (1989) and Switzer
and Green (1984) for the analysis of gridded multivariate data and parallel time se-
ries data, respectively. The principal underlying MAF is to find linear combinations
of the original data that have maximum autocorrelation. This property of MAF is
in contrast to PCA which finds linear combinations that have maximum variance.
Of particular importance for our setting is the fact that when applied to parallel
time series a MAF analysis finds linear combinations of the data that are decreas-
ingly smooth functions of time or, in other words, that are decreasingly predictable
functions of time. In this vein, we show that a functional analogue of MAF can
be obtained that searches for the rotated components that have smallest integrated
first derivative. We then demonstrate how this can be extended to any notion of
smoothness as given by a linear differential operator defined in Ramsay and Sil-
verman (2005). In our examples, we have developed our methods based on the
numerical machinery in the fda package in R (see Ramsay et al., 2009) but they
can be readily employed with alternative functional data representations.

In recent literature, interest in the application and theoretical properties of MAF
has been increasing (Cunningham and Ghahramani, 2014; Gallagher et al., 2014).
Of particular relevance to the current work is the paper of Henderson et al. (2009)
that compares PCA and MAF in the context of ToF-SIMS image interpretation.
The authors conclude that MAF is more effective than PCA for the analysis of high
signal intensity data. The importance of MAF for forecasting has been investigated
by Woillez et al. (2009) in the context of fish stocks. The utility of MAF for
forecasting correlated functional data is ongoing work.

The remainder of the paper is structured as follows: we derive the notion of
maximally smooth rotation as an analogue of maximally autocorrelated time series
in Section 2. The extension of these to any linear differential operator and its
implementation in basis expansion methods is given in Section 3 and we demonstrate
the effect of these methods in Section 4. We finish with some concluding remarks
and further directions.

2 Maximal Autocorrelation Factor Rotations (MAFR)

Our methods are developed on top of the Maximal Autcorrelation Functions pro-
posed in Switzer and Green (1984) for multivariate time series. Suppose that we
have a multivariate time series x1, . . . ,xT in which at each time point the observed
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xt is a vector. The maximally autocorrelated time series is the linear transformation
b such that cor(xtb,xt+1b) is maximized. In order to apply this to functional data
analysis, we re-interpret the criterion as

b̂ = argmin
b

∑T−1
t=1

(
bTxt+1 − bxt

)2
bT
∑T

t=1 xtxT
t b

.

In a functional data analysis context we consider xt to derive from the evaluation
of a vector of functions x(t) at times t = i(∆t) for i = 1, . . . , T . By dividing by ∆t
we can re-represent this criterion as

b̂ = argmin
b

∫
bT ẋ(t)ẋ(t)Tbdt

bT
∫
x(t)x(t)T dtb

.

where ẋ(t) is the vector of time-derivatives of x(t).
Here, we recognize the numerator as having the form of a classical first-derivative

smoothing penalty on the univariate function z(t) = bTx(t). In this spirit, we can
more generally define a criterion by any linear differential smoothing operator L as
in Ramsay and Silverman (2005). This allows us to define the MAFR criterion as

MAFRL(b) =

∫
bTLx(t)Lx(t)Tbdt

bT
∫
x(t)x(t)T dtb

where the operator L is a linear combination of derivatives:

Lx(t) =
dk

dtk
xt +

k=1∑
j=0

aj(t)
dj

dtj
x(t).

The most common choices for L correspond to the first and second derivatives:
Lx(t) = ẋ(t) or Lx(t) = ẍ(t) but more complex penalties can also be useful and we
examine the harmonic acceleration penalty

Lx(t) =
d3

dt3
x(t)− ω

2π

d

dt
x(t)

which defines smoothness in terms of sin and cosin functions with period ω as well
as constant shifts (see Ramsay and Silverman, 2005).

We have written our criterion in terms of a collection of functions x(t) above,
but this method is treated as a factor rotation to be applied following fPCA with
a fixed number of components selected. Thus, below we will replace x with φ(t) =
(φ1(t), . . . , φK(t)) to conform to more common notation. If the dimension of x(t)
is allowed to grow, we will always be able to reduce MAFR by adding further
components, yielding rotations in which Lbx → 0. This same phenomenon occurs
for classical factor rotations in multivariate analysis when the number of variables
increases or in MAFs with an increasing number of time series. Liu et al. (2012)
found that applying VARIMAX rotations to a large number of principal components
resulted in essentially uninterpretable results. Similar comments may be made
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about the maximal autocorrelation functions in Switzer and Green (1984). Along
similar lines, we expect that the trailing components after rotation will be the
least interpretable and there is a trade-off between increasing the smoothness of the
leading components and allowing some variation to be absorbed into the remaining,
less-interpretable versions. These comments also apply to other factor rotations,
although in the examples below we find that the leading components are smoothed
while the remaining ones are relatively unaffected.

3 Numerical Implementation

In this section, we describe the numerical implementation of the factor rotation.
This can be accomplished easily using the basis expansion methods in the fda

package in R (Ramsay et al., 2013, 2009), but it relies only on our ability to obtain
inner products of the derivatives of principal component functions.

