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Abstract
We propose a multiple imputation method to deal with incomplete categorical data.

This method imputes the missing entries using the principal components method ded-
icated to categorical data: multiple correspondence analysis (MCA). The uncertainty
concerning the parameters of the imputation model is reflected using a non-parametric
bootstrap. Multiple imputation using MCA (MIMCA) requires estimating a small
number of parameters due to the dimensionality reduction property of MCA. It allows
the user to impute a large range of data sets. In particular, a high number of cate-
gories per variable, a high number of variables or a small the number of individuals
are not an issue for MIMCA. Through a simulation study based on real data sets, the
method is assessed and compared to the reference methods (multiple imputation using
the loglinear model, multiple imputation by logistic regressions) as well to the latest
works on the topic (multiple imputation by random forests or by the Dirichlet process
mixture of products of multinomial distributions model). The proposed method shows
good performances in terms of bias and coverage for an analysis model such as a main
effects logistic regression model. In addition, MIMCA has the great advantage that
it is substantially less time consuming on data sets of high dimensions than the other
multiple imputation methods.

Keywords : missing values, categorical data, multiple imputation, multiple correspondence
analysis, bootstrap

1 Introduction

Data sets with categorical variables are ubiquitous in many fields such in social sciences,
where surveys are conducted through multiple-choice questions. Whatever the field, missing
values frequently occur and are a key problem in statistical practice since most of statistical
methods cannot be applied directly on incomplete data.

To deal with missing values one solution consists in adapting the statistical method so
that it can be applied on an incomplete data set. For instance, the maximum likelihood (ML)
estimators can be derived from incomplete data using an Expectation-Maximization (EM)
algorithm [1] and their standard error can be estimated using a Supplemented Expectation-
Maximization algorithm [2]. The ML approach is suitable, but not always easy to establish
[3].

Another way consists in replacing missing values by plausible values according to an
imputation model. This is called single imputation. Thus, the data set is complete and
any statistical method can be applied on this one. Figure 1 illustrates three simple single
imputation methods. The data set used contains 1000 individuals and two variables with
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πb 0.4
πa 0.6

πb|A 0.2
πa|A 0.8
πa|B 0.4
πb|B 0.6

→

V1 V2

A a
B b
B a
B b
...

...

→

V1 V2

A a
B NA
B a
B NA
...

...

Majority Regression Stochastic regression
πb|A 0.15
πa|A 0.85
πa|B 0.58
πb|B 0.42

πb|A 0.14
πa|A 0.86
πa|B 0.27
πb|B 0.73

πb|A 0.18
πa|A 0.82
πa|B 0.41
πb|B 0.59

cov95%(πb) = 0.00 cov95%(πb) = 51.5 cov95%(πb) = 89.9

Figure 1: Illustration of three imputation methods for two categorical variables: the top part de-
scribed how the data are built (marginal and conditional proportions, associated com-
plete data, incomplete data set generated where NA denotes a missing value) and the
bottom part sums up the observed conditional proportions after an imputation by sev-
eral methods (majority, regression, stochastic regression). The last line indicates the
coverage for the confidence interval for the proportion of b over 1000 simulations.

two categories: A and B for the first variable, a and b for the second one. The data set
is built so that 40% of the individuals take the category a and 60% the category b. In
addition, the variables are linked, that is to say, the probability to observe a or b on the
second variable depends on the category taken on the first variable. Then, 30% of missing
values are generated completely at random on the second variable. A first method could be to
impute according to the most taken category of the variable. In this case, all missing values
are imputed by a. Consequently, marginal proportions are modified, as well as conditional
proportions (see the bottom part of Figure 1). This method is clearly not suitable. A
more convenient solution consists in taking into account the relationship between the two
variables, following the rationale of the imputation by regression for continuous data. To
achieve this goal, the parameters of a logistic regression are estimated from the complete
cases, providing fitted conditional proportions. Then, each individual is imputed according
to the highest conditional proportion given the first variable. This method respects the
conditional proportions better, but the relationship between variables is strengthened which
is not satisfactory. In order to obtain an imputed data set with a structure as close as possible
to the generated data set, a suitable single imputation method is to perform stochastic
regression: instead of imputing according to the the most likely category, the imputation is
performed randomly according to the fitted probabilities.

An imputation model used to perform single imputation has to be sufficiently complex
compared to the statistical method desired (the analysis model). For instance, if the aim is
to apply a logistic regression from an incomplete data set, it requires using an imputation
model taking into account the relationships between variables. Thus, a suitable single impu-
tation method, such as the stochastic regression strategy, leads to unbiased estimates of the
parameters of the statistical method (see Figure 1). However, although the single imputation
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method respects the structure of the data, it still has the drawback that it leads to underes-
timate the variability of the estimators because the uncertainty on the imputed values is not
taken into account in the estimate of the variability of the estimators. However, although
the single imputation method respects the structure of the data, it still has the drawback
that the uncertainty on the imputed values is not taken into account in the estimate of the
variability of the estimators. Thus, this variability remains underestimated. For instance, in
Figure 1, the level of the confidence interval of πb, the proportion of b, is 89.9% and does not
reach the nominal rate of 95%.

Multiple imputation (MI) [4, 5] has been developped to avoid this issue. The principle of
multiple imputation consists in creating M imputed data sets to reflect the uncertainty on
imputed values. Then, the parameters of the statistical method, denoted ψ, are estimated
from each imputed data set, leading to M sets of parameters (ψ̂m)1≤m≤M . Lastly, these sets of
parameters are pooled to provide a unique estimation for ψ and for its associated variability
using Rubin’s rules [4].

MI is based on the ignorability assumption, that is to say ignoring the mechanism that
generated missing values. This assumption is equivalent to: first, the parameters that govern
the missing data mechanism and the parameters of the analysis model are independent; then,
missing values are generated at random, that is to say, the probability that a missing value
occurs on a cell is independent from the value of the cell itself. In practice, ignorability
and value missing at random (MAR), are used interchangeably. This assumption is more
plausible when the number of variables is high [6, 7], but remains difficult to verify.

Thus, under the ignorability assumption, the main challenge in multiple imputation is
to reflect the uncertainty of the imputed values by reflecting properly [4, p. 118-128] the
uncertainty on the parameters of the model used to perform imputation to get imputed
data sets yielding to valid statistical inferences. To do so, two classical approaches can be
considered. The first one is the Bayesian approach: a prior distribution is assumed on the
parameters θ of the imputation model, it is combined with the observed entries, providing

a posterior distribution from which M sets of parameters
(
θ̃m

)
1≤m≤M

are drawn. Then,

the incomplete data set is imputed M times using each set of parameters. The second one
is a bootstrap approach: M samples with replacement are drawn leading to M incomplete
data sets from which the parameters of the imputation model are obtained. The M sets of
parameters (θm)1≤m≤M are then used to perform M imputations of the original incomplete
data set.

