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Abstract W -graph refers to a general class of random graph models that can
be seen as a random graph limit. It is characterized by both its graphon func-
tion and its motif frequencies. In this paper, relying on an existing variational
Bayes algorithm for the stochastic block models along with the corresponding
weights for model averaging, we derive an estimate of the graphon function as
an average of stochastic block models with increasing number of blocks. In the
same framework, we derive the variational posterior frequency of any motif. A
simulation study and an illustration on a social network complete our work.
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1 Introduction

W -graph. The W -graph model has been intensively studied in the probability
literature. From a theoretical point of view, it defines a limit for dense graphs
(Lovász and Szegedy , 2006), but it can also be casted into a general class of
inhomogeneous random graph models (Bollobás et al. , 2007) involving some
hidden latent space. A W -graph is characterized by the so-called ’graphon’
function W , where W (u, v) is the probability for two nodes with respective
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latent coordinates u and v (both taken in [0, 1]) to be connected. The precise
definition of a W -graph model is given at the end of this section. Because of
very weak assumptions about the graphon function, the W -graph model is
very flexible and can result in a large variety of network topologies.

The W -graph model suffers an identifiability issue as, for any measure-
preserving transformation σ of [0, 1] into [0, 1], the graphon functionWσ(u, v) =
W (σ(u), σ(v)) results in the same W -graph model as with the function W .
This issue is often circumvented by further assuming that the mean density∫
W (u, v)dv is an increasing function of u (Bickel and Chen , 2009). However,

Diaconis and Janson (2008) showed that subgraphs (called hereafter motifs)
frequencies are invariant and constitute intrinsic characteristics of a W -graph.

Interpreting of the graphon. The graphon function provides a two-dimensional
representation of the global topology of the network, without any prior as-
sumption as for the form of the degree distribution, or the existence of clusters
in the graph. It is the limiting adjacency matrix of the network. For more de-
tails, we refer to the work of Lovász and his coauthors (see for instance Lovász
and Szegedy (2006)). We emphasize that the connection between the Aldous-
Hoover theorem, which is an extension of deFinetti’s theorem to exchangeable
arrays, and the notion of graph limits, was made by Diaconis and Janson
(2008). As shown in Section 5, the graphon function can help in understand-
ing the organization of the network and offers an alternative visualization that
is especially useful for large graphs.
Figure 1 provides some examples of graphon functions. A scale free network
(Barabási and Albert , 1999) is highly concentrated around a small fraction
of nodes with high degree. Such a degree distribution can be retrieved using
a graphon similar to this used in the simulation study (see Section 4). The
concentration around the central nodes is revealed by the peak in the upper
right corner of graphon surface. A community network (Girvan and Newman
, 2002), where nodes tend to connect to nodes of the same community, is
characterized by a block-diagonal structure. A small-world network (Watts
and Strogatz , 1998; Barbour and Reinert , 2006) is defined by a majority of
connexions between neighboring nodes revealed by high values of the graphon
function along the diagonal. Edges between non-neighbor nodes, which pro-
vide the ’small world’ property, are made possible by the non-zero value of the
graphon function apart from the diagonal. Thus the graphon function sum-
marizes the global topology of the network.
On the other hand, the characterization in terms of motifs provides an infor-
mation about the local organization of the network. Such a characterization
has been used to depict the organization and the functioning of biological net-
works (Milo et al. , 2002). Because the topology of a W -graph only depends
on the respective latent location of pairs of nodes, the empirical frequency of
motifs of size larger that three can be used to assess the goodness-of-fit of the
model.
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Fig. 1 Graphon function for some typical random graph models. Left: scale-free network.
Middle: community network. Right: small world network.

Statistical inference. Until recently, little attention has been paid to the sta-
tistical inference of a W -graph model, based on an observed network. The
earliest reference on graphon estimation is Kallenberg (1999) who showed the
weak convergence of a function, which can be seen as an empirical graphon,
to the graphon function. A general framework was considered without further
modeling assumptions. Contrary to this work, Palla et al. (2010) derived a
parametric exchangeable model along with an MCMC-like algorithm to per-
form inference on real data, resulting in a heavy computational burden. An
alternative parametric approach was proposed earlier by Hoff (2008). The
graphon estimation as a nonparametric problem was first formulated in Lloyd
et al. (2012). The authors relied on Gaussian process priors to build the non-
parametric scheme and also on an MCMC-like algorithm for the inference.
Since then, many approaches have been proposed, in parallel to the present
work (Airoldi et al. , 2013; Wolfe and Olhede , 2013; Asta and Shalizi , 2014;
Chatterjee , 2015; Borgs et al. , 2015). We emphasize that a series of methods
has considered total variation estimation (Chan and Airoldi , 2014) and the
corresponding two or three step inference procedures (Yang et al. , 2014).
Wolfe and Olhede (2013) developed a theoretical framework for the non-
parametric estimation of the graphon function. This latter approach also re-
lies on the connection between the SBM and W -graph models. However, while
they focus on the blockwise constant approximation of the graphon function,
we rely in this paper on approximate posterior distributions of the SBM model,
which results in a smoother estimate of the graphon function.

