
Bandwidth Selection In Pre-Smoothed Particle Filters

Tore Selland Kleppe∗ Hans Julius Skaug†

March 7, 2022

Abstract

For the purpose of maximum likelihood estimation of static parameters, we apply a kernel
smoother to the particles in the standard SIR filter for non-linear state space models with
additive Gaussian observation noise. This reduces the Monte Carlo error in the estimates of
both the posterior density of the states and the marginal density of the observation at each
time point. We correct for variance inflation in the smoother, which together with the use of
Gaussian kernels, results in a Gaussian (Kalman) update when the amount of smoothing turns
to infinity. We propose and study of a criterion for choosing the optimal bandwidth h in the
kernel smoother. Finally, we illustrate our approach using examples from econometrics. Our
filter is shown to be highly suited for dynamic models with high signal-to-noise ratio, for which
the SIR filter has problems.

Keywords: adaptive bandwidth selection; kernel smoothing; likelihood estimation; particle
filter; state space model; variance inflation

1 Introduction
State space models are commonly used to represent dynamical systems in a wide range of scientific
fields. For linear and Gaussian state space models, the Kalman Filter can be used to sequentially
obtain the posterior mean and covariance of the current state vector, as well as the likelihood function
required for estimation of model parameters. Gaussian mixture filters (Alspach and Sorenson, 1972)
were among the first attempts to account for non-normality in the posterior, resulting from non-
linearity, either in the state equation or in the observation equation. Later, sequential Monte Carlo
(MC) based filtering methods, collectively known as particle filters, were introduced (Gordon et al.,
1993; Kitagawa, 1996; Liu and Chen, 1998). The particle filter has the prospect of providing a
sampling-based consistent estimate of the posterior distribution, but in many cases the sample size
(number of particles) required to bring the MC error within tolerable bounds is prohibitively large.
Consequently, there is now a large literature on improving the baseline particle filtering algorithms
to work for a moderate numbers of particles. These include Pitt and Shephard (1999), various
methods proposed in the chapters of Doucet et al. (2001) and more recently Polson et al. (2008),
Chorin and Tu (2009) and Chopin et al. (2013).

Recently, a renewed interest in the use of particle filters for computing marginal likelihood (in-
tegrating over state variables) for the purpose of parameter estimation has emerged (Fernandez-
Villaverde and Rubio-Ramirez, 2007; Andrieu et al., 2010; Kantas et al., 2009; Malik and Pitt, 2011;
DeJong et al., 2013). This is also the context of the present paper. Similar to Malik and Pitt
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(2011) and DeJong et al. (2013) we obtain a likelihood approximation which is continuous in the
parameters, hence facilitating numerical optimization. We target situations with highly non-linear
state evolution, high signal-to-noise ratios, and with low-to-moderate dimensional state vector, for
which adaptation is difficult.

Throughout, we assume that the measurement model is linear and Gaussian, which at first glance
may appear restrictive. However, non-linear measurement equations with additive Gaussian noise
can also be handled by a simple augmentation of the state vector, as shown in Section 3.1 below.

Let xt and yt denote the state vector and observation vector, respectively, at time t, and define
Yt = [y1, . . . , yt]. In particle or ensemble methods the predictive density p (xt+1|Yt) is represented by
a random sample. We use a kernel smoother p̂ (xt+1|Yt) which can be updated analytically against
a linear Gaussian measurement model p(yt+1|xt+1). From the resulting mixture approximation of
the posterior p (xt+1|Yt+1) we draw a uniformly weighted sample of particles, which after a parallel
run through the state equations, constitutes the approximation of the next predictive distribution
p (xt+2|Yt+1). The resulting filter, which we call the Pre-Smoothed Particle Filter (PSPF) is a special
case of the preregularized particle filter (Le Gland et al., 1998; Hürzeler and Künsch, 1998).

The main contribution of the present paper is to determine the optimal amount of smoothing
in each updating step of the PSPF. This is done adaptively, i.e. for each time point t an optimal
bandwidth paramter h is sought. For small h the PSPF approaches the SIR filter, i.e. has low bias
but high variance. Further, we correct for variance inflation (Jones, 1991), and hence when h→∞
the kernel estimate p̂ (xt+1|Yt) reduces to a Gaussian density with mean and covariance calculated
from the ensemble representation of p (xt+1|Yt). At this end of the h spectrum the PSPF is strongly
related to the Ensemble Kalman Filter (Stordal et al., 2011), which has low MC variance but high
bias.

The rest of this paper is laid out as follows. Section 2 introduces notation and explains challenges
related to particle filtering. Section 3 explains the pre-smoothed update and provides a method for
automatic bandwidth selection. Section 4 introduces the PSPF, and also compares the PSPF to other
particle filters using simulation experiments. Finally, Section 5 outlines two realistic applications,
and Section 6 provides a discussion.

2 Model, Notation and Background

2.1 Model and notation
We consider a generic state space model consisting of a state transition equation and an observation
equation, with the former given by

xt = g(xt−1, vt), t = 1, . . . , T, (1)

where g(·, vt) is the state transition function
(Rdx → Rdx). The random disturbance term vt, which can account for incomplete model spec-
ification, may be either absent, of fixed dimension, or of infinite dimension in the case that the
state dynamics are governed by a stochastic differential equation. Under the assumption that the
vts are independent (1) describes a Markov process, with transition probability density denoted by
p(xt|xt−1). Given the realization of vt, evaluation of g(·, vt) typically amounts to solving a differ-
ential equation. The system (1) is initialized by drawing x0 from a distribution with density p(x0).
It is assumed that g(·, ·) and vt are sufficiently regular to ensure that p(xt|xt−1) is continuous, and
thereby that all involved conditional distributions can be estimated consistently using kernel density
estimators.

2



The observation equation is

yt =Mxt + εt, εt ∼ N(0,Σε), t = 1, . . . , T, (2)

where yt ∈ Rdy , Σε ∈ Rdy×dy is non-degenerate and the matrixM ∈ Rdy×dx is independent of the
state, but may vary non-stochastically with time t. Moreover, we use the notation Yt ≡ [y1, . . . , yt],
Y0 = ∅. N (x|µ,Σ) denotes the multivariate Gaussian probability density function evaluated at x, Iq
the q × q identity matrix. Finally, we indicate which stochastic variable an expectation or variance
is taken over using subscripts (e.g. Ex when expectation is taken over variable x).

2.2 The SIR filter and sample impoverishment
This section introduces particle filters and the Sampling Importance Resampling (SIR) filter of
Gordon et al. (1993), which is the limit of PSPF as h → 0. Any particle filtering approach relies
on alternating between two steps: prediction (p) in which p(xt+1|Yt) is represented by a random
sample {x(i),p

t+1 }ni=1, and filtering (f) in which p(xt+1|Yt+1) similarly is approximated by {x(i),f
t+1 }ni=1.

