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Abstract

The widely applicable Bayesian information criterion (WBIC) is a simple and fast
approximation to the model evidence that has received little practical consideration.
WBIC uses the fact that the log evidence can be written as an expectation, with respect
to a powered posterior proportional to the likelihood raised to a power t∗ ∈ (0, 1), of
the log deviance. Finding this temperature value t∗ is generally an intractable problem.
We find that for a particular tractable statistical model that the mean squared error
of an optimally-tuned version of WBIC with correct temperature t∗ is lower than an
optimally-tuned version of thermodynamic integration (power posteriors). However
in practice WBIC uses the a canonical choice of t = 1/ log(n). Here we investigate
the performance of WBIC in practice, for a range of statistical models, both regular
models and singular models such as latent variable models or those with a hierarchical
structure for which BIC cannot provide an adequate solution. Our findings are that,
generally WBIC performs adequately when one uses informative priors, but it can
systematically overestimate the evidence, particularly for small sample sizes.

Keywords and Phrases: Marginal likelihood; Evidence; Power posteriors; Widely appli-
cable Bayesian information criterion.

1 Introduction

The Bayesian paradigm offers a principled approach to the issue of model choice, through
examination of the model evidence, namely the probability of the data given the model. Sup-
pose we are given data y and assume there is a collection of competing models, m1, . . . ,ml,
each with associated parameters, θ1, . . . , θl, respectively. Viewing the model indicators as
parameters with prior distribution p(mk), the posterior distribution of interest is

p(θk,mk|y) ∝ f(y|θk,mk)p(θk|mk)p(mk)

1Address for correspondence: nial.friel@ucd.ie
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where f(y|θk,mk) is the likelihood of the data under model mk with parameters θk and
p(θk|mk) is the prior on the parameters in model mk.

The constant of proportionality for the un-normalised posterior distribution for model
mk is the marginal likelihood or evidence,

p(y|mk) =

∫
θk

f(y|θk,mk)p(θk|mk)dθk.

This is a vital quantity in Bayesian model choice and developing good estimates of it con-
tinues to be an active area of research in computational statistics. Henceforth, for brevity
of notation, we will drop the dependence on mk, so that we refer to the evidence, likelihood
and prior distribution for a given model as, p(y), f(y|θ), p(θ), respectively.

There are a growing number of techniques to evaluate the evidence, see for instance,
Gelman and Meng (1998) for a thorough review of importance, bridge and path sampling
methods, Robert and Wraith (2009) for an updated review of such methods that includes the
more recent mixture bridge-sampling approach (Chopin and Robert 2007), the generalised
harmonic mean estimator (Gelfand and Dey 1994) and nested sampling ((Skilling 2006), or
perhaps, (Burrows 1980)), in addition to (Friel and Wyse 2012) who compare the accuracy
and computational burden of these methods.

The contribution of this work is to explore a new method of approximating the evidence,
the widely applicable Bayesian information criterion (WBIC) of Watanabe (2013). WBIC
was motivated by the fact that the Bayesian information criterion (BIC or Schwarz criterion)
(Schwarz 1978) is not applicable to singular models. A statistical model is termed regular
if the mapping from model parameters to a probability distribution is one-to-one and if its
Fisher information matrix is positive definite. Otherwise, a statistical model is singular.
Singular models arise, for example, in latent variable models such as mixture models, hidden
Markov models and hierarchical models such as artificial neural networks and so on. Singular
models cannot be approximated by a normal distribution, which implies that BIC and AIC
are not appropriate for statistical model choice. Watanabe (2013) has shown that WBIC
converges to the model evidence, asymptotically as n → ∞, for both singular and regular
statistical. In this sense, WBIC is generalisation of BIC.

WBIC is straightforward to evaluate, requiring only one Markov chain Monte Carlo
(MCMC) chain to estimate the evidence. Thus far, WBIC has received no more than a
cursory mention by Gelman et al. (2013) and while it has been applied in practice to a
specific reduced rank regression model, see unpublished work by Drton and Plummer (2013)
and for the case of Gaussian process regression (Mononen 2015), beyond Watanabe’s own
implementation there has been no further exploration of the criterion. The focus of this is
to assess its performance as an approximation of the evidence.