Link with SBM. In parallel to W -graph, the stochastic block model (SBM:
Nowicki and Snijders (2001)) has been used in a large variety of domains,
from sociology to biology, and many efforts have been made in view of its in-
ference. The proposed inference techniques range from MCMC (Nowicki and
Snijders , 2001) to a degree based algorithm (Channarond et al. , 2012), in-
cluding variational expectation maximization (VEM) (Daudin et al. , 2008)
and variational Bayes EM (VBEM) (Latouche et al. , 2012). SBM states that
each node belongs to a certain class (in finite number) and that the probability
for two nodes to be connected depends on the class they belong to. As shown
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in the next section, SBM corresponds to a W -graph for which the graphon
function is blockwise constant. Interestingly, the frequency of motifs in SBM
has been studied by Picard et al. (2008), who provided explicit formulas.

Contribution. Our purpose in this paper is to rely on some of the statistical
works developed for the SBM model in order to carry out the inference of
the W -graph model. Considering SBM as a proxy of the W -graph model, we
propose a complete inference procedure for both the graphon function and the
frequency of any motif. The method is based on the variational Bayes approach
proposed by Latouche et al. (2012).
The SBM postulates that nodes can belong to a certain number Q of classes,
which does not make sense for a W -graph. We show how the posterior distri-
butions conditional to the number of clusters can be integrated out in order to
provide an estimation of the posterior distribution of the graphon function. In
practice, this integration leads to a smooth version of the blockwise constant
approximation. Indeed, this property is desirable when the monotone version
of the graphon is expected to be smooth.
In the same spirit, we provide a variational Bayes estimate of the frequency of
any network motif (or sub-graph). These frequencies allow us to search for un-
expectedly frequent motifs in the network and we suggest to use these results
to assess the goodness-of-fit of the model.

Outline. The paper is organized as follows. In Section 2, we present the con-
nexion between SBM and W -graph, we remind the principle of the varia-
tional Bayes method and derive the approximate posterior distribution of the
graphon function. We follow the same line in Section 3 to derive the approxi-
mate posterior mean of motifs frequencies. The performances of the approach
are studied via simulation in Section 4 and the proposed method is applied to
a subset of the French political blogosphere network, in Section 5.

Notations and definition of the W random graph. All along the paper, we
will use the following notations for the W -graph model. We consider n nodes
labeled with index i = 1, . . . n. A latent variable Ui drawn uniformly over
[0, 1] is associated with each node i, the Ui’s being mutually independent. The
edges {Xij}i<j are then drawn independently conditionally on the latent {Ui}
as Xij |Ui, Uj ∼ B[W (Ui, Uj)], where W : [0, 1] × [0, 1] → [0, 1] denotes the
graphon function and B(·) is the Bernoulli distribution.

2 Inference of the graphon function

We propose to estimate the function W via the inference of a stochastic block
model. The aim of this section is to recall previous results on the variational
Bayes inference of SBM and to show how they can be used to estimate W .
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Stochastic block model (SBM). We first recall the definition of the SBM model
(Nowicki and Snijders , 2001). The n nodes are supposed to be spread into
Q groups with proportions α = (α1, . . . , αQ). More precisely, the nodes are
associated with independent (unobserved) labels Zi drawn from a multinomial
distribution M(1;α). Connections are ruled by a Q × Q connectivity matrix
π = [πq`], where πq` is the connection probability between a node from group
q and a node from group ` (π has to be symmetric for undirected graphs). The
edges of the graph are then drawn independently from a Bernoulli distribution,
conditionally on the labels Zi, as Xij |Zi, Zj ∼ B(πZi,Zj

).
In the sequel, we shall denote Z = {Zi} the set of unobserved labels, X = {Xij}
the set of observed edges and θ = (α,π) the set of model parameters.

Connection between SBM and W -graph. SBM corresponds to the case where
W is blockwise constant, with rectangular blocks of size αk × α` and height
πq`. More precisely, denoting the cumulative proportion

σq =

q∑
j=1

αj , (1)

if we define the binning function

Cα(u) = 1 +

Q∑
q=1

I{σq ≤ u},

and if we take

W (u, v) = πC(u),C(v), (2)

the resulting W -graph model corresponds to the SBM model with parameters
(α,π).

Palla et al. (2010) also considered a blockwise constant model; these au-
thors used a self similarity transformation to increase the number of blocks to
gain flexibility keeping the number of parameters small. However, the connec-
tion with W -graphs is not made explicitly in this article.