These random samples of size n are referred to as filter- and predictive swarms, respectively, and
are updated iteratively from each other. The prediction step, used in both SIR and PSPF, consists
of x(i),p

t+1 = g
(
x

(i),f
t , v

(i)
t+1

)
, i = 1, . . . , n, where the v(i)

t+1 are independent random draws from the
distribution of vt+1. In the filtering step Bayes formula is invoked:

p(xt+1|Yt+1) =
p(yt+1|xt+1)p(xt+1|Yt)´

p(yt+1|xt+1)p(xt+1|Yt)dxt+1

=
p(yt+1|xt+1)p(xt+1|Yt)

p(yt+1|Yt)
. (3)

The SIR filter approximates (3) by performing a SIR update (Rubin, 1987), representing p(xt+1|Yt+1)

as a weighted sample with locations {x(i),p
t+1 }ni=1 and corresponding weights

p(yt+1|x(i),p
t+1 )

np̌(yt+1|Yt)
, i = 1, . . . , n, (4)

where p̌(yt+1|Yt) ≡ n−1
∑n
i=1 p(yt+1|x(i),p

t+1 ) is a normalizing constant. Obtaining a uniformly weighted
sample {x(i),f

t+1 }ni=1 to complete next time-step’s prediction is simply a matter of drawing multinomi-
ally from {x(i),p

t+1 }ni=1 with weights (4). A byproduct of the SIR filter is that the marginal likelihood
of Yt needed for parameter estimation can be approximated as

p(Yt) =

T∏
t=1

p(yt|Yt−1) ≈
T∏
t=1

p̌(yt|Yt−1), (5)

for large n (see e.g. Del Moral (2004, Proposition 7.4.1.)).
Sample impoverishment in the SIR filter occurs when, at time step t, the predictive particle

swarm {x(i),p
t }ni=1 and the data likelihood p(xt|yt) ∝ p(yt|xt) are poorly aligned (see e.g. Pitt and

Shephard (1999)). The multinomial probabilities (4) then become very unevenly distributed, and
the multinomial sampling will yield many repeated particles. Over time the swarm will degenerate in
the sense that all particles can be traced back to a single particle in the initial swarm (t = 0). Sample
impoverishment also increases the MC error of the likelihood estimator (5). This is likely to occur
during numerical optimization of the likelihood, when the optimization algorithm tries an infeasible
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parameter value rendering the particle swarm and the data likelihood p(yt|xt) incompatible. The
effect is amplified by a high signal-to-noise ratio in the system. Numerous strategies have been
proposed for aligning (adapting) the predictive swarm to the coming observation (see e.g. Cappe
et al. (2007) for an overview), but these typically rely on evaluation of p(xt+1|xt) (or some of the
characteristics of p(xt+1|xt)) which may be costly. The PSPF, on the other hand, avoids evaluation
of p(xt+1|xt), and relies only on the ability to simulate (1) efficiently.

3 The Pre-Smoothing Update
In this section we consider the pre-smoothing (PS) update, as an alternative to Rubin (1987)’s
SIR update when the observation equation is linear in the state and additively Gaussian. Focusing
on a single updating step we can drop the index t in our noation. In a general perspective, the
problem we address is the Bayesian updating problem of evaluating the posterior density p(x|y) and
the marginal density p(y) when the prior π(x) is represented by a random sample. In particular,
we focus on optimal selection of the smoothing parameter in the PS update, with the overarching
objective of producing accurate estimates of p(y). In Section 4 we again return to the filter setting.

3.1 The updating problem
Consider the evaluation of the posterior p(x|y) and marginal p(y), for the model

y|x ∼ p(y|x) = N (y|Mx,Σε), (6)
x ∼ π(x), (7)

in a setting where π is an unknown prior density, whileM and Σε are given matrices. The available
information about π is a random sample x =

{
x(i)
}n
i=1

drawn from π. Our aim is to estimate both
p(x|y) and p(y) for a given y. We denote by µ̂x and Σ̂x the empirical mean and covariance matrix
of the sample x, respectively.

Consider the shrunk kernel estimate (Jones, 1991; West, 1993)

π̂(x) =
1

n

n∑
i=1

N (x|mi, G), (8)

mi = (1− b)µ̂x + bx(i), (9)
G = (1− b2)Σ̂x, (10)

where the smoothing parameter b ∈ [0, 1] governs the proportions of the total variance under π̂(·)
stemming from inter-kernel variance (b2Σ̂x) and intra-kernel variance (G) in the Gaussian mixture
(8). The replacement of the more conventional bandwidth parameter h =

√
b−2 − 1 by b simplifies

certain expressions in what follows. The estimator (8) avoids the “variance inflation” to which the
standard kernel estimator (Silvermann, 1986) is prone, as it is easily verified that the mean and
variance under π̂(·) is µ̂x and Σ̂x, respectively. For b close to 1 (h close 0) π̂(·) behaves as a standard
kernel estimator with equally weighted point masses located at x(i), i = 1, . . . , n as the limit. For
b→ 0 (h→∞) a Gaussian limit is obtained, i.e. π̂(x)→ N (x|µ̂x, Σ̂x).

By substituting π̂ for π in the Bayes rule (3), we obtain the PS estimators

p̂(y) =

ˆ
N (y|Mx,Σy)π̂(x)dx =

1

n

n∑
i=1

Wi, (11)
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Gaussian (b→ 0) SIR (b→ 1)
p̂(y) N (y,Mµ̂x,Σε +MΣ̂xMT ) n−1

∑
N (y|Mx(i),Σε)

p̂(x|y) N (x, µ̂x + K̂(y −Mµ̂x), Σ̂x − K̂MΣ̂x) c−1
∑n
i=1N (y|Mx(i),Σε)δ(x− x(i))

E(x|y) µ̂x + K̂(y −Mµ̂x) c−1
∑n
i=1 x

(i)N (y|Mx(i),Σε)
Property High bias, low variance Low bias, high variance

Table 1: Limit cases (b → 0, 1) for the PS updating step, where K̂ = Q|b=0 = Σ̂xMT (Σε +
MΣ̂xMT )−1 is the Kalman gain matrix, δ(x) denotes a unit point mass located at the origin and
c =

∑n
i=1N (y|Mx(i),Σε) is a normalizing constant.

p̂(x|y) =
N (y|Mx,Σy)π̂(x)´
N (y|Mx,Σy)π̂(x)dx

=

∑n
i=1Wiϕi(x)∑n

i=1Wi
=

n∑
i=1

wiϕi(x), (12)

where

Wi = N (y|Mmi,Σε +MGMT ),

wi =
Wi

np̂(y)
,

ϕi(x) = N (x|mi +Q(y −Mmi), G−QMG),

Q = GMT (Σε +MGMT )−1.

In our notation we have omitted the dependence on b.
As b varies from 1 to 0 the PS updates moves from a SIR update to the Gaussian update, both of

which are summarized in Table 1. The mean mi+Q(y−Mmi) of each posterior mixture component
concurrently moves smoothly from x(i) (= x(i),p) toward what is dictated by the likelihood, reducing
the potential for sample impoverishment. In the same vein, we have wi → n−1 as b→ 0, i.e. uniform
weighting. These properties of the PS update (and the updates employed in other pre-regularized
filters) differ from those of the update mechanisms employed in post-smoothed particle filters ad-
vocated by Musso et al. (2001) and Flury and Shephard (2009), where the (one step) posterior
locations and weights are unchanged relative to the SIR. However, these latter approaches do not
require the Gaussian data-likelihood which is underlying the PS update.

The fact that p̂(x|y) is a finite Gaussian mixture (for b < 1) has a number practical advantages.
Firstly, moments, marginal- and conditional distributions of the approximate posterior are easily
derived from the representation (12). Further, p̂(·|y) has continuous support, and therefore direct
copying of particles, which is applied in the SIR filter, is avoided in the resampling step. Sampling
from p̂(·|y) is trivial. Moreover continuous (with respect to the parameters) sampling, resulting in a
continuous simulated likelihood function, can be implemented.

The apparently restrictive linearity assumption (6) can be relaxed by augmenting the state
variable x. The case of a non-linear measurement function M(x) with additive Gaussian noise can
be accommodated without any conceptual change to the framework. The measurement variance
Σε is then split in two parts r2Σε and (1 − r2)Σε, 0 < r < 1, and the augmented state vector is
x′ = [x,M(x) + η]T where η ∼ N(0, r2Σε) is an auxiliary variable introduced for convenience. For
the augmented system, equations (6)-(7) take the form

y ∼ N(M′x′, (1− r2)Σε),

x′ ∼ π′(x′),

where π′ is the induced prior andM is the matrix that selects M(x) +η from x′. Now, r is a tuning
parameter that must be chosen jointly with b. Estimates of p(x|y) are easily obtained as a marginal

5



in the finite mixture representation of p̂(x′′|y). An application of this approach is given in section 5.2
below.