In this paper, we detail in Section 2 the main available MI methods to deal with categorical
data. Two general modelling strategies can be distinguished for imputing multivariate data:
joint modelling (JM) [6] and fully conditional specification (FCS)[8]. JM is based on the
assumption that the data can be described by a multivariate distribution. Concerning FCS,
the multivariate distribution is not defined explicitly, but implicitly through the conditional
distributions of each variable only. Among the presented methods, three are JM methods:
MI using the loglinear model, MI using the latent class model and MI using the normal
distribution; the two others are FCS strategies: the FCS using logistic regressions and FCS
using random forests [9]. In Section 3, a novel JM method based on a principal components
method dedicated to categorical data, namely multiple correspondence analysis (MCA), is
proposed. Principal components methods are commonly used to highlight the similarities
between individuals and the relationships between variables, using a small number of principal
components and loadings. MI based on this family of methods uses these similarities and
these relationships to perform imputation, while using a restricted number of parameters.
The performances of the imputation are very promising from continuous data [10, 11] which
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motivates the consideration of a method for categorical data. In Section 4, a simulation study
based on real data sets, evaluates the novel method and compares its performances to other
main multiple imputation methods. Lastly, conclusions about MI for categorical data and
possible extensions for the novel method are detailled.

2 Multiple imputation methods for categorical data

The imputation of categorical variables is rather complex. Indeed, contrary to continuous
data, the variables follow a distribution on a discrete support defined by the combinations
of categories observed for each individual. Because of the explosion of the number of com-
binations when the number of categories increases, the number of parameters defining the
multivariate distribution could be extremely large. Consequently, defining an imputation
model is not straightforward for categorical data. In this section we review the most popular
approaches commonly used to deal with categorical data: JM using the loglinear model, JM
using the latent class model, JM using the normal distribution and FCS using multinomial
logistic regression or random forests.

Hereinafter, matrices and vectors will be in bold text, whereas sets of random variables or
single random variables will not. Matrices will be in capital letters, whereas vectors will be in
lower case letters. We denote XI×K a data set with I individuals and K variables. We note
the observed part of X by Xobs and the missing part by Xmiss, so that X = (Xobs,Xmiss).
Let qk denote the number of categories for the variable Xk, J =

∑K
k=1 qk the total number

of categories. We note P (X, θ) the distribution of the variables X = (X1, . . . , XK), where θ
is the corresponding set of parameters.

2.1 Multiple imputation using a loglinear model

The saturated loglinear model (or multinomial model) [12] consists in assuming a multino-
mial distribution M (θ, 1) as joint distribution for X, where θ = (θx1...xK )x1...xK is a vector
indicating the probability to observe each event (X1 = x1, . . . , XK = xK). Performing MI
with the loglinear model [6] is often achieved by reflecting the variability of the imputation
model’s parameters with a Bayesian approach. More precisely, a Bayesian treatment of this
model can be specified as follows:

X|θ ∼M(θ, 1) (1)

θ ∼ D(α) (2)

θ|X ∼ D(α + θ̂ML) (3)

where D(α) denotes the Dirichlet distribution with parameter α, a vector with the same

dimension as θ and θ̂ML is the maximum likelihood for θ, corresponding to the observed
proportions of each combination in the data set. A classical choice for α is α = (1/2, . . . , 1/2)
corresponding to the non-informative Jeffreys prior [13]. Combining the prior distribution
and the observed entries, a posterior distribution for the model’s parameters is obtained
(Equation (3)).

Because missing values occur in the data set, the posterior distribution is not tractable,
therefore, drawing a set of model’s parameters in it is not straightforward. Thus, a data-
augmentation algorithm [14] is used. In the first step of the algorithm, missing values are
imputed by random values. Then, because the data set is now completed, a draw of θ
in the posterior distribution (3) can easily be obtained. Next, missing values are imputed
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from the predictive distribution (1) using the previously drawn parameter and the observed
values. These steps of imputation and draw from the posterior distribution are repeated
until convergence. At the end, one set of parameters θ̃m, drawn from the observed posterior
distribution, is obtained. Repeating the procedure M times in parallel, M sets of parameters
are obtained from which multiple imputation can be done. In this way, the uncertainty on
the parameters of the imputation model is reflected, insuring a proper imputation.

The loglinear model is considered as the gold standard for MI of categorical data [15].
Indeed, this imputation model reflects all kind of relationships between variables, which en-
ables applying any analysis model. However, this method is dedicated to data sets with a
small number of categories because it requires a number of independent parameters equal
to the number of combinations of categories minus 1. For example, it corresponds to
9 765 624 independent parameters for a data set with K = 10 variables with qk = 5
categories for each of them. This involves two issues: the storage of θ and overfitting.
To overcome these issues, the model can be simplified by adding constraints on θ. The
principle is to write log(θ) as a linear combination of a restricted set of parameters λ =[
λ0, λx1 , . . . , λxK , . . . , λx1x2 , . . . , λx1xK , . . . , λxK−1xK

]
, where each element is indexed by a cat-

egory or a couple of categories. More precisely, the constraints on θ are given by the following
equation:

log(θx1...xK ) = λ0 +
∑
k

λxk +
∑
(k,k′)
k 6=k′

λxkxk′ for all (X1 = x1, . . . , XK = xK) (4)

where the second sum is the sum over all the couples of categories possible from the set
of categories (x1, . . . , xK). Thus, the imputation model reflects only the simple (two-way)
associations between variables, which is generally sufficient. Equation (4) leads to 760 in-
dependent parameters for the previous example. However, although it requires a smaller
number of parameters, the imputation under the loglinear model still remains difficult in this
case, because the data-augmentation algorithm used [6, p.320] is based on a modification of
θ at each iteration and not of λ. Thus the storage issue remains.

2.2 Multiple imputation using a latent class model

To overcome the limitation of MI using the loglinear model, another JM method based on the
latent class model can be used. The latent class model [12, p.535] is a mixture model based
on the assumption that each individual belongs to a latent class from which all variables can
be considered as independent. More precisely, let Z denote the latent categorical variable
whose values are in {1, . . . , L}. Let θZ = (θ`)1≤`≤L denote the proportion of the mixture and

θX =
(
θ

(`)
x

)
1≤`≤L

the parameters of the L components of the mixture. Thus, let θ = (θZ , θX)

denote the parameters of the mixture, the joint distribution of the data is written as follows:

P (X = (x1, . . . , xK); θ) =
L∑
`=1

(
P (Z = `, θZ)

K∏
k=1

P
(
Xk = xk|Z = `; θ(`)

x

))
(5)

Assuming a multinomial distribution for Z and X|Z, Equation (5), can be rewritten as
follows:

P (X = (x1, . . . , xK); θ) =
L∑
`=1

(
θ`

K∏
k=1

θ(`)
xk

)
(6)
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The latent class model requires L × (J −K) + (K − 1) independent parameters, i.e. a
number that linearly increases with the number of categories.