Identifiability. As pointed out by Bickel and Chen (2009), the W -graph
is not identifiable, as any measure-preserving transformation of the interval
[0, 1] would provide the same random graph. Following these authors, we
fix the version of W to be estimated using the constraint that the function
D(u) =

∫
W (u, v)dv is monotonic increasing. For consistency, we require the

corresponding condition for the SBM to be fitted, that is: dq =
∑
` α`πq`

increases with q.
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2.1 Variational Bayes inference of SBM

The inference of SBM has received many attention in the last decade. Briefly
speaking the main pitfalls lies in the determination of the conditional distri-
bution of the labels in Z, given the observation X, which displays an intricate
dependency structure. Both Monte-Carlo sampling (Nowicki and Snijders ,
2001) and variational approximations (Daudin et al. , 2008) have been pro-
posed, but the later scale better. In this paper, we will use the variational
Bayes approximation proposed in Latouche et al. (2012), which provides a
closed-form approximate posterior distribution of the parameters θ and of the
hidden variables in Z (denoted p̃θ(θ) and p̃Z(Z)). We recall that this approx-
imation is obtained through the maximization with respect to p̃θ(·) and p̃Z(·)
of the functional

J = logP (X)−KL(p̃θ(θ)p̃Z(Z)||P (θ,Z|X)), (3)

where KL stands for the Küllback-Leibler divergence. Our estimate of the
function W strongly relies on this approximate posterior distribution, which
has been shown to be reliable by Gazal et al. (2012). In the sequel, we shall
use a tilde to mark approximate posterior variational distributions and prob-
abilities.

The variational Bayes inference of SBM can be achieved using the VBEM
algorithm described in Beal and Ghahramani (2003). As SBM can be casted
into the exponential family framework, using conjugate priors for the param-
eters

α ∼ Dir(a0) where a0 = (a01, . . . , a
0
Q),

πq,` ∼ Beta(η0q,`, ζ
0
q,`),

(where Dir stands for the Dirichlet distribution), the variational Bayes poste-
rior approximation states that α and the πq` are all conditionally independent
given X with distributions

α|X ∼ Dir(a) where a = (a1, . . . , aQ),

πq,`|X ∼ Beta(ηq,`, ζq,`). (4)

The expressions of the aq, ηq` and ζq` as functions of a0q, η
0
q`, ζ

0
q` and X can

be found in Latouche et al. (2012).

No general guaranty exists about the theoretical properties of variational
(Bayes) estimates. Still, SBM appears to be a special case were the consistency
of the variational estimates has been shown in a frequentist setting (Celisse
et al. (2012), Mariadassou et al. (2010)). As for the variational Bayes esti-
mates, the simulation study carried out by Gazal et al. (2012) shows that the
approximate posterior distribution is accurate even for networks with only few
tens of nodes.
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2.2 Posterior distribution of the function W

We now derive the approximate posterior distribution of the function W , at
given coordinate (u, v). To this aim, (2) has to be integrated with respect to
the (approximate) posterior distributions of both π and α.

Proposition 1 For given (u, v) ∈ [0, 1]2, u ≤ v, using a SBM with Q groups,
the variational Bayes approximate pdf of W (u, v) is p̃(w(u, v)|X, Q) can be
computed exactly with complexity O(Q2).

The key point is that the cumulative distribution function (cdf) of a Dirich-
let distribution can be calculated via simple recursions given in Gouda and
Szántai (2010). The rest of the proof relies on standard algebraic manipula-
tions and is postponed to Appendix A.1.

The approximate posterior mean comes as a direct by-product of Proposi-
tion 1: Ẽ[W (u, v)|X] =∑
q≤`

ηq,`
ηq,` + ζq,`

[Fq−1,`−1(u, v; a)− Fq,`−1(u, v; a)− Fq−1,`(u, v; a) + Fq,`(u, v; a)] ,

where Fq,`(u, v; a) denotes the joint cdf of (σq, σ`), as defined in (1), when
α has a Dirichlet distribution Dir(a). The approximate posterior standard
deviation can be computed as well.

Variable number of groups. Denoting ĴQ the maximum of the function defined

in (3), Latouche et al. (2012) derived a close-form expression of ĴQ and showed

that it can be used as a model selection criterion, choosing Q̂ = arg maxQ ĴQ.
Thus, in straightforward scenarios where the (hidden) W -graph model could
be casted as a unique SBM, i.e. graphon function is exactly blockwise con-
stant, this framework provides a way to estimate the number of blocks as Q̂2.
Still, because SBM is mostly used as a proxy for W -graph, it may seem more
realistic to assume that no true number of groups Q does actually exist. There-
fore we rather consider here a model averaging approach in which the inferred
W -graph is an average of a series of SBM with increasing number of groups Q.
Volant et al. (2012) derived the variational Bayes approximation of p(Q|X)
and prove that, if a uniform prior over Q is used, the variational approximation
satisfies

p̃(Q|X) ∝ exp ĴQ,
∑
Q

p̃(Q|X) = 1.