3.2 Criterion for smoothing parameter selection
A critical part of the PS update is the selection of the smoothing parameter, with the aim of obtaining
both a representative posterior particle swarm and and accurate estimate p̂(y) of the marginal
likelihood. For this purpose Flury and Shephard (2009) argue that the integrated mean squared
error (MISE) of p̂(x|y), which is commonly used in the kernel smoothing literature (Silvermann,
1986) is not a suitable criterion in a particle filter setting. Nevertheless, is has been used for pre-
and post-smoothed particle filters by e.g. Le Gland et al. (1998); Hürzeler and Künsch (1998);
Musso et al. (2001). Instead, Flury and Shephard (2009) propose to minimize the MISE of the
posterior cumulative distribution function. We propose a third criterion, namely to minimize the
mean squared error (MSE) of p̂(y), which is given as

MSE(p̂(y)) = (Ex(p̂(y))− p(y))2 + V arx(p̂(y))

≡ C(b). (13)

This criterion has the advantage of being analytically simple, in addition to targetting minimal
Monte Carlo error in the likelihood function as explained below. Minimization of C(b) gives an
optimal bias-variance balance that depends on the observation y.

Switching momentarily to a dynamical system setting (with x = {x(i),p
t }ni=1) for the reminder of

this paragraph, p̂(y) estimates p(yt|Yt−1), and thus choosing (13) as the criterion targets directly the
factors involved in the likelihood function (5). However, it should be noted in the dynamic setting
that current period’s filter distribution must be represented accurately as it serves as an important
input to next period’s likelihood evaluation. We show in section 4.2 that using an approximation to
C (which targets p(y)) also leads to competitive estimates of the filtering distribution (i.e. p(x|y)).
This will in particular be true whenever most of the information carried in p(x|y) comes from the
likelihood (which is typical for the class of models we consider) as p̂(x|y) is almost proportional to
x 7→ p(y|x), and therefore the posterior estimator is relatively insensitive to the choice of smoothing
parameter. On the other hand, assuming a concentrated observation likelihood, and in addition that
M is invertible (i.e. dx = dy), p̂(y) will be highly sensitive to the choice of smoothing parameter
since a zeroth order approximation of p̂(y) is proportional to π̂(M−1y). Hence it appears sensible
to choose C even in a dynamic setting, in particular in high signal-to-noise situations.

3.3 Plug-in and approximation
There are two obstacles to direct use of the criterion C(b) as given in (13). First, the expectation
is taken over x which has unknown distribution π (see (7)). The same problem occurs in standard
kernel estimation, and is solved by the use of a plug-in estimator (Silvermann, 1986). The second
problem is caused by the use of the shrunk kernel estimator, which involves the empirical (depending
on x) quantities µ̂x and Σ̂x through (9) and (10). Even if π was known, analytical evaluation of the
expectation in (13) would not be possible, and we have to resort to an approximation. Jones (1991)
encounters the same problem, but argues that the effect can be ignored asymptotically when n→∞
and b→ 1. However, we consider the full range b ∈ (0, 1) so the same asymptotic arguments do not
apply. Instead we attempt to approximate the expectation (13) for finite n.

We start by addressing the second problem. For the purpose of evaluating the mean and variance
in (13) we replace µ̂x and Σ̂x in expressions (8-11) by new random variables, µ̃ and Σ̃, respectively,
both taken to be independent of x. The simplification (approximation) lies mostly in this inde-
pendence assumption, but also in the distributional assumptions made about µ̃ and Σ̃ below. The
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reason that we cannot ignore the sampling variability in µ̂x and Σ̂x is that the variance term in (13)
would then be exactly zero for b = 0. Hence, for small b we would underestimate the MSE of p̂(y).

We make the following distributional choices

µ̃ ∼ N(µx,Σx/n), (14)

and
Σ̃ ∼ 1

n
Wishart(Σx, n− 1), (15)

i.e. µ̃ and Σ̃ are distributed as if they where calculated from a sample of n iid N(µx,Σx) vectors.
Plug-in versions of (14) and (15), i.e. where µx has been replaced by µ̂x and Σx by Σ̂x, are used
immediately below for notational convenience. Strictly speaking these replacements take place after
all moment calculations have been carried out.

After these simplifications, it is necessary to restate our criterion

C̃(b) = [E(p̃(y))− p(y)]
2

+ V ar(p̃(y)) (16)

where expectation and variance now is taken relative to x, µ̃ and Σ̃, which we emphasize are
independent by assumption. Writing out the details of (16) we get p̃(y) = n−1

∑n
i=1 W̃i where

W̃i = N{y|M(aµ̃+ bx(i)),Σε +G′MΣ̃MT }, (17)

with a ≡ 1− b and G′ ≡ 1− b2.
The next sections outline pilot distributions and develop asymptotic approximations (in n) that

will enable us to evaluate the mean and variance in (16).

3.3.1 Pilot distributions

For the variance term in C̃, we employ for convenience a Gaussian pilot,

π̂V (x) ≡ N (x|µ̂x, Σ̂x). (18)

For the squared bias term in (16) a Gaussian pilot is ruled out because, as shown below, this leads
asymptotically to zero bias for all b. Instead a two-component Gaussian mixture

π̂B(x) ≡
2∑
l=1

q̂lN (x|µ̂l, Σ̂l), (19)

is used. The bias pilot π̂B is flexible, allowing for analytical computations of moments, and
{q̂l, µ̂l, Σ̂l}2l=1 may be estimated from x using an EM-algorithm (see e.g. McLachlan and Peel, 2000,
section 2.8 for details). To minimize the computational burden we perform only a few EM-iterations,
and further computational savings are obtained by running the EM on a subsample of x when n is
large.

3.3.2 Practical squared bias

Under the above introduced simplifying approximations, and in particular under pilot density π̂B ,
we have that

E(p̃(y)) = E
Σ̃,µ̃,x(i)∼ iid π̂B

(
1

n

n∑
i=1

W̃i

)

= E
Σ̃

[
E
µ̃

[
E

x∼π̂B

(
W̃ |µ̃, Σ̃

)
|Σ̃
]]

= E
Σ̃

[
f0(Σ̃)

]
. (20)
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Expression Interpretation

f0(Σ̃) =
∑2
l=1 q̂lN

(
y|aMµ̂x + bMµ̂l, vl

)
, E

µ̃

[
E

x∼π̂B

(
W̃ |µ̃, Σ̃

)
|Σ̃
]
.

where vl = Σε + b2MΣ̂lMT + a2

nMΣ̂xMT +G′MΣ̃MT .

f1(Σ̃) = N (y|Mµ̂x,Σε + (b2 + a2/n)MΣ̂xMT +G′MΣ̃MT ). E
µ̃

[
E

x∼π̂V

(
W̃ |µ̃, Σ̃

)
|Σ̃
]
.

f2(Σ̃) =
N

(
y|Mµ̂x,

1
2 Σε+

(
b2+ a2

n

)
MΣ̂xMT + G′

2 MΣ̃MT
)

(4π)dy/2
√
|Σε+G′MΣ̃MT |

. E
µ̃

[
E

x∼π̂V

(
W̃ 2|µ̃, Σ̃

)
|Σ̃
]
.

f3(Σ̃) =
N

(
y|Mµ̂x,

1
2 Σε+

(
b2

2 + a2

n

)
MΣ̂xMT + G′

2 MΣ̃MT
)

(4π)dy/2
√
|Σε+b2MΣ̂xMT +G′MΣ̃MT |

. E
µ̃

[[
E

x∼π̂V

(
W̃ |µ̃, Σ̃

)]2

|Σ̃

]
.

f̆1 =
[(
MTF−1ȳ

) (
MTF−1ȳ

)T −MTF−1M
]
, 2

G′∇Σ̃ log f1(Σ̃)|Σ̃=Σ̂x
.

where F = Σε + (1 + a2/n)MΣ̂xMT and ȳ ≡ y −Mµ̂x.