[16] reviews in detail different multiple imputation methods using a latent class model.
These methods can be distinguished by the way used to reflect the uncertainty on the pa-
rameters of the imputation model and by the way that the number of components of the
mixture is chosen: automatically or a priori. The quality of the imputation is quite sim-
ilar from one method to another, the main differences remain in computation time. One
of the latest contributions in this family of methods uses a non-parametric extension of the
model namely the Dirichlet process mixture of products of multinomial distributions model
(DPMPM) [17, 18]. This method uses a fully Bayesian approach in which the number of
classes is defined automatically and is not too computationally intensive. DPMPM assumes
a prior distribution on θZ = (θ`)1≤`≤L without fixing the number of classes which is supposed
to be infinite. More precisely, the prior distribution for θZ is defined as follows:

θ` = ζ`
∏
g<`

(1− ζg) for ` in 1, . . . ,∞ (7)

ζ` ∼ B(1, α) (8)

α ∼ G(.25, .25) (9)

where G refers to the gamma distribution, α is a positive real number, B refers to the beta
distribution; the prior distribution for θX is defined by:

θ(`)
x ∼ D (1, . . . , 1) (10)

corresponding to a uniform distribution over the simplex defined by the constraint of sum
to one. The posterior distribution of θ is not analytically tractable, even when no missing
value occur. However, the distribution of each parameter is known if the others are given.
For this reason, a Gibbs sampler is used to obtain a draw from the posterior distribution.
The principle of this is to draw each parameter while fixing the others. From an incomplete
data set, missing values require to be preliminarily imputed. More precisely, a draw from
the posterior distribution is obtained as follows: first, the parameters and missing values
are initialized; then, given the current parameters, particularly θZ and θX , each individual
is randomly affected to one class according to its categories; next, each parameter (θZ , θX ,
α) is drawn conditionally to the others; finally, missing values are imputed according to the
mixture model. These steps are then repeated until convergence (for more details, see [18]).

Despite the infinite number of classes, the prior on θ` typically implies that the posterior
distribution for θ` is non negligible for a finite number of classes only. Moreover, for compu-
tational reasons, the number of classes has to be bounded. Thus, [18] recommends to fix the
maximum number of latent classes to twenty. Consequently, the simulated values of θ are
some realisations of an approximated posterior distribution only.

Multiple imputation using the latent class model has the advantages and drawbacks of
this model: because the latent class model approximates quite well any kind of relationships
between variables, MI using this model enables the use of complex analysis models such as
logistic regression with some interaction terms and provides good estimates of the parame-
ters of the analysis model. However, the imputation model implies that given a class, each
individual is imputed in the same way, whatever the categories taken. If the class is very
homogeneous, all the individuals have the same observed values, and this behaviour makes
sense. However, when the number of missing values is high and when the number of vari-
ables is high, it is not straightforward to obtain homogeneous classes. It can explain why
[16] observed that the multiple imputation using the latent class model can lead to biased
estimates for the analysis model in such cases.
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2.3 Multiple imputation using a multivariate normal distribution

Another popular strategy to perform MI for categorical data is to adapt the methods de-
veloped for continuous data. Because multiple imputation using the normal multivariate
distribution is a robust method for imputing continuous non-normal data [6], imputation
using the multivariate normal model is an attractive method for this. The principle consists
in recoding the categorical variables as dummy variables and applying the multiple imputa-
tion under the normal multivariate distribution on the recoded data. The imputed dummy
variables are seen as a set of latent continuous variables from which categories can be indepen-
dently derived. More precisely, let ZI×J denote the disjunctive table coding for XI×K , i.e.,
the set of dummy variables corresponding to the incomplete matrix. Note that one missing
value on xk implies qk missing values for zk. The following procedure implemented in [19, 20]
enables the multiple imputation of a categorical data set using the normal distribution:

• perform a non-parametric bootstrap on Z: sample the rows of Z with replacement M
times. M incomplete disjunctive tables

(
Zboot
m

)
1≤m≤M are obtained;

• estimate the parameters of the normal distribution on each bootstrap replicate: calcu-
late the ML estimators of (µm,Σm), the mean and the variance of the normal distribu-
tion for the mth bootstrap incomplete replicate, using an EM algorithm. Note that the
set of M parameters reflects the uncertainty required for a proper multiple imputation
method;

• create M imputed disjunctive tables: impute Z from the normal distribution us-
ing (µm,Σm)1≤m≤M and the observed values of Z. M imputed disjunctive tables
(Zm)1≤m≤M are obtained. In Zm, the observed values are still zeros and ones, whereas
the missing values have been replaced by real numbers;

• create M imputed categorical data sets: from the latent continuous variables contained
in (Zm)1≤m≤M , derive categories for each incomplete individual.

Several ways have been proposed to get the imputed categories from the imputed contin-
uous values. For example [21] recommends to attribute the category corresponding to the
highest imputed value, while [22–24] propose some rounding strategies. However, “A single
best rounding rule for categorical data has yet to be identified.” [25, p. 107]. A common
one proposed by [22] is called Coin flipping. Coin flipping consists in considering the set of
imputed values of the qk dummy variables zk as an expectation given the observed values

θk = E
[
(z1, . . . , zqk)|Zobs; µ̂, Σ̂

]
. Thus, randomly drawing one category according to a multi-

nomial distributionM (θk, 1), suitably modified so that θk remains between 0 and 1, imputes
plausible values. The values lower than 0 are replaced by 0 and the imputed values higher
than 1 are replaced by 1. In this case, the imputed values are scaled to respect the constraint
of sum to one.

Because imputation under the normal multivariate distribution is based on the estimate
of a covariance matrix, the imputation under the normal distribution can detect only two-way
associations between categorical variables. In addition, this method assumes independence
between categories conditionally to the latent continuous variables. This implies that if two
variables are linked, and if an individual has missing values on these ones, then the categories
derived from the imputed disjunctive table will be drawn independently. Consequently, the
two-way associations can not be perfectly reflected in the imputed data set. Note that,
contrary to the MI using the latent class, the parameter of the multinomial distribution θk
is specific to each individual, because the imputation of the disjunctive table is performed
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given the observed values. This behaviour makes sense if the variables on which missing
values occur are linked with the others. The main drawback of the MI using the normal
distribution is the number of independent parameters estimated. This number is equal to
(J−K)×(J−K+1)

2
+ (J −K), representing 860 parameters for a data set with 10 variables with

5 categories. It increases rapidly when the total number of categories (J) increases, leading
quickly to overfitting. Moreover, the covariance matrix is not invertible when the number
of individuals is lower than (J −K). To overcome these issues, it is possible to add a ridge
term on its diagonal to improve the conditioning of the regression problem.

2.4 Fully conditional specification

Categorical data can be imputed using a FCS approach instead of a JM approach: for each
variable with missing values, an imputation model is defined, (i.e. a conditional distribution),
and each incomplete variable is sequentially imputed according to this, while reflecting the
uncertainty on the model’s parameters. Typically, the models used for each incomplete
variable are some multinomial logistic regressions and the variability of the models parameter
is reflected using a Bayesian point of view. More precisely, we denote by θk = (θk`)1≤`≤qk the
set of parameters for the multinomial distribution of the variable to impute Xk (the set of the
other variables is denoted X−k). We also denote by βk = (βk1, . . . ,βkL) the set of regression
parameters that defines θk, such as βk` is the regression parameter vector associated with
the category ` of the response variable Xk and Zk is the design matrix associated. Note
that identifiability constraints are required on βk, that is why βkL is fixed to the null vector.
Thus, the imputation is built on the following assumptions:

Xk|θk ∼M(θk, 1) (11)

θk` = P(Xk = `|X−k, β) =
exp(Zkβk`)

1 +
∑L−1

`=1 exp(Zkβk`)
(12)

β|X ∼ N (β̂, V̂ ) (13)

where β̂, V̂ are the estimators of β and of its associated variance. For simplicity, suppose
that the data set contains 2 binary variables x1 and x2, with x2 as incomplete and x1 as
complete. To impute x2 given x1 the first step is to estimate β and its associated variance
using complete cases by iteratively reweighted least squares. Then, a new parameter β̃k is
drawn from a normal distribution centred in the previous estimate with the covariance matrix
previously obtained. Lastly, the fitted probability θk are obtained from the logistic regression
model with parameter β̃k and x2 is imputed according to a multinomial distribution with
parameters θk [25, p.76]. Note that β is drawn in an approximated posterior distribution.
Indeed, as explained by [4, p.169-170], the posterior distribution has not a neat form for
reasonable prior distributions. However, on a large sample, assuming a weak prior on β,
the posterior distribution can be approximated by a normal distribution. Thus, draw β in a
normal distribution with β̂ and V̂ as parameters makes sense.