The paper is organised as follows, the key results and notation for power posteriors,
necessary for WBIC, are presented in Section 2. Watanabe’s WBIC is presented in Section
3. Section 4 presents a theoretical comparison of WBIC and the power posterior approach.
The performance of WBIC compared to several competing methods is illustrated in Section
5 for four examples. The article is concluded with a brief discussion in Section 6.
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2 Power posteriors

Friel and Pettitt (2008) propose the method of power posteriors, a path sampling type
method, to evaluate the marginal likelihood (or evidence) in an application of the thermo-
dynamic integration technique from statistical physics. Dating to Kirkwood (1935), ther-
modynamic integration has a long history in the statistical physics literature. An in-depth
background to thermodynamic integration and Bayes free energy (also known as marginal
likelihood) calculations for context specific statistical models is given by Chiput and Po-
horille (2007). In addition, the slow growth method of Bash et al. (1987) is a notable
forerunner to the method of power posteriors. In the statistics literature the use of thermo-
dynamic integration is detailed thoroughly by Neal (1993) together with other techniques
from statistical physics and furthermore by Gelman and Meng (1998) and more recently by
Friel and Pettitt (2008).

As in (Friel and Pettitt 2008), for data y, parameters θ and temperature parameter
t ∈ [0, 1], define the power posterior as the annealed distribution

p(θ|y, t) ∝ f(y|θ)tp(θ), (1)

which has normalising constant defined as

zt(y) =

∫
θ

f(y|θ)tp(θ)dθ. (2)

Throughout we assume that p(θ|y, t) is proper, so that zt(y) exists for all t ∈ [0, 1], in
particular, this assumes a proper prior. Clearly, the evidence is realised when t = 1, that
is, z1(y) = p(y) and when t = 0 the integration is over the prior with respect to θ, thus
z0(y) = 1. In what follows we make use of the power posterior identity

log p(y) = log

{
z1(y)

z0(y)

}
=

∫ 1

0

Eθ|y,t log f(y|θ) dt. (3)

In fact, more generally one can express the log-evidence as

log p(y) = Eθ,t|y[log f(y|θ)/p(t)]. (4)

for some temperature prior p(t). In practice the log-evidence is estimated, using a discretised

temperature schedule, t ∈ [0, 1], 0 = t0 < t1, . . . , tm = 1 and MCMC draws θ
(i)
j for i =

1, 2, . . . , N from each power posterior p(θ|y, tj), as

log p(y) ≈
m∑
j=1

(tj − tj−1)
2

(
Eθ|y,tj log f(y|θ) + Eθ|y,tj−1

log f(y|θ)
)
. (5)

Using a burn-in of K < N iterations, Eθ|y,tj log f(y|θ) is estimated for a fixed tj by

Eθ|y,tj log f(y|θ) ≈ 1

N −K

N∑
j=K+1

log p(y|θ(i)j ). (6)

3



Alternatively, the updated power posterior estimate of Friel et al. (2014) employ a cor-
rection to the trapezoidal rule such that

log p(y) ≈
m∑
j=1

(tj − tj−1)
2

(
Eθ|y,tj log f(y|θ) + Eθ|y,tj−1

log f(y|θ)
)

−
m∑
j=1

(tj − tj−1)2

12

(
Vθ|y,tj log f(y|θ)−Vθ|y,tj−1

log f(y|θ)
)
, (7)

where Vθ|y,t log f(y|θ) is the variance of log f(y|θ) with respect to the power posterior,
p(θ|y, t). This approximation consistently out-performs the standard estimate with no ad-
ditional computation cost. Indeed recent work by Oates et al. (2016) has shown that is
possible to achieve further improvement through the use of control variates to efficiently
estimate Eθ|y,tj log f(y|θ) and Vθ|y,tj log f(y|θ) for each temperature tj ∈ [0, 1], at very little
extra computational cost. Together with the numerical integration scheme (7), the authors
have shown that this can yield a dramatic improvement in the statistical efficiency of the
estimate of the evidence. Finally we note that Hug et al. (2016) presents a further refine-
ment of the power posterior approach which has shown to provide an improvement in the
numerical integration over the temperature parameter.

3 Widely applicable Bayesian information criterion

The widely applicable Bayesian information criterion (WBIC) (Watanabe 2013) promises
to reduce the considerable computational burden that the method of power posteriors and
indeed other evidence estimation methods suffer from. The key to WBIC is that there exists
a unique temperature, say t∗ ∈ [0, 1], such that,

log p(y) = Eθ|y,t∗ log f(y|θ). (8)

Hence, given this temperature t∗, only one Markov chain needs to be simulated at only
one temperature value to estimate the evidence, using samples θ(i) for i = 1, 2, . . . , N from
the power posterior p(θ|y, t∗) and equation (6). The fact that equation (8) holds follows
straightforwardly from the mean value theorem, which shows that there exists a particular
t∗ such that

log p(y) =
log z1(y)− log z0(y)

1− 0
=

d

dt
log zt(y)

∣∣∣∣
t∗

= Eθ|y,t∗ log f(y|θ). (9)

Uniqueness of t∗ follows from the fact that d2 log zt(y)/dt2 = Vθ|y,t log f(y|θ) and hence is
strictly positive under standard regularity assumptions.