Table 2: Expressions used for calculating the approximate MSE C̃(b). The calculations leading to
f0, f1, f2, f3 are tedious but trivial, as they only involve integration over (unnormalized) multivariate
normal distributions.
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A closed form expression for f0(Σ̃) is given in Table 2. The expectation over Σ̃ in (20) does not
appear to have closed form, and we therefore employ the asymptotical (in n) mean statement of
Corollary 2.2 of Iwashita and Siotani (1994) to obtain

E(p̃(y)) = E
Σ̃

[
f0(Σ̃)

]
' f0(Σ̂x) ≡ ρ̂B(b; y), (21)

where ρ̂B serves as the practical approximation to E(p̃(y)).
Note that p(y) = Ex[p(y|x)] in (27) depends on π and is hence estimated using the pilot density

needs to be estimated. Under the pilot density π̂B it has a closed form expression

Ex[p(y|x)] ≈ E
x∼π̂B

[N (y|Mx,Σε)] ,

=

2∑
l=1

q̂lN (y|Mµ̂l,Σε +MΣ̂lMT ),

≡ ρB(b; y). (22)

Finally, (ρ̂B − ρB)
2 is taken as the practical squared bias term. Note in particular that it is easily

verified that also the practical squared bias vanishes for b = 1, as a = G′ = 0 in this case.
To underpin the claim that a non-Gaussian bias pilot is needed, we momentarily choose the

parameters of π̂B so that π̂B coincides with π̂V , e.g. via q1 = 1, q2 = 0, µ̂1 = µ̂x, Σ̂1 = Σ̂x. Then
ρ̂B = N (y|Mµ̂x,Σε + (1 + a2/n)MΣ̂xMT ) whereas ρB = N (y|Mµ̂x,Σε +MΣ̂xMT ), which shows
that the practical bias would vanish as n→∞ for all b if a Gaussian bias pilot was employed.

3.3.3 Practical variance

The variance of p̃(y), taken under pilot density π̂V , relies on the identity developed in Appendix A:

V ar(p̃(y))

= V ar
Σ̃,µ̃,x(i)∼ iid π̂V

(
1

n

n∑
i=1

W̃i

)
= V ar

Σ̃
(f1(Σ̃)) + E

Σ̃
(f3(Σ̃))− E

Σ̃
(f1(Σ̃)2)

+
1

n

(
E
Σ̃

(f2(Σ̃))− E
Σ̃

(f3(Σ̃))

)
, (23)

where explicit expressions for f1, f2, f3 are can be found in Table 2. As in the calculations leading
to the squared bias, the expectations and variance over Σ̃ in (23) do not appear to have closed
form expressions. Consequently we employ mean statement of Corollary 2.2 of Iwashita and Siotani
(1994) to obtain

E
Σ̃

(f3(Σ̃))− E
Σ̃

(f1(Σ̃)2)

+
1

n

(
E
Σ̃

(f2(Σ̃))− E
Σ̃

(f3(Σ̃))

)
' f3(Σ̂x)− f1(Σ̂x)2 +

1

n

(
f2(Σ̂x)− f3(Σ̂x)

)
≡ ρV,1(y; b). (24)
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The variance of f1(Σ̃) in (23) is treated using the delta rule variance statement of Corollary 2.2 of
Iwashita and Siotani (1994):

V ar
Σ̃

(f1(Σ̃)) ' 1

2n
f1(Σ̂x)2 (G′)

2 tr
[
(f̆1Σ̂x)2

]
≡ ρV,2(y; b). (25)

Here, f̆1 is the Jacobian matrix of log f1(Σ̃) up to a factor 2/G′ with explicit expression given in
Table 2, and tr denotes the matrix trace. Combining (24) and (25) with (23) yields the practical
variance approximation ρV as

V ar (p̃(y)) ' ρV,1 + ρV,2 ≡ ρV . (26)

Finally, collecting the results obtained in (21), (22) and (26) yields the practical MSE approximation

C̄(b) ≡ (ρ̂B(b)− ρB(b))
2

+ ρV (b), (27)

which will be used throughout the rest of the paper.

3.3.4 Implementation

Given a prior sample x, observation y and matrices M, Σε, the location of one approximately
optimal smoothing parameter b̄ involves the following steps:

1. Calculate µ̂x, Σ̂x from x and estimate {q̂l, µ̂l, Σ̂l}2l=1 from (possibly a subset of) x using a few
iterations of the EM-algorithm.

2. Compute ρB using (22).

3. Numerically minimize (27) with respect to b ∈ [0, 1], and return the minimizer as b̄.

Our MATLAB implementation of the smoothing parameter selection procedure uses the built in
function gmdistribution.fit for estimating π̂B and the minimization of C̄(b) is carried out using the
fminbnd optimizer. Our corresponding C++ implementation uses routines similar to those provided
in Press et al. (2007), section 16.1 (EM) and section 10.4 (minimization).

4 Pre-Smoothed Particle Filters
Equipped with an optimal one-step PS update, PSPF for accumulating the log-likelihood l =
log p(YT ) follows quite directly, and consists of the following steps:

1. Simulate {x(i),f
0 }ni=1 ∼ p(x0), set t = 1 and l = 0.

2. As for the SIR filter (section 2.2) set x(i),p
t = g(x

(i),f
t−1 , v

(i)
t ), i = 1, . . . , n to obtain an approxi-

mate sample from p(xt|Yt−1).

3. Compute optimal smoothing parameter b̄ using the algorithm given in section 3.3.4 with
x ={x(i),p

t }ni=1, y = yt andM,Σε given by the model specification.

4. Update using the PS formulas (11-12) with x ={x(i),p
t }ni=1, y = yt and b = b̄.

5. Sample {x(i),f
t }ni=1 from the posterior representation (12) to obtain an equally weighted ap-

proximate sample from p(xt|Yt).
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6. Set l← l + log( 1
n

∑n
i=1Wi) so that l now approximates log p(Yt).

7. If t < T , set t→ t+ 1 and go to step 2, else stop.

Various bias reduction techniques are available (see e.g. Shephard and Pitt (1997)) for computing
the log-likelihood increment log p(yt|Yt−1) ≈ log( 1

n

∑n
i=1Wi), but we do not employ those here in

order to make comparisons easy. The PSPF has, like the SIR filter computational complexity O(Tn).
We have found that in practice the bottleneck in the PS update is actually fitting the prior pilot π̂B
using the EM algorithm. Other, more problem specific pilots are conceivable, but we do not discuss
this further here.

4.1 Continuous resampling
The resampling step obtains equally weighted particles from a finite mixture representation (12) of
the filter distribution. Resampling is typically done by repetition of first drawing a component in the
mixture, and subsequently sampling from this component. This process originates discontinuities in
the simulated likelihood function, even if common random numbers are applied for repeated evalua-
tion, and makes maximizing the simulated log-likelihood difficult. This issue was first addressed by
Pitt (2002), who obtains continuous draws from a univariate mixture of point masses. For multivari-
ate finite Gaussian mixture representations, Malik and Pitt (2011) provide an algorithm that may
be used to as the resampling step in the PSPF for arbitrary dx (as the variance in each component
of p̂(xt|Yt) are equal). However for dx = 1, 2 we have found algorithms based on computing p̂(xt|Yt)
on a fine grid using fast Fourier transform (FFT) methods and sampling from the corresponding
CDFs desirable (more detailed descriptions are given in Appendix B). Like Malik and Pitt (2011)’s
algorithm, these FFT-based algorithms have linear complexity in n, but we find them easier to
program and tune.

4.2 Comparison with other particle filters
To compare the proposed methodology with currently preferred particle filters, we carry out some
simulation experiments.