In this case, the variational Bayes approximate posterior distribution ofW (u, v),
integrated over the number of groups, is simply

p̃(w|X) =
∑
Q

p̃(Q|X) p̃(w|X, Q).

We remind that ĴQ is the difference between the true marginal likelihood
of the data with Q groups, logP (X|Q) and the KL divergence between the
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variational approximation of the condition distribution P (θ,Z|X, Q) and this
distribution itself. The regular Bayesian model averaging would directly rely
on P (X|Q) to weight each considered model (Hoeting et al. (1999)). Because
of the accuracy of the variational Bayes approach for SBM (Gazal et al.
(2012), the KL divergence is expected to be small, so the variational weights
are close to the theoretical ones.

3 Motif probability

As recalled above, the W -graph model suffers a deep identifiability problem.
However, as shown in Diaconis and Janson (2008), the distribution of the
number of occurrences of patterns or motifs turns out to be invariant, and
therefore characteristic of a given W -graph model. In this section, we show
how variational Bayes inference of SBM can be used to estimate a key quantity
of such a distribution, namely the occurrence probability of the motif.

The number of occurrences of a given motif in random graphs has been
intensively studied in Erdös-Rényi graphs (see for instance Stark , 2001) and
some results about W -graphs can be found in Diaconis and Janson (2008)
and Bollobás et al. (2007). However, the exact distribution for an arbitrary
motif can not be determined in general. On the other hand, Picard et al.
(2008) derived a general approach to derive the moments of the number of
occurrences in stationary graphs. These moments only depend on the size of
the graph, on the number of automorphisms of the motif and on the occurrence
probability of the motif (and of its super-motifs).

The occurrence probability of a motif is therefore a key quantity to charac-
terize the number of occurrences of a motif in a random graph. In this section,
we recall the definition of a motif occurrence and of the occurrence probabil-
ity. Then, we show how variational Bayes inference of SBM can be used to
estimate this occurrence probability in a W -graph.

3.1 Motif probability

Definition of a motif. A motif can be defined as a sub-graph with prescribed
edges. More precisely, a motif with size k is completely defined by the k × k
0-1 adjacency matrix m, where ma,b = 1 if there is an edge between node a
and b, 0 otherwise. Figure 8, given in A.2, displays some typical motifs and
their corresponding adjacency matrices m.

As for the occurrence of a motif, we use here the definition used in Picard
et al. (2008), which defines an occurrence of m as a set of k nodes in the graph,
such that all edges prescribed in m actually occur. Formally, we consider
the occurrence indicator of the motif m at position β = (i1, . . . , ik), with
i1 < · · · < ik, as

Yβ(m) =
∏

1≤a<b≤k

(Xia,ib)mab .
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In a W -graph model, as in all stationary graphs, a given motif m has the same
probability to occur at any position. This probability is called the occurrence
probability of the motif m and we denote it by µ(m)

µ(m) = Pr{Yβ(m) = 1}.

Motif probability in W -graph. Because the edges are independent conditionally
to the latent labels, the probability of a motif m in a W -graph has the following
general form

µ(m) =

∫
. . .

∫ ∏
1≤a<b≤k

[W (ua, ub)]
mab du1 . . . duk.

We provide a close form version of this result in a special case that will be
used in the simulation study.

Proposition 2 If the W function has a symmetric product form W (u, v) =
g(u)g(v), then

µ(m) =
∏

1≤a≤k

ξma+
, where ξh =

∫
g(z)hdz,

and ma+ =
∑

1≤b≤kmab denotes the degree of vertex a in the motif m.

The proof is given in Appendix A.2.

3.2 Occurrence probability estimate

As shown in Picard et al. (2008), for a SBM model, with fixed number Q of
groups and with parameters (α,π), the form of µ(m) is given by

µ(m|α,π) =
∑
c

∏
1≤a≤k

αca
∏

1≤a<b≤k

πmab
ca,cb

, (5)

where c stands for the labeling of the k nodes: c = (c1, . . . ck), each label ca
being taken in {1, . . . Q}. Keeping Q fixed, but integrating the uncertainty
over α and π, we derive the approximate posterior mean

Ẽ[µ(m)|X, Q] =

∫ ∫
µ(m|α,π)p̃(α,π|X, Q)dαdπ.
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Proposition 3 Using the same notation as in Proposition 1, the approximate
variational Bayes posterior mean of the occurrence probability under SBM with
Q groups is

Ẽ[µ(m)|X, Q] =


 Q∏
q≤`

Γ (ηq` + ζq`)

Γ (ηq`)

 Γ (
∑Q
q=1 nq)∏Q

q=1 Γ (nq)


×

∑
c

 Q∏
q≤`

Γ (ηq` + ηcq`)

Γ (ηq` + ηcq` + ζq`)

 ∏Q
q=1 Γ (nq + ncq)

Γ
[∑Q

q=1(nq + ncq)
]
 ,

where c = (c1, . . . , ck), ncq =
∑
a I{ca = q}, ηcq` =

∑
1≤a 6=b≤k I{ca = q}I{cb =

`}mab for q 6= `, ηcqq =
∑

1≤a<b≤k I{ca = q}I{cb = q}mab and Γ (·) is the
gamma function.