In the general case, where the data set contains K variables with missing values, each
variable is imputed according to a multinomial logistic regression given all the others. More
precisely, the incomplete data set is firstly randomly imputed. Then, the missing values of the
variable xk are imputed as explained previously: a value of βk is drawn from the approximated
posterior distribution and an imputation according to P (Xk|X−k; θk) is performed. The next
incomplete variable is imputed in the same way given the other variables, and particularly
from the new imputed values of xk. We proceed in this way for all variables and repeat it
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until convergence, this provides one imputed data set. The procedure is performed M times
in parallel to provide M imputed data sets.

Implicitly, the choices of the conditional distributions P (Xk|X−k; θk) determine a joint
distribution P (Xk; θ), in so far as a joint distribution is compatible with these choices [26].
The convergence to the joint distribution is often obtained for a low number of iterations (5
can be sufficient), but [25, p.113] underlines that this number can be higher in some cases.
In addition, FCS is more computationally intensive than JM [15, 25]. This is not a practical
issue when the data set is small, but it becomes so on a data set of high dimensions. In
particular, checking the convergence becomes very difficult.

The imputation using logistic regressions on each variable performs quite well, that is
why this method is often used as a benchmark to perform comparative studies [7, 18, 27, 28].
However, the lack of multinomial regression can affect the multiple imputation procedure
using this model. Indeed, when separability problems occur [29], or when the number of
individuals is smaller than the number of categories [12, p.195], it is not possible to get the
estimates of the parameters. In addition, the number of parameters is very large when the
number of categories per variable is high, implying overfitting when the number of individ-
uals is small. When the number of categories becomes too large, [25, 30] advise to use a
method dedicated to continuous data: the predictive mean matching (PMM). PMM treats
each variable as continuous variables, predicts them using linear regression, and draws one
individual among those the nearest to the predicted value. However, PMM often yields to
biased estimates [7].

Typically, the default models selected for each logistic regression are main effects models.
Thus, the imputation model captures the two-way associations between variables well, which
is generally sufficient for the analysis model. However, models taking into account interactions
can be used but the choice of these models requires a certain effort by the user. To overcome
this effort, in particular when the variables are numerous, conditional imputations using
random forests instead of logistic regression have been proposed [27, 28]. According to [27],
an imputation of one variable Xk given the others is obtained as follows:

• draw 10 bootstrap samples from the individuals without missing value on Xk;

• fit one tree on each sample: for a given bootstrap sample, draw randomly a subset of√
K − 1 variables among the K − 1 explanatory variables. Build one tree from this

bootstrap sample and this subset of explanatory variables. A random forest of 10 trees
is obtained. Note that the uncertainty due to missing values is reflected by the use of
one random forest instead of a unique tree;

• impute missing values on Xk according to the forest: for an individual i with a missing
value on Xk, gather all the donors from the 10 predictive leaves from each tree and
draw randomly one donor from it.

Then, the procedure is performed for each incomplete variable and repeated until convergence.
Using random forests as conditional models allows capturing complex relationships between
variables. In addition, the method is very robust to the number of trees used, as well as to
the number of explanatory variables retained. Thus, the default choices for these parameters
(10 trees,

√
K − 1 explanatory variables) are very suitable in most of the cases. However,

the method is more computationally intensive than the one based on logistic regressions.
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3 Multiple Imputation using multiple correspondence

analysis

This section deals with a novel MI method for categorical data based on multiple corre-
spondence analysis (MCA) [31, 32], i.e. the principal components method dedicated for
categorical data. Like the imputation using the normal distribution, it is a JM method based
on the imputation of the disjunctive table. We first introduce MCA as a specific singular
value decomposition on specific matrices. Then, we present how to perform this SVD with
missing values and how it is used to perform single imputation. We explain how to intro-
duce uncertainty to obtain a proper MI method. Finally, the properties of the method are
discussed and the differences with MI using the normal distribution highlighted.

3.1 MCA for complete data

MCA is a principal components method to describe, summarise and visualise multidimen-
sional matrices with categorical data. This powerful method allows us to understand the
two-way associations between variables as well as the similarities between individuals. Like
any principal components method, MCA is a method of dimensionality reduction consisting
in searching for a subspace of dimension S providing the best representation of the data in
the sense that it maximises the variability of the projected points (i.e. the individuals or the
variables according to the space considered). The subspace can be obtained by performing a
specific singular value decomposition (SVD) on the disjunctive table.

More precisely, let ZI×J denote the disjunctive table corresponding to XI×K . We define
a metric between individuals through the diagonal matrix 1

K
D−1

Σ where
DΣ = diag

(
px1
1 , . . . ,p

x1
q1
, . . . ,pxK

1 , . . . ,pxK
qK

)
is a diagonal matrix with dimensions J × J , pxk`

is the proportion of observations taking the category ` on the variable xk. In this way, two
individuals taking different categories for the same variable are more distant from the others
when one of them takes a rare category than when both of them take frequent categories.
We also define a uniform weighting for the individuals through the diagonal matrix 1

I
1I with

1I the identity matrix of dimensions I. By duality, the matrices 1
K

D−1
Σ and 1

I
1I define also a

weighting and a metric for the space of the categories respectively. MCA consists in searching
a matrix Ẑ with a lower rank S as close as possible to the disjunctive table Z in the sense
defined by these metrics. Let MI×J denote the matrix where each row is equal to the vector
of the means of each column of Z. MCA consists in performing the SVD of the matrix triplet(
Z−M, 1

K
D−1

Σ , 1
I
1I

)
[33] which is equivalent to writing (Z−M) as

Z−M = UΛ1/2V> (14)

where the columns of UI×J are the left singular vectors satisfying the relationship
U>diag(1/I, . . . ,1/I)U = 1J; columns of VJ×J are the right singular vectors satisfying the

relationship V> 1
K

D−1
Σ V = 1J and Λ

1/2
J×J = diag

(
λ
1/2
1 , . . . , λ

1/2
J

)
is the diagonal matrix of

the singular values.
The S first principal components are given by ÛI×SΛ̂

1/2
S×S, the product between the first

columns of U and the diagonal matrix Λ1/2 restricted to its S first elements. In the same
way, the S first loadings are given by V̂J×S. Ẑ defined by:

Ẑ = ÛΛ̂V̂
>

+ M (15)

is the best approximation of Z, in the sense of the metrics, with the constraint of rank S
(Eckart-Young theorem [34]). Equation (15) is called reconstruction formula.
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Note that, contrary to Z, Ẑ is a fuzzy disjunctive table in the sense that its cells are real
numbers and not only zeros and ones as in a classic disjunctive table. However, the sum
per variable is still equal to one [35]. Most of the values are contained in the interval [0, 1]

or close to it because Ẑ is as close as possible to Z which contains only zeros and ones, but
values out of this interval can occur.