4.2.1 Experiment 1

The first model we consider is is given as

yt = xt + εt, εt ∼ N(0, ξ2Id), t = 1, . . . , T, (28)
xt = 0.95xt−1 + ηt,

ηt ∼ N(0, 0.1 · 1d + 0.2Id), t = 1, . . . , T, (29)

where 1d denotes a d× d matrix with each element equal to 1. The distribution of x0 is a Gaussian
mixture consisting of three equally weighted components N(0, Id), N([1, . . . , 1]′, Id) and
N([−1, 1,−1, 1, . . . ]′, Id). We consider each combination of dimensions d = {2, 5, 10} and measure-
ment error scales ξ = {0.01, 0.1}, The log-likelihood log p(YT ) is available via the Kalman filter by
conditioning on each component in the t = 0 mixture, and therefore admit comparison between
the particle filter-based log-likelihood approximations and the truth for this globally non-Gaussian
model. We consider a short (T = 10) time series so that the non-Gaussian features introduced by the
initial Gaussian mixture do not die out. The contending filters are PSPF, SIR, Ensemble Kalman
Filter (EnKF), and post- and pre-smoothed regularized filters as described in Musso et al. (2001).
The latter two are implemented using Gaussian kernels with bandwidth selection based on the stan-
dard MISE-based plug-in formulas (Musso et al., 2001, equation 2.3), and are therefore referred
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to as MISE-Post and MISE-Pre respectively. The above mentioned filters rely only on simulation
from the state equation, and are therefore directly comparable with respect to scope. As additional
references, we also compare with Auxiliary SIR (ASIR, based on the mean of xt|xt−1 as described
in section 3.2 of Pitt and Shephard (1999)) and a fully adapted Auxiliary SIR (FASIR, Pitt and
Shephard (1999)). ASIR and FASIR use knowledge of the mean of xt|xt−1, and knowledge of the
full distribution of xt|xt−1 respectively, and are therefore not directly comparable to PSPF with
respect to scope. We report in Table 3 the bias (loglike. bias), standard error (loglike. std.dev.) and
RMSE (loglike. RMSE) of the respective estimates of log p(YT ) across 10,000 data sets simulated
from (28-29). In addition, as a crude measure for comparing the posterior simulation performance,
we also report the square root of the expected squared Euclidian distance between the mean of
p̂(xT |YT ) and the simulated xT (filter RMSE). We used n = 10, 000 for PSPF and n = 50, 000 for
the other filters so that the computing times for each filter are comparable when implemented in
MATLAB. The mean computing times relative to PSPF (relative CPU time) are also reported in
Table 3. For all filters but EnKF, non-continuous resampling was performed in each time step.

From Table 3, we see that PSPF produces smaller log-likelihood RMSEs then other filters that
are based only on simulation of the state, except in the d = 2, ξ = 0.1 case where MISE-Pre has the
smallest log-likelihood RMSE. However, assuming momentarily that the log-likelihood RMSEs are
O(n−1/2), it should be noted that even in d = 2, ξ = 0.1 case, the log-likelihood RMSE would be
the smallest for PSPF if the same n was applied. The log-likelihood performances of the PSPF and
the EnKF are fairly similar, but it should be noted that the EnKF is not consistent, and therefore
the biases cannot be eliminated. For increasing dimensions and fixed n, PSPF and EnKF becomes
more similar, which is a consequence of b̄ being chosen closer to 0 in the high-d cases (to counteract
the curse of dimensionality). SIR and MISE-Post perform poorly with respect to log-likelihood
estimation in all the high signal-to-noise ratio (ξ = 0.01) cases, and also in the moderate signal-
to-noise ratio (ξ = 0.1) cases for d = 5, 10. MISE-Pre performs well in the d = 2 cases, but the
performance relative to PSPF deteriorates as d grows.

The ASIR exhibit highly variable second stage weights, suggesting that the generic importance
sampling density implicitly introduced works poorly for this model. As it is the optimal one step
ahead particle filter, FASIR works extremely well in all cases, with log-likelihood RMSEs that are
two orders of magnitude smaller than PSPF. Thus in the (not too often encountered) cases where
full adaptation is possible, one should opt for the FASIR over the PSPF.

With respect to posterior simulation performance, PSPF produces filter RMSE results almost
identical to those of FASIR, indicating that the posterior samples of PSPF are close to those of
the optimal one step ahead filter. MISE-Pre also produces filter RMSEs close to those of FASIR,
which underpins the claim made in Section 3.2 for this model, namely that the posterior estimator
of pre-smoothed updates are relatively insensitive to the choice of smoothing parameter. In the
same vein, the log-likelihood results of PSPF relative to those of MISE-Pre show that log-likelihood
estimation is more sensitive to smoothing parameter selection and therefore targeting MSE(p̂(y)) as
is done here seems highly sensible.

4.2.2 Experiment 2

For the near-Gaussian model (28-29), the EnKF has a similar performance to PSPF. To further
explore the difference between PSPF and EnKF, we consider a second simulation experiment that
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PSPF SIR EnKF MISE MISE ASIR FASIR
-Post -Pre

d = 2, ξ = 0.01
log-like. bias -0.070 -3.561 -0.109 -3.468 -0.022 -96.33 1.6e-5
log-like. std. dev. 0.303 27.49 0.418 24.82 0.328 27.55 0.006
log-like. RMSE 0.311 27.72 0.432 25.06 0.329 100.2 0.006
filter RMSE 0.014 0.017 0.014 0.017 0.014 0.017 0.014
relative CPU time 1.0 0.6 0.5 1.2 1.0 0.9 1.2

d = 5, ξ = 0.01
log-like. bias -0.293 -1.6e3 -0.356 -1.6e3 -0.572 -1.5e3 9.0e-5
log-like. std. dev. 0.608 649.5 0.676 647.4 1.192 585.2 0.007
log-like. RMSE 0.675 1.8e3 0.764 1.8e3 1.322 1.6e3 0.007
filter RMSE 0.022 0.183 0.022 0.183 0.022 0.180 0.022
relative CPU time 1.0 1.1 1.2 2.4 1.7 1.6 2.1

d = 10, ξ = 0.01
log-like. bias -0.612 -2.2e4 -0.634 -2.3e4 -4.086 -2.1e4 -3.8e-6
log-like. std. dev. 0.813 4.6e3 0.798 4.6e3 2.540 4.3e3 0.008
log-like. RMSE 1.018 2.3e4 1.019 2.3e4 4.811 2.2e4 0.008
filter RMSE 0.032 0.674 0.032 0.674 0.032 0.671 0.032
relative CPU time 1.0 1.4 1.7 2.9 2.1 2.1 2.6

d = 2, ξ = 0.1
log-like. bias -0.066 -0.024 -0.104 -0.019 -0.013 -16.53 3.5e-5
log-like. std. dev. 0.291 0.300 0.404 0.244 0.173 6.772 0.006
log-like. RMSE 0.299 0.301 0.417 0.245 0.174 17.86 0.006
filter RMSE 0.139 0.140 0.139 0.140 0.139 0.152 0.139
relative CPU time 1.0 0.8 0.5 1.5 1.0 1.0 1.1

d = 5, ξ = 0.1
log-like. bias -0.278 -3.423 -0.340 -3.381 -0.304 -50.47 3.8e-5
log-like. std. dev. 0.597 4.510 0.671 4.420 0.761 8.899 0.009
log-like. RMSE 0.658 5.662 0.752 5.564 0.819 51.25 0.009
filter RMSE 0.220 0.244 0.220 0.244 0.221 0.258 0.220
relative CPU time 1.0 1.1 1.2 2.2 1.7 1.7 2.0

d = 10, ξ = 0.1
log-like. bias -0.584 -131.2 -0.611 -131.6 -2.694 -129.2 7.6e-5
log-like. std. dev. 0.809 41.74 0.797 41.99 1.983 29.49 0.012
log-like. RMSE 0.998 137.7 1.005 138.1 3.345 132.5 0.012
filter RMSE 0.309 0.678 0.309 0.677 0.312 0.603 0.309
relative CPU time 1.0 1.4 1.7 2.7 2.1 2.1 2.6