We assume that a set of principal components φ(t) have been obtained from
data. Since these are orthonormal by definition, we have

∫
φ(t)Tφ(t)dt is given by

the identiy, and thus the MAFR rotation corresponds to

b̂ = argmin
b

bT

[∫
Lφ(t)TLφ(t)dt

]
b, subject to bTb = 1

By standard arguments, the solution to this problem is the smallest eigenvector of
the matrix

P =

[∫
Lφ(t)TLφ(t)dt

]
.

We may define successive rotations b2, . . . ,bk by minimizing MAFR(b) subject
to bT

i bj = Ii=j . These are given by the succeeding columns of U in the Eigen-
decomposition

P = UDUT .

We can thus define a rotation to new components

ψ(t) = UTφ(t)

If, as is standard, the diagonal matrix D is ordered from largest to smallest eigen-
values, the final components of ψ should be the smoothest. We observe that since
both U and the φ are orthonormal, so are the ψ.

If we have an original set of curves represented in terms of principal component
scores

xi(t) =

K∑
k=1

sijφj(t) = sTi φ(t)

the score vector si can be re-represented in the basis defined by ψ(t) in terms
of ti = UT si. If the variances of the original retained principal components are
given in the diagonal matrix Σ, the MAFR components have scores with associated
covariance UT ΣU .
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4 Examples

4.1 A Simulated Experiment

We begin by experimenting with the effect of this rotation on simulated data in
which rotation should help to capture a “true” set of leading principal component
directions. For this simulation we represented 100 curves via a Fourier basis expan-
sion with bases

f0(t) = 1, f2i(t) = sin(2πit), f2i+1(t) = cos(2πit)

and simulated the coefficients of the first 25 such basis functions as independent
normals with exponentially decreasing variance:

xi(t) =

24∑
j=0

cjfj(t), cj ∼ N(0, exp(−j/4)).

Under this framework, 10 principal components are required to capture 99% of the
variation in these data.

We employed a rotation based on minimizing the harmonic acceleration of the
leading components and have plotted the original curves along with the first four
and final two components in Figure 1. Here we see there is a distinct smoothing of
the leading components. Interestingly, the final MAFR component is more purely
sinusoidal – with a higher frequency than the harmonic acceleration penalty – than
its fPCA counterpart.

These simulated data are intended as an illustrative example rather than as a
quantitative investigation of the statistical properties of our method and we do not
pursue a simulation here. MAFR by definition reduces the roughness of the leading
principal components and can also be expected to reduce their variance. In this
particular framework, it is also easy to show that rotating 25 principal components
exactly recovers the original fourier basis up to changes of sign and the order of sin
and cosin pairs.

4.2 Electricity Demand Data

The Electricity Demand data are obtained from the R package fds (Shang and Hyn-
dman, 2013). The data comprise the half-hourly demand for electricity in Adelaide,
Australia over the period 6/7/1997 to 31/3/2007. Electricity demand in Adelaide
is highest in summer and winter. Interestingly the variability in electricity demand
is largest when temperature is high. For further information on the Electricity
Demand data the reader is referred to Magnano and Boland (2007) and Magnano
et al. (2008). In the our analysis we restrict attention to the Monday demand for
electricity and consider electricity demand as a function of time of the day. Figure
2 contains plots of the smoothed electricity demand versus time of the day for each
of the 508 Mondays over the period of observation.

For this analysis we employed a second derivative rotation to the first five prin-
cipal component directions – these accounted for 99% of variation in the data.

5



Figure 1: Results of factor rotation based on simulated data with sinusoidal func-
tional principal components. Top row: data (left) and variance components for
fPCA (solid circles) and MAFR (stars) components. Second row: leading four
fPCA (left) and MAFR (right) components. Bottom row: ninth (left) and tenth
(right) fPCA (solid) and MAFR (dashed) components.
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The remaining plots in Figure 2 show the fPCA and MAFR components where a
smoothing effect is evident, particularly in the second component while the later
components largely retain their shape.

5 Discussion

This paper examines the development of factor rotations aimed specifically at pro-
viding more interpretable bases for the use of functional principal components. Our
approach here has been to find rotations that increase the smoothness of the lead-
ing principal components and we find that we are able to provide smoother leading
principal components without have a large effect on the more rough components.

The proposed methods are distinct from methods which incorporate smoothing
directly into a functional principal components analysis; see, for example Silverman
(1996). Here, we fix a subspace on which we will project our data and seek a more
interpretable representation of this subspace, rather than rotating the subspace so
that the original representation is smoother.

Our methods are also distinct from more classical factor rotation methods in
that we target the smoothness of the factors in sequence rather than jointly. A joint
rotation criterion could be obtained by considering a weighted sum of smoothing
factors:

(b1, . . . ,bk) = argmin

k∑
j=1

wj

∫ [
LbT

j φ(t)
]2
dt, such that bT

i bj = Ii=j

which is solved by the eigenvectors of W 1/2PW 1/2 if W is a diagonal matrix with the
wj on the diagonal and for which the MAFR rotation is a limiting case. However,
this then poses the problem of how to select the wj and we argue that even after
deciding on a dimension, greatest attention is still paid to the leading components
and these should be our focus in factor rotation. Our methods also a variation
on those of Liu et al. (2012) in defining correlation with an orthogonal basis with
respect to a smoothing norm.

While we have advanced some methods designed at improving the smoothness of
principal component functions, we believe that there remains considerable potential
for the further development of factor rotations aimed at yielding interpretable bases
specifically for functional data.
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