In fact it is possible to provide an information theoretic interpretation of the optimal
temperature t∗ in (9). Following Vitoratou and Ntzoufras (2013), it is straightforward to
prove that pt∗ , the power posterior at the optimal temperature t∗, is equi-distant, in terms
of Kullback-Leibler distance, from the prior and posterior. We can show this as follows.

Here, for brevity, we introduce the notation pt(θ) = p(θ|y, t) for all t ∈ [0, 1].
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Lemma 3.1. The power posterior at the optimal temperature t∗ satisfies the identity

KL(pt∗||p1) = KL(pt∗||p0).

Proof. Using the definition of Kullback-Leibler distance, we can re-write the statement of
this lemma as, ∫

θ

pt∗(θ) log
pt∗(θ)

p1(θ)
dθ =

∫
θ

pt∗(θ) log
pt∗(θ)

p0(θ)
dθ

⇐⇒
∫
θ

pt∗(θ) log p1(θ) dθ =

∫
θ

pt∗(θ) log p0(θ) dθ

⇐⇒
∫
θ

pt∗(θ) log
p1(θ)

p0(θ)
dθ = 0

⇐⇒
∫
θ

pt∗(θ) log
f(y|θ)
p(y)

dθ = 0

⇐⇒ log p(y) =

∫
θ

pt∗(θ) log f(y|θ) dθ

= Eθ|y,t∗ log f(y|θ),

which holds from equation (9).

This result may prove useful as a basis for estimating the optimal temperature. However,
one should note that both the posterior, p1(θ) and the power posterior at the optimal tem-
perature, pt∗ are generally intractable, leaving a direct evaluation of this identity unavailable.
Indeed we will use this result in Section 4 for an idealised analysis of a comparison of the
mean squared error arising from the identity in (9) and that arising from (4).

Clearly, finding this optimal temperature t∗ is a challenging task. The main contribution
of Watanabe (2013) is to show asymptotically, as the sample size n→∞, that t∗ ∼ 1/ log(n).
WBIC is thus defined as

WBIC = Eθ|y,tw log f(y|θ) ≈ log p(y), (10)

where tw = 1/ log(n).
Watanabe (2013) introduced WBIC in the context of algebraic geometry where it is

applied to solve the problem of singularity in the statistical models commonly encountered
for models with latent variables or hierarchical structure including, mixture models, hidden
Markov models, neural networks and factor regression models. In the case of singular models
(models where the mapping from parameters to a probability distribution is not one-to-
one and where the Fisher information matrix is not always positive definite) the standard
Bayesian information criterion (BIC or Schwarz criterion) (Schwarz 1978) approximation to
the marginal likelihood is known to be poor (Chickering and Heckerman 1997). As before,
the literature is lacking a comprehensive evaluation of the performance of WBIC in both
regular and singular settings at finite n; this is our contribution below.
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4 A theoretical comparision of WBIC and power pos-

teriors

In this section we present a theoretical comparison of the mean squared error resulting from
idealised implementations of both WBIC and the power posterior approach. Following (4),
thermodynamic integration or power posteriors (PP) is based on the identity

log p(y) = Eθ,t|y[log f(y|θ)/p(t)].

Here p(t) is arbitrary, but for this comparison we suppose we have access to an an optimal
choice (that minimises the Monte Carlo variance) and is given by

p∗(t) = arg min
p(t)

Vθ,t|y[log(p(y|θ))/p(t)]

∝ (Eθ|t,y[(log p(y|θ))2])1/2

as shown in Calderhead and Girolami (2009). It has been shown in numerous studies that
this optimal choice can be well approximated using power law heuristics.

As before, the recently proposed WBIC, is based on the identity

log p(y) = Eθ|t∗,y[log p(y|θ)]

where t∗ is the solution to KL(pt∗||p0) = KL(pt∗ ||p1) where pt denotes the power posterior
p(θ|t, y). For this comparison we suppose we have access to t∗.