Table 3: Monte Carlo estimates of the log-likelihood function for the model (28-29). All quantities are
calculated across 10,000 independent replica. The PSPF is implemented with n = 10, 000 particles,
whereas the other filters are implemented with n = 50, 000 particles so that computing times using
MATLAB are on the same order.
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Method PSPF EnKF SIR PSPF EnKF SIR
nPSPF = 10000 nPSPF = 50000

log like. bias -0.188 -0.437 -0.094 -0.098 -0.437 -0.044
log like. std. dev. 0.815 1.426 0.605 0.546 1.426 0.387
q0.05 bias 0.042 0.137 0.021 0.024 0.137 0.011
q0.05 std. dev. 0.323 0.602 0.226 0.235 0.601 0.174
q0.2 bias 0.051 0.120 0.025 0.033 0.120 0.014
q0.2 std. dev. 0.396 0.464 0.350 0.321 0.464 0.264
q0.4 bias 0.028 0.053 0.015 0.025 0.053 0.013
q0.4 std. dev. 0.434 0.309 0.398 0.432 0.308 0.355
relative CPU time 1.0 0.4 0.8 1.0 0.8 1.9

Table 4: Monte Carlo estimates of log-likelihood and p(xT,2|YT )-quantiles for model (33-36) relative
to a reference SIR filter with 1,000,000 particles. PSPF was run with nPSPF particles whereas
EnKF and SIR were run with 5nPSPF particles. The notation qP correspond to the P -quantile
of p(xT |YT ) = p(xT,2|YT ). Due to the symmetries of the model, the results for qP , P > 1/2 are
essentially equal to those for q1−P and are therefore not reported. All computations where performed
in MATLAB using 10,000 replications. There is a factor 2.7 difference in the relative CPU times
between nPSPF = 10000 and nPSPF = 50000.

involves the non-linear model

yt =
1

20
x2
t +

1

2
ηt, t = 1, . . . , T, (30)

xt =
1

2
xt−1 +

√
3

4
εt, t = 1, . . . , T, (31)

x0 ∼ N(0, 1), (32)

where ηt, εt ∼ N(0, 1). The non-linear measurement equation is taken from a well-known test case
used by e.g. Andrieu et al. (2010). In particular, such models are capable of generating bimodal
filtering distributions as the sign of xt cannot be determined from observations yt. For the PSPF
and EnKF filters to be applicable, we need to augment the state as indicated in section 3.1, namely

yt = xt,1 +

√
2

4
ηt, t = 1, . . . , T, (33)

xt,1 =
1

20
x2
t,2 +

√
2

4
εt,1, t = 1, . . . , T, (34)

xt,2 =
1

2
xt−1,2 +

√
3

4
εt,2, t = 1, . . . , T, (35)

x0 ∼ N(0, 1), (36)

where ηt, εt,1, εt,2 ∼ N(0, 1). The N(0, 1/4) observation noise in (30) is for simplicity split evenly
between (33) and (34).

We are unaware of any computationally feasible exact method for calculating log p(YT ) and
p(xT |YT ) = p(xT,2|YT ) under either representation, and therefore resort to a SIR filter with 1,000,000
particles applied to representation (30-32) as the reference. We choose T = 10 and relatively low
autocorrelation and low signal to noise ratio to ensure that this reference method produces reliable
results. Specifically, repeated application of the reference filter to a single simulated data set yields
a standard error of the log-likelihood estimate on the order of 0.001 and the standard error of the
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estimated quantiles are on the order of 0.01 or better. The setup of the simulation experiment is
as follows. The reference method, PSPF, EnKF and SIR (based on the representation in Equations
33-36) where applied to 10,000 simulated data sets. We report bias and standard deviation of the
log-likelihood estimates relative to the reference method. Further, for each of the contending filters
we compare the estimated (0.05, 0.2, 0.4)-quantiles of p(xT |YT ) (= p(xT,2|YT )) to the corresponding
quantiles of the reference method, and report bias and standard deviation. We consider two situa-
tions where the PSPF has nPSPF = 10000, 50000 particles and the contending filters have 5nPSPF
particles. This ensures that the filters within each situation have similar computing times. The
simulated data sets YT are the same in both situations. The results are reported in Table 4.

It is seen that the results for EnKF are close to identical when the number of particles increases,
indicating that we incur substantial large-n biases by applying the EnKF to this model, in particular
with respect to log-likelihood evaluation and for the (0.05, 0.2)-quantiles. This is in contrast to PSPF,
which as expected has diminishing biases and standard deviations as nPSPF increases. Comparing
PSPF to the SIR with nSIR = 5nPSPF (columns 1 and 3), it is seen that PSPF and SIR provide
comparable results for comparable amounts of computing. Further, comparing PSPF in column 4 and
SIR in column 3, where both filters have n = 50, 000, it is seen that PSPF has a somewhat better
log-likelihood performance whereas the filtering performance is roughly the same. This indicates
that MSE(p̂(y)) is a sensible criterion for choosing the smoothing parameter both for the purpose
of filtering and likelihood evaluation, also for models with low signal to noise ratio.

5 Illustrations
Different aspects of PSPF are illustrated through two example models. In section 5.1 we consider
a simple non-linear interest rate model with high signal-to-noise ratio, under which the PSPF is
compared to other filters. The second model (section 5.2) is included to show that the PSPF can
easily handle multiple states, and even non-linear measurement equations via augmentation of the
state vector.

Throughout this section we refer to the quantity l which is accumulated on step 7 of the PSPF
algorithm (Section 4) as the simulated likelihood. Moreover we refer to the maximizer of the sim-
ulated likelihood as the (off-line) simulated maximum likelihood estimator along the lines of Malik
and Pitt (2011). Throughout both examples, the simulated maximum likelihood estimator is located
using a BFGS numerical optimizer and finite difference gradients. Statistical standard errors are
approximated using the (finite difference) observed information matrix at the optimizer. We prefer
this approach over methods based on accumulating the score vector (and possibly on-line optimiza-
tion) at each time step (Kantas et al., 2009; Del Moral et al., 2011; Poyiadjis et al., 2011) as it is
easier to program and adapt to new models.

5.1 One-factor interest rate model with micro-structure noise
The first example model we consider is the continuous time CEV diffusion,

dXτ = (α− βXτ )dτ + σ (Xτ )
γ
dBτ , (37)

of Chan et al. (1992), where Bτ denotes a canonical Brownian motion. We shall consider interest
rate data available at daily frequency, and a yearly time scale, corresponding to observations at
times τ = ∆t, t = 1, . . . , T where ∆ = 1/252. We apply an Euler-Maruyama discretization of (37),

xt = xt−1 + ∆(α− βxt−1) +
√

∆σxγt−1ηt, (38)
ηt ∼ iid N(0, 1).
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logα log β log σ log γ log σy log-like

σy = 0
2.084 1.314 -0.970 0.104 1038.508
(0.122) (0.123) (0.013) (0.015)

σy > 0
1.570 0.815 -1.612 0.486 -3.739 1050.607
[0.022] [0.023] [0.017] [0.009] [0.013] [1.229]
(0.389) (0.397) (0.176) (0.114) (0.100)
[0.007] [0.008] [0.001] [0.001] [0.003]

Table 5: Estimates and statistical standard errors for the short term interest rate model (38-39)
applied to the NIBOR data. In the lower panel, estimates and statistical standard errors are averaged
across 50 estimation replica with different seeds in the random number generator. Standard errors
due to Monte Carlo error for a single replica are presented in square parenthesizes below the relevant
figures.

It is well known that interest rate data are subject to micro structure noise at daily frequency
and a common workaround is to use data at slower frequencies (see e.g. Aït-Sahalia (1999) who
use monthly data). To enable the usage of daily data, we model the micro structure noise as being
zero-mean Gaussian, i.e.

yt = xt + σyεt, εt ∼ iid N(0, 1). (39)

Equations (38) and (39) constitute state-space systems on the form (1-2) with M = 1, Σε = σ2
y

and parameter vector θ = (α, β, σ, γ, σy). Thus we may estimate the parameters using PSPF-based
simulated maximum likelihood.