The proof is based on the exact calculation of the mean of the occurrence
probability (5) using the variational Bayes posterior (4) and is postponed to
Appendix A.2.

Therefore, integrating Ẽ[µ(m)|X, Q] over the number Q of groups, as in
Section 2.2, leads to the following approximate variational Bayes posterior
mean of the occurrence probability of any motif m

Ẽ[µ(m)|X] =
∑
Q

p̃(Q|X)Ẽ[µ(m)|X, Q]. (6)

3.3 Testing unexpectedly frequent motifs

In the following, we emphasize that (6) can help in characterizing the count
of a motif in a network. Let us consider

Ik = {{i1, . . . , ik} ⊂ {1, . . . , n}|ij 6= il,∀j 6= l} ,

the set of all potential positions of m in the graph. Permuting the rows as
well as the columns of the adjacency matrix m can lead to the same motif,
at each position β ∈ Ik. Therefore, denoting R(m) the set of non redundant
permutations, the count of a motif is defined as

N(m) =
∑
β∈Ik

∑
m′∈R(m)

Yβ(m′).

Since the W -graph model is a stationary model, the expectation and variance
of N(m) have analytical forms, as shown in Picard et al. (2008) for general
class of stationary random graph models. While the calculation of E[N(m)]
is straightforward, the derivation of V(N(m)) is more technical and involves
super-motifs which are made of overlaps between occurrences of m. Therefore,
for the sake of the discussion, these two quantities are not given here and
we refer to Picard et al. (2008). A key point is that both E[N(m)] and
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V(N(m)) involve occurrence probabilities for which we provide estimators (6).
Therefore we propose to replace the µ(·) terms in E[N(m)] and V(N(m)) with

their corresponding estimators Ẽ[µ(·)|X]. Note that an alternative approach
consists in approximating the occurrence probabilities themselves using plug-
in estimators. We refer to Bickel et al. (2011) who studied the asymptotic
normality of such plug-in estimates and to Bhattacharyya and Bickel (2015)
who considered a resampling-based approach to estimate the variance of the
count.

4 Simulation study

We designed a simulation study to assess the quality of the variational Bayes
inference we propose. Our study focuses on the estimation of both the graphon
and the motifs frequencies. The methodology obviously depends on the choice
of prior parameters for the prior distributions. In practice, we set a0q = 1,∀q
and η0q,` = ζ0q,` = 1,∀(q, `). Such choices induce uniform prior distributions
over all model parameters.

4.1 Simulation design

Simulation model. We considered W -graph models with graphon function
W (u, v) = g(u)g(v) where

g(u) =
√
ρλuλ−1. (7)

The parameter ρ controls the density of the graph, meaning that ρ is the
mean probability for any two nodes to be connected, while λ controls the
concentration of the degrees: the higher λ, the more the edges are concentrated
around few nodes. Note that λ = 1 corresponds to the Erdös-Rnyi model with
connection probability ρ. Also note that the maximum of W is ρλ2, which has
to remain smaller than 1 so λ ≤ 1/

√
ρ must hold. Under model (7), the motif

probabilities can be computed using Proposition 2 where

ξh = (
√
ρλ)h/(hλ− h+ 1).

We considered graphs of size n = 100 to 316 (' 102.5) with log-density
log10 ρ = −2,−1.5,−1 and concentration λ = 1, 2, 3 and 5. 100 graphs were
sampled for each configuration. For each sampled graph, we fitted SBM mod-
els with Q = 1 to 10 groups using the VBEM algorithm described above and
computed all approximate posterior distributions.

Criteria. We used the variational posterior mean ŵ(u, v) = Ẽ(w(u, v)|Q̂,X) as

an estimate of W (u, v), where Q̂ stands for the maximum a posteriori (MAP)
estimate of Q

Q̂ = arg max
Q

p̃(Q|X).
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Marginalizing over Q (i.e. taking ŵ(u, v) = Ẽ(w(u, v)|X)) provided similar
results in all configurations (not shown). To assess the quality of this estimation
of W , we computed the root mean squared error (RMSE) between its true
value and its variational posterior mean, that is

RMSE =

√∫∫
[W (u, v)− ŵ(u, v)]

2
dudv.

The integral was evaluated on a thin grid over [0, 1]2 × [0, 1].
As for the motif probability, we considered all motifs m with 2, 3 and 4 nodes.
For each of them we computed its probability µ(m) and we used its variational

posterior mean as an estimate: µ̂(m) = Ẽ(µ(m)|Q̂,X). To compare the two,
we used the Kullback-Leibler divergence between the corresponding Bernoulli
distribution, that is

KL(m) = µ(m) log
µ(m)

µ̂(m)
+ (1− µ(m)) log

1− µ(m)

1− µ̂(m)
.