We note here that WBIC is not a special (or degenerate) case of PP, but there are some
visual similarities. WBIC actually uses more information on the smoothness of the integrand,
compared to PP, so from this simple perspective WBIC can be expected to perform better
in principle.

Being expressed as expectations, both identities can, in principle, be used to produce
unbiased estimates of log p(y) via Monte Carlo. The natural theoretical question to ask is
which Monte Carlo estimator has the lower variance. An instructive analytical analysis of
this idealised case is provided below.

Example 1. Consider the following simple example, taken from Friel and Pettitt (2008)
and considered elsewhere by (Gelman et al 2013). Suppose data y = {yi : i = 1, . . . , n} are
independent and yi ∼ N(θ, 1). Assuming an informative prior θ ∼ N(m, v), this leads to a
power posterior, θ|y, t ∼ N(mt, vt) where

mt =
ntȳ +m/v

nt+ 1/v
and vt =

1

nt+ 1/v
.

It is straightforward to show that

Eθ|y,t log f(y|θ) = −n
2

log 2π − 1

2

n∑
i=1

(yi − ȳ)2 − n

2

(m− ȳ)2

(vnt+ 1)2
− n

2

1

(nt+ 1/v)
. (11)
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Figure 1: Normal means model. Comparison of (idealised) thermodynamic and WBIC
estimator variances. Left: n = 1. Middle: n = 100. Right: n = 10000. In each panel we
show the case of prior mean m ∈ {0, 1} for varying values of the prior variance v. Data y
were generated from the model with θ = 0.

Moreover, it is easy to show that

log p(y) = −n
2

log 2π − 1

2
log

v

v∗
− 1

2

[
n∑
i=1

y2i +
m2

v
− (nȳ +m/v)2

n+ 1/v

]
, (12)

where v∗ = 1
n+1/v

is the posterior variance of θ. This example is useful since not only does

it allow analytical evaluation of (11) and (12), but it also possible to analytically find the
optimal temperature t∗ as the solution to the identity in Lemma 3.1.

Figure 1 displays the Monte Carlo variances of the (idealised) thermodynamic and WBIC
estimators. Data y were generated from the model with θ = 0 where a priori, θ ∼ N(m, v)
and we present results for m ∈ {0, 1} and for various values of v. For this example,

Vθ|t∗,y[log p(y|θ)] < Vθ,t|y[log(p(y|θ))/p∗(t)],

for all combinations of (y,m, v).
For uninformative data (n small; left panel) the PP and WBIC estimators have essentially

equal Monte Carlo variance. For informative data (n large; right panel) the PP estimator
variance can be orders of magnitude larger than the WBIC variance at all values of the prior
variance v. In all cases the Monte Carlo variance of PP increases relative to WBIC as the
prior variance v goes to infinity. This reflects the fact that PP has to evaluate an expectation
at t = 0, while the WBIC estimator deals with t∗ > 0 (although t∗ → 0 as n→∞).

For this case study an optimally-tuned WBIC method has lower theoretical mean-squared
error than an optimally-tuned PP method (again, ignoring practical details for the moment).
The normal means model, whilst only one model, can be considered as a caricature of
“regular” inference problems. This example thus suggests that in scenarios with either
informative data or very vague priors, for regular models, PP can severely under-perform an
optimally configured WBIC estimator.
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However, there are several factors that are relevant in practice that are not captured by
the idealised formulation above:

1. The optimal temperature distribution p∗(t) for thermodynamic integration is generally
unavailable in closed-form.

2. It is common to use quadrature to integrate out t in the thermodynamic integral, which
can be more efficient than joint Monte Carlo sampling of (θ, t) but induces a bias into
the estimate.

3. The t∗ in WBIC is unknown and a guess of tw = 1/ log(n) is used in practice which
may induce a significant error.

4. Several extensions of the power posterior approach have been developed which have
improved the statistical efficiency of the estimator, (Friel et al 2014) and (Oates et al
2016). Similar development and extension may also be possible for WBIC.

The above considerations motivate an empirical investigation of the relative merits of the
two approaches which we now explore.

5 Empirical examples

We consider four examples where in all cases the motivation is to assess the performance
of WBIC as an evidence approximation. The first model is one for which it is possible to
calculate both log p(y) and WBIC analytically. The second model allows exact calculation
of log p(y) only. The third model, logistic regression, is one where neither the log evidence
nor WBIC can be evaluated exactly. The final model is a finite Gaussian mixture model,
a singular model that WBIC was designed to handle and where neither the evidence nor
WBIC can be evaluated exactly. In all four models, the approximation tw = 1/ log(n) is
used.