Performing MCA requires J − K parameters corresponding to the terms useful for the
centering and the weighting of the categories, IS−S−S(S+1)

2
for the centered and orthonormal

left singular vectors and (J −K)S − S − S(S+1)
2

for the orthonormal right singular vectors,
for a total of J − K + S (I − 1 + (J −K)− S) independent parameters. This number of
parameters increases linearly with the number of values in the data set.

3.2 Single imputation using MCA

[36] proposed an iterative algorithm called “iterative MCA” to perform single imputation
using MCA. The main steps of the algorithm are as follows:

1. initialization ` = 0: recode X as disjunctive table Z, substitute missing values by initial
values (the proportions) and calculate M0 and D0

Σ on this completed data set.

2. step `:

(a) perform the MCA, in other words the SVD of
(
Z`−1 −M`−1, 1

K

(
D`−1

Σ

)−1
, 1
I
1I

)
to obtain Û

`
, V̂

`
and

(
Λ̂`
)1/2

;

(b) keep the S first dimensions and use the reconstruction formula (15) to compute
the fitted matrix:

Ẑ
`

I×J =

(
Û
`

I×S

(
Λ̂`
S×S

)1/2 (
V̂
`

J×S

)>)
+ M`−1

I×J

and the new imputed data set becomes Z` = W ∗ Z + (1−W) ∗ Ẑ
`

with ∗ being
the Hadamard product, 1I×J being a matrix with only ones and W a weighting
matrix where wij = 0 if zij is missing and wij = 1 otherwise. The observed values
are the same but the missing ones are replaced by the fitted values;

(c) from the new completed matrix Z`, D`
Σ and M` are updated.

3. steps (2.a), (2.b) and (2.c) are repeated until the change in the imputed matrix falls
below a predefined threshold

∑
ij(ẑ

`−1
ij − ẑ`ij)2 ≤ ε, with ε equals to 10−6 for example.

The iterative MCA algorithm consists in recoding the incomplete data set as an incomplete
disjunctive table, randomly imputing the missing values, estimating the principal components
and loadings from the completed matrix and then, using these estimates to impute missing
values according to the reconstruction formula (15). The steps of estimation and imputation
are repeated until convergence, leading to an imputation of the disjunctive table, as well as
to an estimate of the MCA parameters.

The algorithm can suffer from overfitting issues, when missing values are numerous, when
the relationships between variables are weak, or when the number of observations is low. To
overcome these issues, a regularized version of it has been proposed [36]. The rationale is
to remove the noise in order to avoid instabilities in the prediction by replacing the singular
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values

(√
λ̂`s

)
1≤s≤S

of step (2.b) by shrunk singular values

(
λ̂`s−

∑J−K
s=S+1

λs
J−K−S√

λ̂`s

)
1≤s≤S

. In this

way, singular values are thresholded with a greater amount of shrinkage for the smallest ones.
Thus, the first dimensions of variability take a more significant part in the reconstruction
of the data than the others. Assuming that the first dimensions of variability are made of
information and noise, whereas the last ones are made of noise only, this behaviour is then
satisfactory. Geometrically, the regularization makes the individual closer to the center of
gravity. Concerning the cells of Ẑ, the regularization makes the values closer to the mean
proportions and consequently, these values are more often in the interval [0, 1].

The regularized iterative MCA algorithm enables us to impute an incomplete disjunctive
table but not an initial incomplete data set. A strategy to go from the imputed disjunctive
table to an imputed categorical data set is required. We also suggest the use of the coin
flipping approach. Let us note that for each set of dummy variables coding for one categorical
variable, the sum per row is equal to one, even if it contains imputed values. Moreover, most
of the imputed cells are in the interval [0, 1] or are close to it. Consequently, modifications
of these cells are not often required.

3.3 MI using MCA

To perform MI using MCA, we need to reflect the uncertainty concerning the principal
components and loadings. To do so, we use a non-parametric bootstrap approach based on
the specificities of MCA. Indeed, as seen in Section 3.1, MCA enables us to assign a weight
to each individual. This possibility to include a weight for the individual is very useful when
the same lines of the data set occur several times. Instead of storing each replicate, a weight
proportional to the number of occurrences of each line can be used, allowing the storage
only of the lines that are different. Thus, a non-parametric bootstrap, such as the one used
for the MI using the normal distribution, can easily be performed simply by modifying the
weight of the individuals: if an individual does not belong to the bootstrap replicate, then its
weight is null, otherwise, its weight is proportional to the number of times the observation
occurs in the replicate. Note that individuals with a weight equal to zero are classically called
supplementary individuals in the MCA framework [33].

Thus, we define a MI method called multiple imputation using multiple correspondence
analysis (MIMCA). First, the algorithm consists in drawing M sets of weights for the indi-
viduals. Then, M single imputations are performed: at first, the regularized iterative MCA
algorithm is used to impute the incomplete disjunctive table using the previous weighting
for the individuals; Next, coin flipping is used to obtain categorical data and mimic the dis-
tribution of the categorical data. At the end, M imputed data sets are obtained and any
statistical method can be applied on each one. In detail, the MIMCA algorithm is written
as follows:

1. Reflect the variability on the set of parameters of the imputation model: draw I values
with replacement in {1, .., I} and define a weight ri for each individual proportional to
the number of times the individual i is drawn.

2. Impute the disjunctive table according to the previous weighting:

(a) initialization ` = 0: recode X as a disjunctive table Z, substitute missing values
by initial values (the proportions) and calculate M0 and D0

Σ on this completed
data set.

12



(b) step `:

i. perform the SVD of
(
Z`−1 −M`−1, 1

K

(
D`−1

Σ

)−1
,diag (r1, . . . , rI)

)
to obtain

Û
`
, V̂

`
and

(
Λ̂`
)1/2

;

ii. keep the S first dimensions and compute the fitted matrix:

Ẑ
`

=

(
Û
`
(
Λ̂`
shrunk

)1/2 (
V̂
`
)>)

+ M`−1

where
(
Λ̂`
shrunk

)1/2

is the diagonal matrix containing the shrunk singular val-

ues and derive the new imputed data set Z` = W ∗ Z + (1−W) ∗ Ẑ
`

iii. from the new completed matrix Z`, D`
Σ and M` are updated.

(c) step (2.b) is repeated until convergence.

3. Mimic the distribution of the categorical data set using coin flipping on Z` :

(a) if necessary, modify suitably the values of Z`: negative values are replaced by zero,
and values higher than one are replaced by one. Then, for each set of dummy
variables coding for one categorical variable, scale in order to verify the constraint
that the sum is equal to one.