4.2 Results

Computational cost. First, in order to give some insight into the computa-
tional cost of the proposed methodology, we recorded the running time for
the inference of W -graph models in various scenarios. In this section, we set
λ = 2. The results presented in Table 1 were obtained on an Intel Xeon CPU
3.07GHz, a unique core being used. It appears that estimates are obtained in
less than 30 seconds, even for dense (ρ = 10−1) networks with n = 316 nodes.
As expected, the running time is lower for sparse networks, i.e. as ρ decreases.

size of the network (n) ρ = 10−1 ρ = 10−1.5 ρ = 10−2

100 5.64 s 5.10 s 5.20 s
147 5.95 s 5.74 s 5.35 s
215 8.71 s 7.85 s 6.49 s
316 22.09 s 19.61 s 14.47 s

Table 1 Averaged running time (in seconds) for the W -graph model inference procedure,
for various sizes n of networks and various graph densities ρ.

Model complexity. Then, we studied the (approximate) posterior distribution
of Q. Figure 2 shows how the SBM model adapts to the graphon shape, using
a higher number of classes as the W -graph model becomes more distinct from
the Erdös-Renyi model, that is as λ increases. We see that, for a same non-
Erdös-Renyi graph (λ > 1), a more complex SBM can be fitted with a larger
graph size n. We also see that for the Erdös-Renyi model (λ = 1), the posterior
distribution Q is more concentrated on the true value Q = 1 when n is larger.
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The last observation is that all posterior distributions are concentrated around
Q̂, resulting in similar results when using the MAP distribution p̃(·|Q̂,X) or
the averaged one p̃(·|X) =

∑
Q p̃(Q|X)p̃(·|X, Q).
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Fig. 2 Approximate posterior distribution p̃(Q|X) of the number Q ∈ {1, . . . , 10} of classes
in the SBM model, for ρ = 10−1.5 and various values of n as well as λ.

Estimation of W . Figure 3 shows that the RMSE of the estimate is usually
below few percent. As expected, the most difficult configurations are imbal-
anced (λ ≥ 3) medium size (n = 100) graphs. The RMSE also increases with
ρ but this only reflects the fact that ρ is the mean value of W , so the error
increases with it. However, the relative RMSE (RMSE/ρ) actually decreases
with ρ (not shown).

Motif probability. We then turned to the motifs probabilities and the results
are given in Figure 4. We remind that these quantities are invariant and identi-
fiable in the W -graph, as opposed to the graphon function W . The estimation
turns out to be very good, even for very imbalanced shape (λ = 5) as long as
the graph if large (n = 101.5) and dense no too dense (ρ = 10−2).
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Fig. 3 RMSE of the estimate of the graphon function for graph density ρ = 10−2, 10−1.5

and 10−1. x-axis: graph size n and shape λ labeled as n : λ.

5 French political blogosphere

As in Latouche et al. (2011), we consider a subset of the French political
blogosphere network. The network is made of 196 vertices connected by 2864
edges. It was built from a single day snapshot of political blogs automatically
extracted on 14th october 2006 and manually classified by the ‘Observatoire
Présidentiel” project (Zanghi et al. , 2008). Nodes correspond to hostnames
and there is an edge between two nodes if there is a known hyperlink from one
hostname to the other. The four main political parties which are present in
the data set are the UMP (french “republican”), liberal party (supporters of
economic-liberalism), UDF (“moderate” party), and PS (french “democrat”).
We run the VBEM algorithm on the data set for Q ∈ {1, . . . , 20} using the R
package mixer.

Graphon function. The graphon function estimated using the model averaging
approach we proposed in Section 2.2 is given in Figure 5. For this network, we
emphasize that the estimated posterior distribution of the number Q of classes
is highly concentrated around Q∗ = 12. As in the preceding section, all prior
parameters were set to 1 to induce uniform priors.
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Fig. 4 KL divergence between the true and estimated probabilities for the triangle (left)
and square (right) motif. Same legend as Figure 3.

First, we notice that high connectivity regions appear in two series of hills,
one along the diagonal and one parallel to the y-axis, close to x = 1 (we
recall that this function is symmetric). The series of hills on the diagonal
each corresponds to a specific political party. In terms of connection patterns,
the diagonal structure reveals that blogs of the given community more likely
connect to blogs of the same community. Moreover, we emphasize that the
plateau as the very bottom left hand side of the graphon function represents
blogs from various political parties, from the left wing to the right wing, having
very weak connection profiles. Conversely, the series of hills parallel to the axes
correspond to blogs, and in particular blogs of political analysts, having strong
connections with the different political parties. Because of the identifiability
rule which makes the degree D(x) =

∫
W (x, y)dy increasing, this region also

corresponds to nodes with highest degree. From a global point of view, this
region of the graphon plays a critical role as it ensures the connectivity of
the whole network. Yet, a closer look at the contour plot given in Figure 6
shows thats the modes of these hills all have a x coordinate close to 1 but also
have very different y coordinates, which reveals that some of these blogs have
themselves preferential connections with specific political parties.
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Fig. 5 Graphon function of the French political blogosphere network estimated using the
estimated posterior mean derived in Section 2.2.