5.1 A tractable normal model

Example 2. Consider again the tractable normal model from Section 4. Here 100 datasets
were simulated for each of the following values of n = 50, 100, 1000, 10000. Within each
dataset yi ∼ N(0, 1) and a priori, θ ∼ N(0, 10). For each value of n, the optimal temperature
t∗ was found by solving the identity in Lemma 3.1. In addition, the temperature tw = 1

logn

corresponding to WBIC was also recorded.

The results are displayed in Figure 2(a). Clearly, as n increases, as expected, the optimal
temperature becomes closer to the temperature corresponding to WBIC. However, for rela-
tively small values of n, there is typically a large discrepancy between tw and t∗. Through
closer inspection of the curve of expected log deviances and the temperature, see Figure 5
for example, it is clear that overestimates of the optimal temperature will not necessarily
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between WBIC and the log evidence for 100 independent datasets with n = 50 observations
and each with different prior variances. It is clear that the difference grows larger as the
variance grows and that the WBIC typically overestimates the log evidence
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translate to large overestimates of the log evidence as the curve is reasonably flat as the
temperature approaches one. In Figure 2(b) for each value of n, the prior variance v is now
set as 10, 100, 1000 with the data simulated as y ∼ N(0, 1) as in (a) and it can be seen that,
as expected, larger prior variances result in poorer WBIC estimates of the log evidence.
Interestingly, WBIC tends to overestimate the log evidence.

Consider now the case of unit information priors (Kass and Wasserman 1995) and con-
sidered subsequently in the context of the Bayesian information criterion (BIC or Schwarz
criterion) by Raftery (1999) and Volinsky and Raftery (2000) in sociology and survival mod-
els, respectively. A unit information prior represents the amount of information contained
in one observation of the data, such priors can be quite informative and are used here to
illustrate the applicability of WBIC to this model.

In the present model, correct specification of the mean of a unit information prior, here
θ ∼ N(m, 1), was vital to the performance of WBIC. Figure 3 illustrates WBIC plotted
against log p(y) for data simulated from N(0, 1) of size n = 10000 and a prior mean of
m = 0 or m = 1 with unit variance in either case. The WBIC approximation to log p(y) is
particularly bad for the case where m = 1 (and this effect increases with sample size).

Therefore the question arises as to the appropriate prior mean for a unit information prior
in this circumstance. The data informed prior θ ∼ N(ȳ, 1), or equivalently define ỹ = y − ȳ
and the prior θ ∼ N(0, 1), is one obvious candidate for this. Though by this correction
information about the mean is now wholly dependent on the data.

An interesting observation can be made for fixed n, mean corrected data and the unit
information prior θ ∼ N(0, 1), the difference between tw and t∗ is constant for every simulated
dataset. That is, the simulation produces a deterministic result. Similarly, the difference
between WBIC and log p(y) is also deterministic for every simulated dataset.

In Figure 4, the optimal temperature t∗ satisfying equation (8) is plotted against the
temperature, 1/ log(n), for datasets of size n = 3, 4, 5, . . . , 50, 60, 70, . . . , 100000; a WBIC
estimate with tw = 1/ log(n) is of course not suitable for n = 1, 2 and t ∈ [0, 1]. The biggest
differences occur for small n.

It is reassuring that the method performs admirably for the case of mean corrected data
and a unit information prior. Though again, WBIC tends to slightly overestimate the log
evidence in this case.

5.2 Non-nested linear regression

Here we consider using WBIC to compute a Bayes factor and compare the results to existing
methods to estimate the marginal likelihoods.

Example 3. The data considered in this section describe the maximum compression strength
parallel to the grain yi, density xi and density adjusted for resin content zi for n = 42
specimens of radiata pine. Given the investigation of the tractable normal model, Sect. 5.1,
WBIC is not expected to perform particularly well with such a small sample size though.
These data originate from (Williams 1959). It is wished to determine whether the density or
the resin-adjusted density is a better predictor of compression strength parallel to the grain.
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With this in mind, two Gaussian linear regression models are considered;

Model 1: yi = α + β(xi − x̄) + εi, εi ∼ N(0, τ−1),
Model 2: yi = γ + δ(zi − z̄) + ηi, ηi ∼ N(0, λ−1),

(13)

for i = 1, . . . , n. Under an informative set-up, the priors assumed for the line parameters
(α, β)′ and (γ, δ)′ had mean (3000, 185)′ with precision (inverse variance-covariance) τQ0

and λQ0 respectively where Q0 = diag(r0, s0). The values of r0 and s0 were taken to be 0.06
and 6, respectively. A gamma prior with shape a0 = 6 and rate b0 = 4× 3002 was taken for
both τ and λ. These prior assumptions are broadly similar to the priors assumed for this
data in other analyses. See for example (Friel and Pettitt 2008).