(b) for imputed cells coding for one missing value, draw one category according to a
multinomial distribution.

4. Create M imputed data sets: for m from 1 to M alternate steps 1, 2 and 3.

3.4 Properties of the imputation method

MI using MCA is part of the family of joint modelling MI methods, which means that it
avoids the runtime issues of conditional modelling. Most of the properties of the MIMCA
method are directly linked to MCA properties. MCA provides an efficient summary of
the two-way associations between variables, as well as the similarities between individuals.
The imputation benefits from these properties and provides an imputation model sufficiently
complex to apply then an analysis model focusing on two-way associations between variables,
such as a main effects logistic regression model. In addition, like the MI using the normal
distribution, MIMCA uses draws from a multinomial distribution with parameter θ (obtained
by the disjunctive table) specific to each individual and depending on the observed values of
the other variables. Lastly, because of the relatively small number of parameters required to
perform MCA, the imputation method works well even if the number of individuals is small.
These properties have been highlighted in previous works on imputation using principal
components methods [10, 37].

Since these two methods, MIMCA and the multiple imputation with the normal distri-
bution, provide several imputations of the disjunctive table, and then use the same strategy
to go from the disjunctive table to the categorical data set, they seem very close. However,
they differ on many other points.

The first one is that the imputation of the disjunctive table by MCA is a deterministic
imputation, replacing a missing value by the most plausible value given by the estimate of
the principal components and the estimate of the loadings. Then, coin flipping is used to
mimic the distribution of the categorical data. On the contrary, the multiple imputation
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based on the normal distribution uses stochastic regressions to impute the disjunctive table,
that is to say, a Gaussian noise is added to the conditional expectation given by the observed
values. Then, coin flipping is used, adding uncertainty a second time.

The second difference between the two methods is the covariance of the imputed values.

Indeed, the matrix Ẑ
`

contains the reconstructed data by the iterative MCA algorithm and

the product Ẑ
`>

Ẑ
`

provides the covariance matrix of this data. The rank of it is S. On the
contrary, the rank of the covariance matrix used to perform imputation using the normal
distribution is J − K (because of the constraint of the sum equal to one per variable).
Consequently, the relationships between imputed variables are different.

The third difference is the number of estimated parameters. Indeed, although the impu-
tation by the normal distribution requires a extremely large number of parameters when the
number of categories increases, the imputation using MCA requires a number of parameters
linearly dependent to the number of cells. This property is essential from a practical point of
view because it makes it very easy to impute data sets with a small number of individuals.

4 Simulation study

As mentioned in the introduction, the aim of MI methods is to obtain an inference on a
quantity of interest ψ. Here, we focus on the parameters of a logistic regression without
interaction, which is a statistical method frequently used for categorical data. At first, we
present how to make inference for the parameters from multiple imputed data sets. Then,
we explain how we assess the quality of the inference built, that is to say, the quality of the
MI methods. Finally, the MI methods presented in Sections 2 and 3 are compared through a
simulation study based on real data sets. It thus provides more realistic performances from
a practical point of view. The code to reproduce all the simulations with the R software [38],
as well as the data sets used, are available on the webpage of the first author.

4.1 Inference from imputed data sets

Each MI method gives M imputed data sets as outputs. Then, the parameters of the analysis
model (for instance the logistic regression) as well as their associated variance are estimated

from each one. We denote
(
ψ̂m

)
1≤m≤M

the set of the M estimates of the model’s parameters

and we denote
(
V̂ ar

(
ψ̂m

))
1≤m≤M

the set of the M associated variances. These estimates

have to be pooled to provide a unique estimate of ψ and of its variance using Rubin’s rules
[4].

This methodology is explained for a scalar quantity of interest ψ. The extension to a
vector is straightforward, proceeding in the same way element by element. The estimate of
ψ is simply given by the mean over the M estimates obtained from each imputed data set:

ψ̂ =
1

M

M∑
m=1

ψ̂m, (16)

while the estimate of the variance of ψ̂ is the sum of two terms:

V̂ ar(ψ̂) =
1

M

M∑
m=1

V̂ ar
(
ψ̂m

)
+

(
1 +

1

M

)
1

M − 1

M∑
m=1

(
ψ̂m − ψ̂

)2

. (17)
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The first term is the within-imputation variance, corresponding to the sampling variance.
The second one is the between-imputation variance, corresponding to the variance due to
missing values. The factor (1+ 1

M
) is due to the fact that ψ̂ is estimated from a finite number

of imputed tables.
Then, the 95% confidence interval is calculated as:

ψ̂ ± tν,.975

√
V̂ ar(ψ̂)

where tν,.975 is the .975 critical value of the Student’s t−distribution with ν degrees of freedom
estimated as suggested by [39].

4.2 Simulation design from real data sets

The validity of MI methods are often assessed by simulation [25, p.47]. We design a simula-
tion study using real data sets to assess the quality of the MIMCA method. Each data set is
considered as a population data and denoted Xpop. The parameters of the logistic regression
model are estimated from this population data and they are considered as the true coeffi-
cients ψ. Then, a sample X is drawn from the population. This step reflects the sampling
variance. The values of the response variable of the logistic model are drawn according to
the probabilities defined defined by ψ. Then, incomplete data are generated completely at
random to reflect the variance due to missing values [40]. The MI methods are applied and
the inferences are performed. This procedure is repeated T times.

The performances of a MI method are measured according to three criteria: the bias given

by 1
T

∑T
t=1

(
ψ̂t − ψ

)
, the median (over the T simulations) of the confidence intervals width

as well as the coverage. This latter is calculated as the percentage of cases where the true
value ψ is within its 95% confidence interval.

A coverage sufficiently close to the nominal level is required to consider that the inference
is correct, but it is not sufficient, the confidence interval width should be as small as possible.

To appreciate the value of the bias and of the width of the confidence interval, it is
useful to compare them to those obtained from two other methods. The first one consists
in calculating the criteria for the data sets without missing values, which we named the
“Full data” method. The second one is the listwise deletion. This consists in deleting the
individuals with missing values. Because the estimates of the parameters of the model are
obtained from a subsample, the confidence intervals obtained should be larger than those
obtained from multiple imputation.

A single imputation method (named Sample) is added as a benchmark to understand
better how MI methods benefit from using the relationships between variables to impute
the data. This single imputation method consists in drawing each category according to a
multinomial distributionM (θ, 1), with θ defined according to the proportion of each category
of the current variable.

4.3 Results

The methods described in this paper are performed using the following R packages: cat [41]
for MI using the saturated loglinear model, Amelia [19, 20] for MI using a normal distribution,
mi [42] for MI using the DPMPM method, mice [30, 43] for the FCS approach using iterated
logistic regressions and random forests. This package will also be used to pool the results
from the imputed data sets. The tuning parameters of each MI method are chosen according
to their default values implemented in the R packages. Firstly, the tuning parameter of the
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MIMCA method, that is to say, the number of components, is chosen to provide accurate
inferences. Its choice will be discussed later in Section 4.3.3.

The MI methods are assessed in terms of the quality of the inference as well as the time
consumed from data sets covering many situations. The data sets differ in terms of the
number of individuals, the number of variables, the number of categories per variable, the
relationships between variables.