The dataset considered is one-week nominal Norwegian Inter Bank Offered Rate (NIBOR, in %,
T = 732) between Jan. 2nd 2009 and Nov. 23rd 2011 obtained from the Norwegian central bank’s
website (http://www.norges-bank.no/). Table 5, lower panel, provides estimates and statistical
standard errors based on the observed Fisher information. MC errors in both parameter estimates
and standard deviation are evaluated across 50 different seeds for the random number generator.
We use n = 2048 as we aim for MC standard errors of the parameter estimates on the order of 10%
of the statistical standard errors. Typical computing times to maximize a simulated log-likelihood
are approximately 300 seconds using a C++ implementation. Four EM iterations based on all n
particles were employed, with the EM computations distributed on 4 kernels of the 2010 laptop used
for calculations.

To contrast with not accounting for micro structure noise, we also fitted the time-discretized
CEV diffusion (38) directly to the data using maximum likelihood, and report the results in the
upper panel of Table 5. Judging from the log-likelihood values, we find significantly better fit for the
model accounting for noise, and the estimates for the volatility structure, i.e. σ and γ are significantly
different. As the PSPF does not require the evaluation of transition probability densities p(xt|xt−1),
it is straight forward to apply more finely time-discretized versions of (37) to the data. We found
the single step discretization (38) to be sufficiently accurate.

Figure 1 provides some diagnostic plots for t = 1, . . . , 200 and a randomly selected seed in the
PSPF. There are no signs of sample degeneracy, as the filter density is well spread out during the
whole time frame (and beyond). The fact that solid and dashed lines almost overlap suggests that
the model has a high signal-to-noise ratio whereby most of the information in p(xt|Yt) originates from
p(xt|yt). In the lower panel, it is seen that the PS update is closer to the parametric update in cases
with large absolute returns |∆yt|, whereas less smoothing is imposed in easier cases corresponding
to smaller returns.
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Figure 1: Diagnostics of the PSPF for 200 first time steps under the interest rate model applied to
the NIBOR data. The upper panel displays returns ∆yt ≡ yt−yt−1. In the middle panel, solid lines
indicate the 95% mass region of the filter density with data subtracted. For comparison, dashed
lines indicate the estimated measurement error 95% mass interval (±1.96 exp(−3.739)). The lower
panel plots the optimal smoothing parameters applied in each update.

As references for the PSPF, we also implemented FASIR, SIR and MISE-Pre for this model. To
avoid the complications associated with obtaining a continuous simulated log-likelihood for these
filters (Pitt, 2002), the reference filters where run with the parameters in Table 5, lower panel,
and the figures reported below are across 100 replications. The mean and MC standard error of
the simulated log-likelihood for FASIR with n = 2048 reads 1051.5 and 0.52 respectively, showing
that the PSPF is fully capable of competing with specialized filters that exploit model-dependent
structures. The SIR filter with n = 65, 536 obtains an expected log-likelihood 1016.9 and MC
standard error of 7.3. Thus allowing for the finite n bias in the likelihood intrinsic to the PSPF may
be preferable over the highly variable but unbiased particle filter. Finally, the MISE-Pre filter with
n = 65, 536 yields expected log-likelihood 1020.4 with a MC standard error of 6.9. This highlights
the need for dynamic smoothing parameter selection for this model, even if pre-smoothing with
conjugate kernels is employed.

5.2 Dynamic stochastic general equilibrium model
A renewed interest in particle filters in the econometric literature have at least partly been driven by
the aim of estimating non-linear solutions to dynamic stochastic general equilibrium (DSGE) mod-
els (Fernandez-Villaverde and Rubio-Ramirez, 2007; Amisano and Tristani, 2010; Andreasen, 2011;
DeJong et al., 2013; Flury and Shephard, 2011; Malik and Pitt, 2011). We consider a simple neo-
classical growth DSGE model (King et al., 1988; Schmitt-Grohe and Uribe, 2004), with equilibrium
condition given as

c−γt = βEt
[
c−γt+1(αAt+1k

α−1
t+1 + 1− δ)

]
,

ct + kt+1 = Atk
α
t + (1− δ)kt,

logAt+1 = ρ logAt + σAεt,

where ct denotes optimal consumption, kt is capital and At is a positive productivity shock. A
second order polynomial approximation (replicating Schmitt-Grohe and Uribe (2004)) to the solution
process in the log-deviation from non-stochastic steady states ĉt = log(ct/c̄), k̂t = log(kt/k̄) and
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logit−1(ρ) log(σy) log(σA) log-like logit−1(ρ) log(σy) log(σA) log-like

n = 2048 n = 4096
1.89 -2.73 -2.13 128.11 1.89 -2.73 -2.13 128.17
[0.02] [0.01] [0.01] [0.46] [0.01] [0.01] [<0.01] [0.35]
(0.32) (0.18) (0.09) (0.33) (0.19) (0.09)
[<0.01] [0.01] [<0.01] [<0.01] [0.01] [<0.01]

Table 6: Estimates and statistical standard errors for the DSGE model (41-44) based on simulated
data for different swarm sizes. Estimates and statistical standard errors are averaged across 50
estimation replica with different seeds in the random number generator. Standard errors due to MC
error for a single replica are presented in square parenthesizes below the relevant figures.

Ât = logAt is applied. The resulting system may be written in state space form with observation
equation augmented with Gaussian noise

ĉt = j(k̂t, Ât) + σcηt,c, (40)

and state evolution k̂t+1 = h(k̂t, Ât), Ât+1 = ρÂt + σAηt,A, where j, h are quadratic forms in their
arguments and ηt,c, ηt,A ∼ iid N(0, 1).

As the observation equation (40) is non-linear in the state (k̂t, Ât), we use the augmentation-of-
state trick introduced in Section 3.1. Specifically we include an additional instrumental state xt,3 to
obtain a linear observation equation and set in our notation xt,1 = k̂t, xt,2 = Ât, yt = ĉt:

yt = xt,3 + r2σyηt,y, ηt,y ∼ iid N(0, 1), (41)
xt,1 = h(xt−1,1, xt−1,2), (42)
xt,2 = ρxt−1,2 + σAηt,2, ηt,2 ∼ iid N(0, 1), (43)
xt,3 = j(xt,1, xt,2) + r1σyηt,3, (44)
ηt,3 ∼ iid N(0, 1)

where r1, r2 > 0, conform to r2
1 + r2

2 = 1. Thus (41-44) conform with the generic state space model
(1-2) with M = [0 0 1] and Σε = r2

2σ
2
y. In the computations, we fix r1 to 0.05 to maintain some

variation in state xt,3. We rely on a Maple script, called before each run of the filter, to compute
the second order approximation. As xt,3|Yt is not used for prediction at time t+ 1, it suffices to use
the bivariate continuous resampling algorithm sketched in Appendix B for xt+1,1, xt+1,2|Yt.

The structural parameters β = 0.95, α = 0.3, γ = 2.0 are kept fixed in simulation and estimation
with values equal to those considered in Schmitt-Grohe and Uribe (2004) and the deprecation of
capital is kept at δ = 0.5. A simulated data set (T = 250) is generated with the remaining parameters
θ = (ρ, σ, σA) at logit−1(ρ) = 2.0, σA = σy = 0.1 and is subsequently subject to simulated maximum
likelihood analysis using the PSPF.

Table 6 provides parameter estimates and statistical standard deviations, along with correspond-
ing standard deviations due to MC error across 50 independent replications of the experiments. A
typical computing time is 160 seconds to maximize a simulated log-likelihood for n = 2048 using
our C++ implementation and 4 EM iterations distributed on 4 kernels of the 2010 laptop used. We
consider two different swarm sizes, n = 2048 and n = 4096, to assess the robustness of the results,
and find only very small differences except for the obvious decreases in MC uncertainties for the
larger swarm.