It is possible to compute the exact marginal likelihood for both of these models due to
the prior assumption that the precision on the mean of the regression line parameters is
proportional to the error precision. For example, the marginal likelihood of Model 1 is given
by

p(y) = p−n/2 b
a0/2
0

Γ {(n+ a0)/2}
Γ {a0/2}

× |Q0|1/2

|M |1/2
(y′Ry + b0)

−(n+a0)/2 (14)

where y = (y1, . . . , yn)′, M = X ′X +Q0 and R = I −XM−1X ′ with the ith row of X equal
to (1 xi) and I is the 2× 2 identity matrix.

The exact value of the Bayes factor of Model 2 over Model 1 is given in Table 1 to
show a comparison with other approaches to estimating the evidence and Bayes factor. This
example was examined in detail in (Friel and Wyse 2012) and we refer the reader to this
paper for precise details of how these methods were implemented. The key point to take from
this is that WBIC is reasonably competitive with the other methods, but at a significantly
reduced computational overhead cost.

Figure 5 plots the expected log deviance with respect to p(θ|y, t) versus the temperature
t. A fine grid of discrete temperatures in the range [0, 1] is employed and Eθ|y,t∗ [log f(y|θ)]
is estimated for each ti ∈ [0, 1] using a long MCMC run targeting the power posterior
p(θ|y, ti) The vertical line on the left hand side corresponds to the WBIC temperature
tw = 1

log(42)
= 0.267. The vertical line on the left hand side plots the temperature (t∗ ≈ 0.19)

corresponding the true value of the log evidence.
Table 2 shows the systematic bias in the estimates of the log evidence using WBIC, based

on 20 independent MCMC runs.
We now consider the same evidence comparisons as those made in Table 2 but under a

unit information prior formulation. In this regression model we re-parameterise the hyper-
parameters as

(α, β)′ = (γ, δ)′ =
[
(X ′1X1)

−1X ′1y + (X ′2X2)
−1X ′2y

]
/2′
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Method mean(BF21) (S.E.(BF21))
Exact 4553.65 −
Laplace approximation 4553.63 −
Laplace approximation MAP 4553.74 (1.05)
Harmonic mean estimator 3718.57 (909.17)
Chib & Jeliazkov’s method 4553.72 (0.66)
Annealed importance sampling 4542.43 (140.27)
Power posteriors 4535.11 (74.75)
Nested sampling 6817.52 (6980.82)
WBIC 4469.11 (372.15)

Table 1: Radiata Pine: Comparison of different approaches to estimating the Bayes factor
of Model 2 over Model 1 based on 20 runs of each algorithm for the Radiata Pine data.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−750

−700

−650

−600

−550

−500

−450

−400

−350

−300

t

e
x
p

e
c
te

d
 l
o

g
 d

e
v
ia

n
c
e

Figure 5: Pine data: Expected log deviance vs temperature. The vertical line on the left
shows the temperature corresponding to the true evidence. The vertical line on the right
corresponds to the temperature at the WBIC estimate of the evidence.

Model 1 Model 2
True log p(y|m) −310.1283 −301.7046
mean WBIC −308.3390 −299.8437
s.e WBIC 0.01 0.01

Table 2: Radiata pine data: WBIC estimate of the marginal likelihood for Model 2 and
Model 1 compared to the true value of the log marginal likelihood for each method, based
on 20 independent runs.
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Method mean(log p(y|M1)) (S.E) mean(log p(y|M2)) (S.E) mean(BF21) (S.E.)
Exact -327.23 (–) -324.93 (–) 9.97 (–)
Laplace approximation -327.23 (–) -324.93 (–) 9.98 (–)
Laplace approximation MAP -327.24 (0.00012) -324.93 (0.000079) 9.99 (0.0015)
Harmonic mean estimator -331.09 (0.92) -328.96 (0.98) 21.24 (43.67)
Chib & Jeliazkov’s method -327.23 (0.00014) -324.93 (0.000087) 9.99 (0.0018)
Annealed importance sampling -327.23 (0.038) -324.95 (0.034) 9.77 (0.40)
Power posteriors -327.23 (0.017) -324.93 (0.019) 9.99 (0.26)
Nested sampling -328.26 (1.49) -326.29 (1.48) 31.55 (62.25)
WBIC -331.04 (0.12) -329.54 (0.15) 4.54 (0.82)