The evaluation is based on the following categorical data sets. For each data set a cate-
gorical response variable is available.

• Saheart : This data set [44] provides clinical attributes of Ipop = 462 males of the
Western Cape in South Africa. These attributes can explain the presence of a coronary
heart disease. The data set contains K = 10 variables with a number of categories
between 2 and 4.

• Galetas : This data set [45] refers to the preferences of Ipop = 1192 judges regarding
11 cakes in terms of global appreciation and in terms of color aspect. The data set
contains K = 4 variables with two that have 11 categories.

• Sbp: The Ipop = 500 subjects of this data set are described by clinical covariates
explaining their blood pressure [46]. The data set contains K = 18 variables that have
2 to 4 categories.

• Income: This data set, from the R package kernlab [47], contains Ipop = 6876 individuals
described by several demographic attributes that could explain the annual income of
an household. The data set contains K = 14 variables with a number of categories
between 2 and 9.

• Titanic: This data set [48] provides information on Ipop = 2201 passengers on the ocean
liner Titanic. The K = 4 variables deal with the economic status, the sex, the age and
the survival of the passengers. The first variable has four categories, while the other
ones have two categories. The data set is available in the R software.

• Credit : German Credit Data from the UCI Repository of Machine Learning Database
[49] contains Ipop = 982 clients described by several attributes which enable the bank to
classify themselves as good or bad credit risk. The data set contains K = 20 variables
with a number of categories between 2 and 4.

The simulation design is performed for T = 200 simulations and 20% of missing values
generated completely at random.The MI methods are performed with M = 5 imputed data
sets which is usually enough [4].

4.3.1 Assessment of the inferences

First of all, we can note that some methods cannot be applied on all the data sets. As
explained previously, MI using the loglinear model can be applied only on data sets with
a small number of categories such as Titanic or Galetas. MI using the normal distribution
encounters inversion issues when the number of individuals is small compared to the number
of variables. That is why no results are provided for MI using the normal distribution on the
data sets Credit and Sbp. The others MI methods can be applied on all the data sets.

For each data set and each method, the coverages of all the confidence intervals of the
parameters of the model are calculated from T simulations (see Table 2 in Appendix A for
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more details on these models). All the coverages are summarized with a boxplot (see Figure
2). The results for the bias and the confidence interval width are presented in Figure 4 and
5 in Appendix B.
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Figure 2: Distribution of the coverages of the confidence intervals for all the parameters, for several
methods (Listwise deletion, Sample, Loglinear model, Normal distribution, DPMPM,
MIMCA, FCS using logistic regressions, FCS using random forests, Full data) and for
different data sets (Saheart, Galetas, Sbp, Income, Titanic, Credit). The horizontal
dashed line corresponds to the lower bound of the 95% confidence interval for a pro-
portion of 0.95 from a sample of size 200 according to the Agresti-Coull method [50].
Coverages under this line are considered as undesirable.

As expected, MI using the loglinear model performs well on the two data sets where it
can be applied. The coverages are close to the nominal levels, the biases are close to zero,
and the confidence interval widths are small.

MI using the non-parametric version of the latent class model performs quite well since
most of the quantities of interest have a coverage close to 95%. However, some inferences
are incorrect from time to time such as on the data set Credit or Titanic. This behaviour
is in agreement with the study of [18] which also presents some unsatisfactory coverages.
[16] note that this MI model can have some difficulties in capturing the associations among
the variables, particularly when the number of variables is high or the relationships between
variables are complex, that can explain the poor coverages observed. Indeed, on the data
set Credit, the number of variables is the highest among the data sets considered, while on
the data set Titanic, the relationships between variables can be described as complex, in
the sense that the survival status of the passengers is linked to all the other variables, but
these are not closely connected. Moreover, the very poor coverages for the method Sample
indicates that the imputation model has to take into account these relationships to provide
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confidence intervals that reach the nominal rate.
MI using the normal distribution can be applied on three data sets only. On these data

sets, the coverages can be too small (see Titanic in Figure 2). This highlights that despite
the fact that this method is still often used in practice to deal with incomplete categorical
data, it is not suitable and we do not recommend using such a strategy. However, [6] showed
that this method could be used to impute mixed data (i.e. with continuous and categorical
data) but only continuous variables contain missing values.

The FCS using logistic regressions encounters difficulties on the data sets with a high
number of categories such as Galetas and Income. This high number of categories implies a
high number of parameters for each conditional model that may explain the undercoverage
on several quantities.

The FCS using random forests performs well and the method encounters difficulties only
on the Titanic data set. This behaviour can be explained by the step of subsampling variables
in the imputation algorithm (Section 2.4), i.e., each tree is built with potentially different
variables and with a smaller number than (K − 1). In the Titanic data set, the number
of variables is very small and the relationships between the variables are weak and all the
variables are important to predict the survival response. Thus, it introduces too much bias
in the individual tree prediction which may explain the poor inference. Even if, in the
most practical cases, MI using random forests is very robust to the misspecification of the
parameters, on this data set, the inference could be improved in increasing the number of
explanatory variables retained for each tree.

Concerning MI using MCA, all the coverages observed are satisfying. The confidence
interval width is of the same order of magnitude than the other MI methods. In addition,
the method can be applied whatever the number of categories per variables, the number of
variables or the number of individuals. Thus, it appears to be the easiest method to use to
impute categorical data.

4.3.2 Computational efficiency

MI methods can be time consuming and the running time of the algorithms could be con-
sidered as an important property of a MI method from a practical point of view. Table 1
gathers the times required to impute M = 5 times the data sets with 20% of missing values.

Saheart Galetas Sbp Income Titanic Credit
Loglinear NA 4.597 NA NA 0.740 NA
DPMPM 20.050 17.414 56.302 143.652 10.854 24.289
Normal 0.920 0.822 NA 26.989 0.483 NA
MIMCA 5.014 8.972 7.181 58.729 2.750 8.507
FCS log 20.429 38.016 53.109 881.188 4.781 56.178
FCS forests 91.474 112.987 193.156 6329.514 265.771 461.248

Table 1: Time consumed (in seconds) to impute data sets (Saheart, Galetas, Sbp, Income, Titanic,
Credit), for different methods (Loglinear model, DPMPM, Normal distribution, MIMCA,
FCS using logistic regressions, FCS using random forests). The imputation is done for
M = 5 data sets. Calculation has been performed on an Intel®Core™2 Duo CPU E7500,
running Ubuntu 12.04 LTS equipped with 3 GB ram. Some values are not provided
because all methods cannot be performed on each data set.
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First of all, as expected, the FCS method is more time consuming than the others based
on a joint model. In particular, for the data set Income, where the number of individuals
and variables is high, the FCS using random forests requires 6,329 seconds (i.e. 1.75 hours),
illustrating substantial running time issues. FCS using logistic regressions requires 881 sec-
onds, a time 6 times higher than MI using the latent class model, and 15 times higher than
MI method using MCA. Indeed, the number of incomplete variables increases the number of
conditional models required, as well as the number of parameters in each of them because
more covariates are used. In addition, the time required to estimate its parameters is non-
negligible, particularly when the number of individuals is high. Then, MI using the latent
class model can be performed in a reasonable time, but this is at least two times higher
than the one required for MI using MCA. Thus, the MIMCA method should be particularly
recommended to impute data sets of high dimensions.