Malik and Pitt (2011) fit the same model using their (non-adapted) continuous particle filtering
method, but their routine required “20000 particles to obtain robust results” for a somewhat shorter
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data set. They do not report MC standard deviations or the values of structural parameters they
used, and therefore a direct comparison is difficult. However, it is clear that the PSPF requires
one order of magnitude fewer particles to obtain robust results, which is very likely to justify the
computational overhead of the PSPF.

As a further comparison we also implemented SIR and ASIR filters with and without aug-
mentation of the state, namely targeting either (41-44) or (42-43) along with observation equation
yt = j(xt,1, xt,2) + N(0, σ2

y). The parameters are kept fixed at values given in Table 6. Firstly we
find that the filters fares almost identically with and without state augmentation, which suggest
that state augmentation comes at a small cost for this model. Secondly, ASIR based on E(xt+1|xt)
fares much poorer than the standard SIR filter, which indicates that the simple generic importance
density implied by this version of the ASIR has too thin tails and therefore more model specific
adaptation is in order. Finally, for the SIR with (without) state augmentation we obtain a mean
log-likelihood estimate reading 124.63 (124.61) and MC standard error in the log-likelihood estimate
reading 0.38 (0.34) for M = 16384 across 100 replications. Therefore the SIR MC standard errors
are of the same order as the PSPF while using 4-8 times as many particles.

We also observe that the log-likelihoods associated with the SIR are lower than the corresponding
for PSPF, which indicate that the bias introduced by the PSPF is more material here than for
the previous example. There are several explanations for this, with the most prominent being that
filtering distribution is less constrained by the observation likelihood relative to the previous example,
as dx > dy in this case. This effect enables bias to build up over time. In addition, we observe that
the kernel smoothing step of the PSPF introduces synthetic noise in the degenerate state transition
(42) and thereby implicitly making the model more flexible, which may be contributing to the higher
log-likelihood.

6 Discussion
In this paper we explore the pre-smoothed update and the resulting particle filter with a special
emphasis on smoothing parameter selection. Through simulation experiments and real data studies,
the pre-smoothed particle filter is shown to perform very well. In particular, we have shown that the
somewhat heuristic choice of one time period MSE(p̂(y)) as the criterion for choosing smoothing
parameters also leads a competitive filter for many periods, both in terms of log-likelihood evaluation
and filtering.

The PSPF borrows ideas from a number of sources, including the filter of Alspach and Sorenson
(1972) and the subsequent literature, but differ in the use of a resampling step. In Alspach and
Sorenson (1972) the mixture approximation of the posterior is propagated through the system, al-
lowing a non-uniform distribution of the weights to evolve. The exact updating of finite Gaussian
mixtures when the observation noise is additively Gaussian is due to Kotecha and Djuric (2003).
More general Pre-smoothed filters employing MISE-based smoothing parameter criteria that are
capable of handling more general observation equations via a rejection sampling algorithm are dis-
cussed by Le Gland et al. (1998); Hürzeler and Künsch (1998); Musso et al. (2001); Le Gland and
Oudjane (2004); Crisan and Miguez (2014). Shrunk kernel estimates in particle filters with constant
smoothing parameter were proposed by Liu and West (2001). The dynamic smoothing parameter
selection that we advocate is most closely related to that of Flury and Shephard (2009), but their
application was to a post-smoothed filter. The effect smoothing parameter choice in pre-smoothed
filters is also considered in Le Gland and Oudjane (2004) and Crisan and Miguez (2014), but they
target posterior simulation performance rather than likelihood performance. The PSPF also borrows
ideas from particle-based high-dimensional (dx large) data assimilation methods such as the Ensem-
ble Kalman Filter (Evensen, 2003; Rezaie and Eidsvik, 2012) in that Gaussian updating formulas
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are used, but our focuses on potential applications and precision are very different.
A major advantage of the proposed particle filtering approach is that it is very easy to adapt to

new models. The PSPF is not based on importance sampling, and therefore the need for problem-
specific importance densities, and the potential for unbounded weight variance (Geweke, 1989), is
mitigated. Provided an implementation of the PS update and smoothing parameter selection (C++
and MATLAB source code is available from the first author upon request), a user is only responsible
for providing routines for simulating the state equation and specifying the observation equation.
Implementation of the PS-update is also trivial when using a high-level language such as MATLAB.
Our implementation in MATLAB used in section 4.2 amounts to a few dozen lines when using built
in functions for minimizing C̄ and fitting prior π̂B .

One potential direction of further research is to assess the effect of the choice of pilots π̂B ,
π̂V . In the present work, we have focused on parametric pilots that lead to simple expressions for
f0, f1, f2, f3, and that require the least possible computational effort. However, any choices of finite
Gaussian mixture pilots, including fully non-parametric pilots (see e.g. Wand and Jones, 1994) with
Gaussian kernels, would lead to (more complicated) closed form expressions for f0, f1, f2, f3. It
would therefore be interesting to investigate whether adding more components to the pilots would
lead to substantially better results when the cost of more complicated computation associated with
such an approach are taken into account.
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A Calculations related to the practical MSE
This section develops identity (23) using iterative use of the laws of total expectation and variance:
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Now the sums over the particles can be eliminated, so that the left hand side of (23) can be written
as

V ar
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Finally, we use the V ar(X) = E(X2)− (E(X))2 identity to obtain the desired expression:
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B Continuous resampling details
This section details algorithms for continuous (with respect to parameters) sampling from a finite
Gaussian mixture when the variance of each of the component is equal. Both algorithms assume
that the uniform random numbers applied are the same for each run of the algorithm.
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B.1 Continuous resampling for dx = 1

In the case where the state is univariate, we have found that our preferred re-sampling step consist
of the following

• Grid: Compute mean and standard deviation of the FGM representation of p(xt|Yt) and initiate
a ng-point regular grid containing say the mean ± 8 standard deviations. Typical values of ng
are 512 or 1024.

• PDF: Noticing that the variance in each component in p̂(xt|Yt) is equal, the PDF may be
computed using fast Fourier transform methods as explained thoroughly in Silvermann (1986),
section 3.5 (with the modification that each particle weight is now wi and not 1/n).

• CDF: Compute the cumulative distribution function (CDF) of the approximate probability
density function using a mid-point rule for each grid point.

• Fast inversion: Sample {x(i),f
t } based on stratified uniforms using the CDF-inversion algorithm

provided in Appendix A.3 of Malik and Pitt (2011).

The total operation count of this algorithm is O(n + ng log2(ng)) and thus is linear complexity in
the number of particles retained also for continuous sampling.

B.2 Continuous resampling for dx = 2

Also for dx = 2, it is possible to use fast Fourier transforms to compute the posterior PDF at fine
grid (say ng,1 = ng,2 = 256) by doing the smoothing in the Fourier domain. Our implementation
rely on the following steps

• Sample first dimension: Sample {x(i),f
t,1 } from p(xt,1|Yt) using algorithm for dx = 1 (the

marginal p(xt,1|Yt) is easily recovered from the finite Gaussian mixture representation of
p(xt|Yt)).

• Joint PDF: Compute p̂(xt|Yt) at a fine grid using 2-dimensional fast Fourier transform methods
and linear binning (see Wand (1994) for details).

• Conditional CDFs: Compute the CDF of xt,2|xt,1 for each grid point in the xt,1-dimension
from the joint PDF using a mid-point rule.

• Sample xt,2|xt,1 = x
(i),f
t,1 : For each i = 1, ..., n, sample xt,2|xt,1 = x

(i),f
t,1 using inversion sampling

based on a linear interpolation of the xt,2|xt,1-CDFs adjacent to x(i),f
t,1 .

The computational complexity is
O(n+ ng,1 log2(ng,1)ng,2 log2(ng,2)), i.e. linear in the number of particles.
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