Motif frequency. To complete the analysis of the French political blogosphere
network, we also computed the estimated mean and standard deviation of the
motif count N(m), for various motifs. As pointed out in Section 3.3, both
quantities involve motif occurrence probabilities µ(·) for which we provide
estimators in Section 3.2, using the variational inference procedure. Our results
are summarized in Table 7.
First, its appears that the three motifs which are mainly present in the network
are motif 3 (4-edges path), motif 4 (3-branch star), and motif 6 (triangle
plus an edge). However, none of the motifs are seen as unexpectedly frequent
motifs. Indeed, we found that their observed counts are less than 1.5 standard
deviation away for their means under the W -graph model. This means that the
W -graph model, estimated using the variational approach, explains reasonably
well the presence of the motifs in the network, such that no counts Nobs are
seen as unexpected. This tends to illustrate the goodness of fit of the estimated
W -graph model.

In the same vein, we would like to stress that random graph models in social
sciences often consider specific parameters to explain the presence of triangles
in networks (see for instance Robins et al. (2007)). The additional parameter
dedicated to triangles aims at accounting for the ’friends of my friends are
my friends’ effect. Conversely, a W -graph model focuses on modeling edges
between pairs of nodes. Triangles are not specifically modeled and only result
from the construction of edges between triads. Interestingly, for the social
network of blogs we considered, we found that the observed count is less than
one standard deviation away from its mean under the W -graph model. Again,
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Fig. 6 Contour plot of the French political blogosphere network graphon function estimated
using the estimated posterior mean derived in Section 2.2.

this tends to show that the presence of triangles in the network is sufficiently
explained by the estimated W -graph model and that the ’friends of my friends’
effects is accounted for by the latent position of the actors.

6 Conclusion

We considered theW -graph model which generalizes most of the random graph
models commonly used in the literature to extract knowledge from network
topologies. The model is defined through a graphon function W which has to
be inferred in practice while working on real data.
To this aim, we relied on a variational approximation procedure originally
developed for the SBM model that can be seen as a W -graph model with
blockwise constant graphon function. Then, we showed how the approximate
posterior distribution over the SBM model parameters (including the number
of blocks) could be integrated out analytically to obtain an estimate of the
posterior distribution of the graphon function.
Using the same approach, we derived the approximate posterior mean of motifs
frequencies. We propose to use this expected frequencies under the W -graph
as a goodness-of-fit criterion for this model. In the blogosphere application,
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Motifs Nobs E[N(m)]
√

V(N(m)) Sd. diff.

1 29715 39722.11 8259.28 -1.21

2 3821 4512.51 1276.13 -0.54

3 608708 968364.08 336800.24 -1.07

4 279771 428867.52 153962.02 -0.97

5 47415 74533.94 35075.09 -0.77

6 270497 397053.82 177049.01 -0.71

7 62071 87849.83 47407.22 -0.54

8 6523 8818.95 5385.87 -0.43

Fig. 7 Nobs true counts of motifs in the French political blogosphere network; E[N(m)]

estimated means;
√

V(N(m)) estimated standard errors; Sd. diff. (standardized difference

(Nobs − E[N(m)])/
√

V(N(m)).

we conclude that the most widely studied motifs display a frequency that is
consistent with the W -graph model.
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A Appendix

A.1 Inference of the function W

Proof of Proposition 1. The first part is straightforward, based on a conditioning of the
binnings of u and v

p̃(w(u, v)|X, Q) = p̃(πC(u),C(v)|X, Q)

=
∑
q≤`

p̃(πq,`|X, Q,C(u) = q, C(v) = `)P̃r{C(u) = q, C(v) = `|X, Q}

=
∑
q≤`

b(w; ηq,`, ζq,`)P̃r{C(u) = q, C(v) = `|X, Q}.

We are now left with the calculation of

P̃r{C(u) = q, C(v) = `|X, Q} = P̃r{σq−1 < u < σq , σ`−1 < v < σ`|X, Q}
= Fq−1,`−1(u, v;a)− Fq,`−1(u, v;a)− Fq−1,`(u, v;a)

+Fq,`(u, v;a)

where

– a,η and ζ are the parameters of the variational Bayes posterior distributions;
– b(·;η, ζ) stands for the pdf of the Beta distribution Beta(η, ζ);
– Fq,`(u, v;a) denotes the joint cdf of (σq , σ`), as defined in (1), when α has a Dirichlet

distribution Dir(a).