Having a method which is not too expensive enables the user to produce more than the
classical M = 5 imputed data sets. This could lead to a more accurate inference.

4.3.3 Choice of the number of dimensions

MCA requires a predefined number of dimensions S which can be chosen by cross-validation
[36]. Cross-validation consists in searching the number of dimensions S minimizing an error
of prediction. More precisely, missing values are added completely at random to the data set
X. Then, the missing values of the incomplete disjunctive table Z are predicted using the
regularized iterative MCA algorithm. The mean error of prediction is calculated according
to 1

Card(U)

∑
(i,j)∈U (zij − ẑij)2, where U denotes the set of the added missing values. The pro-

cedure is repeated k times for a predefined number of dimensions. The number of dimensions
retained is the one minimizing the mean of the k mean errors of prediction. This procedure
can be used whether the data set contains missing values or not.

To evaluate how the choice of S impacts on the quality of the inferences, we perform
the MIMCA algorithm varying the number of dimensions around the one provided by cross-
validation. Figure 3 presents how this tuning parameter influences the coverages in the
previous study. The impacts on the width of the confidence intervals are reported in Figure
6 and the ones on the bias in Figure 7 in Appendix B.

Except for the data set Titanic, the coverages are stable according to the number of
dimensions retained. In particular, the number of dimensions suggested by cross-validation
provides coverages close to the nominal level of the confidence interval. In the case of the data
set Titanic, the cross-validation suggests retaining 5 dimensions, which is the choice giving
the smallest confidence intervals, while giving coverages close to 95%. But retaining less
dimensions leads to worse performances since the covariates are not closely related (Section
4.3.1). Indeed, these covariates can not be well represented within a space of low dimensions.
Consequently, a high number of dimensions is required to reflect the useful associations to
impute the data. Titanic illustrates that underfitting can be problematic. The same comment
is made by [15] who advise choosing a number of classes sufficiently high in the case of MI
using the latent class model. However, overfitting is less problematic because it increases the
variance, but it does not skip the useful information.

5 Conclusion

This paper proposes an original MI method to deal with categorical data based on MCA.
The principal components and the loadings that are the parameters of the MCA enables the
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Figure 3: Distribution of the coverages of the confidence intervals for all the parameters for the
MIMCA algorithm for several numbers of dimensions and for different data sets (Sa-
heart, Galetas, Sbp, Income, Titanic, Credit). The results for the number of dimensions
provided by cross-validation are in grey. The horizontal dashed line corresponds to the
lower bound of the 95% confidence interval for a proportion of 0.95 from a sample of size
200 according to the Agresti-Coull method [50]. Coverages under this line are considered
as undesirable.

imputation of data. To perform MI, the uncertainty on these parameters is reflected using a
non-parametric bootstrap, which results in a specific weighting for the individuals.

From a simulation study based on real data sets, this MI method has been compared to
the other main available MI methods for categorical variables. We highlighted the compet-
itiveness of the MIMCA method to provide valid inferences for an analysis model requiring
two-way associations (such as logistic regression without interaction, or a homogeneous log-
linear model, proportion, odds ratios, etc).

We showed that MIMCA can be applied to various configurations of data. In particular,
the method is accurate for a large number of variables, for a large number of categories per
variables and when the number of individuals is small. Moreover, the MIMCA algorithm per-
forms fairly quickly, allowing the user to generate more imputed data sets and therefore to
obtain more accurate inferences (M between 20 and 100 can be beneficial [25, p.49]). Thus,
MIMCA is very suitable to impute data sets of high dimensions that require more computa-
tion. Note that MIMCA depends on a tuning parameter (the number of components), but
we highlighted that the performances of the MI method are robust to a misspecification of
it.

Because of the intrinsic properties of MCA, MI using MCA is appropriate when the
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analysis model contains two-way associations between variables such as logistic regression
without interaction. To consider the case with interactions, one solution could be to introduce
to the data set additional variables corresponding to the interactions. However, the new
variable ”interaction” is considered as a variable in itself without taking into account its
explicit link with the associated variables. It may lead to imputed values which are not
in agreement with each others. This topic is a subject of intensive research for continuous
variables [51, 52].

In addition, the encouraging results of the MIMCA to impute categorical data prompt
the extension of the method to impute mixed data. The first research in this direction [37]
has shown that the principal components method dedicated to mixed data (called Factorial
Analysis for Mixed Data) is efficient to perform single imputation, but the extension to a MI
method requires further research.
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Appendix

A Simulation design: analysis models and sample char-

acteristics

Data set number of
individuals

number of
variables

sample size logistic regression model number of
quantities
of interest

Saheart 462 10 300 chd = famhist + to-
bacco + alcohol

30

Galetas 1192 4 300 galle = grupo 6
Sbp 500 18 200 sbp = smoke + exercise

+ alcohol
12

Income 6876 14 1500 income = sex 8
Titanic 2201 4 300 surv = class+age+sex 6
Credit 982 20 300 class = check-

ing status + duration
+ credit history +
purpose

11

Table 2: Set of the sample characteristics and of the analysis models used to perform the simulation
study (Section 4.2) for the several data sets (Saheart, Galetas, Sbp, Income, Titanic,
Credit).

B Simluation study: complementary results
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Figure 4: Distribution of the relative bias (bias divided by the true value) over the several
quantities of interest for several methods (Listwise deletion, Sample, Loglinear model,
DPMPM, Normal distribution, MIMCA, FCS using logistic regressions, FCS using ran-
dom forests, Full data) for different data sets (Saheart, Galetas, Sbp, Income, Titanic,
Credit). One point represents the relative bias observed for one coefficient.
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Figure 5: Distribution of the median of the confidence interval for the several quantities of interest
for several methods (Sample, Loglinear model, DPMPM, Normal distribution, MIMCA,
FCS using logistic regressions, FCS using random forests, Full data) for different data
sets (Saheart, Galetas, Sbp, Income, Titanic, Credit). One point represents the median
of the confidence interval observed for one coefficient divided by the one obtained by
Listwise deletion. The horizontal dashed line corresponds to a ratio of 1. Points over this
line corresponds to confidence interval higher than the one obtain by listwise deletion.
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Figure 6: Distribution of the median of the confidence interval for the several quantities of interest
for the MIMCA algorithm for several numbers of dimensions for different data sets
(Saheart, Galetas, Sbp, Income, Titanic, Credit). One point represents the median
of the confidence interval observed for one coefficient divided by the one obtained by
Listwise deletion. The horizontal dashed line corresponds to a ratio of 1. Points over this
line corresponds to confidence interval higher than the one obtain by listwise deletion.
The results for the number of dimensions provided by cross-validation are in grey.
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Figure 7: Distribution of the relative bias (bias divided by the true value) over the several quanti-
ties of interest for the MIMCA algorithm for several numbers of dimensions for different
data sets (Saheart, Galetas, Sbp, Income, Titanic, Credit). One point represents the
relative bias observed for one coefficient. The results for the number of dimensions
provided by cross-validation are in grey.
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