Table 3: Radiata Pine: Estimated log marginal likelihoods for each model and corresponding
Bayes factors for each method under a unit information prior. These estimates are based on
20 runs of the algorithm

which is very similar to the previous values of (3000,185)’ considered above. The precision
matrix Q0 is now defined as

Q0 = n
[
(X ′1X1)

−1 + (X ′2X2)
−1] /2 ≈ (3528 0

0 72945.73

)
,

where p1 = p2 = 2 is the number of covariates in each model’s design matrix. The variance
parameters λ and τ share hyper-parameters

a0 = 1, b0 =
1

n
y′R̄y = 9701264, (15)

where R̄ = (R1 +R2)/2, Ri = In −XiM
−1
i X ′i and Mi = X ′iXi +Q0.

The evidence estimates under the unit information prior parameters are presented in
Table 3. The values in the table are found from 20 runs under each method. The harmonic
mean and nested sampling estimates do not perform as poorly as in the previous set-up
from Table 1 and the WBIC seems to be comparable with these methods, which are not
significantly different from the true evidence values for both models. The standard error
estimates for all models is markedly reduced from those found for the vague prior BF21,
though still unreliably high for the harmonic mean and nested sampling estimates. The
BF21 for WBIC is unsatisfactory however given the standard error estimate. Recall there
are n = 42 observations for these data and as seen with the tractable normal model, this
seems too small for the WBIC estimate to perform well.

5.3 Logistic regression models

Example 4. Here we consider the Pima Indians dataset. These data contain instances of
diabetes and a range of possible diabetes indicators for n = 532 Pima Indian women aged
21 years or over. There are seven potential predictors of diabetes recorded for this group;
number of pregnancies (NP); plasma glucose concentration (PGC); diastolic blood pressure
(BP); triceps skin fold thickness (TST); body mass index (BMI); diabetes pedigree function

15



(DP) and age (AGE). This gives 129 potential models (including a model with only a constant
term). Diabetes incidence (y) is modelled by the likelihood

f(y|θ) =
n∏
i=1

pyii (1− pi)1−yi (16)

where the probability of incidence for person i, pi, is related to the covariates (including
constant term) xi = (1, xi1, . . . , xid)

′ and the parameters θ = (θ0, θ1, . . . , θd)
′ by

log

(
pi

1− pi

)
= θ′xi (17)

where d is the number of explanatory variables. An independent multivariate Gaussian prior
is assumed for the elements of θ, so that

p(θ) =

(
τ

2p

)d/2
exp

{
−τ

2
θ′θ
}
. (18)

The covariates were standardized before analysis.

A long reversible jump run (Green 1995) revealed that the two models with the highest
posterior probability were

Model 1: logit(p) = 1 + NP + PGC + BMI + DP

Model 2: logit(p) = 1 + NP + PGC + BMI + DP + AGE. (19)

This reversible jump algorithm assumed a non-informative value of τ = 0.01 for the prior on
the regression parameters. For this value of τ we carried out a reduced reversible jump run
restricting to jumps only between these two models. The prior probabilities of the models
were adjusted to allow for very frequent jumps (about 29%). This gave a Bayes factor BF12

of 13.96 which will be used as a benchmark to compare the other methods to.
Table 4 displays results of estimates of the evidence for both models which were also

implemented for this example in (Friel and Wyse 2012). Here the WBIC estimate is not as
competitive with the more computationally demanding methods.

Figure 6 displays a ’close-up’ plot of temperature versus expected log deviance for a
small range of temperatures. MCMC was used to estimate the expected log-deviance at
each powered posterior. Again, as for the previous example, the temperature t∗ such that
equation (8) is satisfied is smaller than 1/ log n.