The last argument comes from Gouda and Szántai (2010) who give explicit recursions
to compute the uni- and bi-variate cdf for the Dirichlet Dir(a), denoted Gq(u;a) and
Gq,`(u, v;a) respectively.
Reminding that the approximate variational posterior of α is Dir(a) and using a simple
property of the Dirichlet distribution

(α) ∼ Dir(a) ⇒

 q∑
j=1

αj ,
∑̀
j=q+1

αj ,

Q∑
j=`+1

αj

 ∼ Dir

 q∑
j=1

aj ,
∑̀
j=q+1

aj ,

Q∑
j=`+1

aj

 ,

the calculation of Fq,`(u, v) follows as

Fq,`(u, v) = P̃r{σq < u, σ` < v|X, Q}

= P̃r{σq < u, 1− σ` > 1− v|X, Q}

= P̃r{σq < u|X, Q} − Pr{σq < u, σ` < 1− v|X, Q}
= G1(u; [sq , s` − sq , sQ − s`])−G1,3(u, 1− v; [sq , s` − sq , sQ − s`]),

where the (sq) are the cumulated parameters: sq =
∑q
j=1 aj . �

A.2 Motif probability

Proof of Proposition 3. We directly write the approximate variational expectation

Ẽ[µ(m)|X, Q] =

∫ ∫
E[µ(m)|α,π]p̃(α,π|X, Q) dα dπ

=

∫ ∫ {∑
c

E[µ(m)|c,π]p(c|α)

}
p̃(α,π|X, Q) dα dπ,
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motif m

adjacency
matrix m

 0 1 1
1 0 1
1 1 0

  0 1 0
1 0 1
0 1 0




0 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0




0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0


Fig. 8 Adjacency matrix m for four typical motifs.

where

p(c|α) =
∏

1≤a≤k
p(ca|α) =

∏
1≤a≤k

∏
1≤q≤Q

α
I{ca=q}
q =

∏
1≤q≤Q

α
nc
q
q .

Furthermore, we have

E[µ(m)|c,π] = Pr

 ∏
1≤a<b≤k

X
mab
ab = 1|c,π

 =
∏

1≤a<b≤k
Pr {Xab = 1|ca, cb,π}mab

=
∏

1≤a<b≤k

∏
1≤q,`≤Q

π
I{ca=q}I{cb=`}mab
q`

=
∏

1≤q<`≤Q

∏
a6=b

π
I{ca=q}I{cb=`}mab
q`

∏
1≤q≤Q

∏
1≤a<b≤k

π
I{ca=q}I{cb=q}mab
qq =

∏
1≤q≤`≤Q

π
ηcq`
q` ,

so we end up with

Ẽ[µ(m)|X, Q] =

∫ ∫ ∑
c

∏
1≤q≤`≤Q

π
ηcq`
q`

∏
1≤q≤Q

α
nc
q
q p̃(α,π|Q) dα dπ

=

∫ ∫ ∑
c

∏
1≤q≤`≤Q

π
ηcq`
q`

∏
1≤q≤Q

α
nc
q
q

∏
1≤q≤`≤Q

Γ (ηq` + ζq`)

Γ (ηq`)Γ (ζq`)
π
ηq`−1

q` (1− πq`)ζq`−1

Γ (
∑

1≤q≤Q nq)∏
1≤q≤Q Γ (nq)

∏
1≤q≤Q

α
nq−1
q dα dπ

=
∑
c

∏
1≤q≤`≤Q

Γ (ηq` + ζq`)

Γ (ηq`)Γ (ζq`)

∫
π
ηq`+n

c
q`−1

q` (1− πq`)ζq`−1 dπq`

Γ (
∑

1≤q≤Q nq)∏
1≤q≤Q Γ (nq)

∏
1≤q≤Q

∫
α
nq+n

c
q−1

q dαq

=
∑
c

∏
1≤q≤`≤Q

Γ (ηq` + ζq`)

Γ (ηq`)Γ (ζq`)

Γ (ηq` + ηcq`)Γ (ζq`)

Γ (ηq` + ηcq` + ζq`)

Γ (
∑

1≤q≤Q nq)∏
1≤q≤Q Γ (nq)

∏
1≤q≤Q Γ (nq + nc

q)

Γ
∑

1≤q≤Q(nq + nc
q)
,

and the proof is completed. �
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Proof of Proposition 2. Because the Zi’s are uniformly distributed over [0; 1], we have

µ(m) = Pr{Y (i1, . . . ik;m) = 1}

=

∫
· · ·

∫
Pr

 ∏
1≤a<b≤k

X
mab
iaib

= 1|Zi1 = z1, . . . Zik = zk

dz1 . . . dzk

=

∫
· · ·

∫ ∏
1≤a<b≤k

[w(za)w(zb)]
mabdz1 . . . dzk

=

∫
· · ·

∫ ∏
1≤a≤k

w(za)ma+dz1 . . . dzk =
∏

1≤a≤k

∫
w(z)ma+dz.

�
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