As before, we now consider the performance of the evidence estimation techniques under
a unit information prior formulation. As the models have different numbers of parameters
the hyper-parameters are slightly different for the two models under comparison, which, of
course, was also necessary in the estimates presented in Table 4. The prior mean for each
model is defined as

θi ∼ MVN

(
MLE(θi),

(X ′iXi)
−1

n

)
, i = 1 or 2.
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Method mean(log p(y|M1)) (S.E) mean(log p(y|M2)) (S.E) mean(BF12) (S.E.) Relative speed
Laplace approximation -257.26 (–) -259.89 (–) 13.94 (–) 1
Laplace approximation MAP -257.26 (0.015) -259.93 (0.026) 14.44 (0.50) 108
Harmonic mean estimator -279.50 (0.65) -285.37 (0.58) 487.66 (567.39) 108
Chib & Jeliazkov’s method -257.23 (0.02) -259.86 (0.02) 13.89 (0.46) 44
Annealed importance sampling -257.29 (0.54) -260.38 (0.68) 34.04 (35.34) 194
Power posteriors -260.91 (0.14) -264.06 (0.12) 23.82 (4.66) 184
Nested sampling -256.64 (1.36) -260.96 (2.39) 75.19 (206.80) 808
WBIC -251.49 (0.63) -253.49 (0.45) 9.30 (6.46) 17

Table 4: Pima dataset: Estimated log marginal likelihoods for each model and corresponding
Bayes factors for each method along with relative run times with τ = 0.01. The standard
error estimates are based on 20 runs of the algorithm.
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Figure 6: Pima dataset: Expected log deviance vs temperature. The green vertical line on
the left shows the temperature t∗ corresponding to the true evidence. The red vertical line
on the right corresponds to the temperature tw at the WBIC estimate of the evidence.
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Method mean(log p(y|M1)) (S.E) mean(log p(y|M2)) (S.E) mean(BF12) (S.E.)
Laplace approximation -244.34 (–) -242.96 (–) 0.25 (–)
Laplace approximation MAP -244.41 (0.025) -243.05 (0.036) 0.26 (0.013)
Harmonic mean estimator -214.30 (2.89) -203.66 (2.29) 0.0021 (0.0082)
Chib & Jeliazkov’s method -244.39 (0.21) -243.23 (0.25) 0.33 (0.11)
Annealed importance sampling -244.34 (0.0012) -242.96 (0.0015) 0.25 (0.00048)
Power posteriors -244.34 (0.0041) -242.96 (0.0025) 0.25 (0.0011)
Nested sampling -244.34 (0.0016) -242.96 (0.0018) 0.25 (0.00055)
WBIC -244.34 (0.0011) -242.96 (0.0010) 0.25 (0.00048)

Table 5: Pima dataset: Log marginal likelihoods for each method and the Bayes factor
estimates under a unit information prior. The mean and standard error values in the Table
are based on 20 runs of the algorithm

The evidence estimates under the unit information prior are given in Table 5. The values
in the table are based on 20 runs of the algorithm. Ignoring the harmonic mean estimate, the
results are quite striking. All the log evidence estimates are very similar and the standard
errors are extremely small. One might expect that WBIC would perform well here given the
sample size of n = 532. However, Table 4 shows that WBIC is not as competitive as the
other competing methods. However, when unit information priors are used, the results in
Table 5 show that WBIC performs as well as all of the other methods under consideration.

5.4 Finite Gaussian mixture model

Watanabe introduced WBIC with the goal of approximating the evidence for singular sta-
tistical models. Here we present an analysis of WBIC for one such singular model, namely
a finite mixture model.

Example 5. Consider now a finite mixture of K components where for i = 1, . . . , n and with
nk the number of observations in the kth component (

∑K
k=1 nk = n) there exist observations

y = (y1, . . . , yn). Conditioned on a set of labels z = (z1, . . . , zn) satisfying p(zi = k) = wk
with

∑K
k=1wk = 1 the likelihood is given by

p(y|µ, σ2, z) =
n∏
i=1

K∑
k=1

I{zi=k}
1√

2πσ2
k

exp

(
− 1

2σ2
k

(yi − µi)2
)
. (20)

Where µ = {µ1, . . . , µK}, σ2 = {σ2
1, . . . , σ

2
K} and I{zi=k} denotes the indicator function taking

the value 1 when zi = k and zero, otherwise. Prior distributions are assigned to all model
parameters as follows:

µk|σ2
k ∼ N(µ0, σ

2
0),

σ2
k ∼ Ga(α0, β0), k = 1, . . . , K

w ∼ Dir(α, . . . , α)

zi ∼ Multinomial(w), i = 1, . . . , n.
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With observations in the kth component given by Ck, the full-conditional distributions for
parameters µk, σ

2
k, zi are given by

zi = k|yi, µk, σ2
k, wk ∝ wk

1√
2πσ2

k

exp

(
− 1

2σ2
k

(yi − µj)2
)

w|y, z ∼ Dir(α + n1, . . . , α + nk)

µk|y, σ2
0, z ∼ N

(
mk, s

2
k

)
σ2
k|y, µk, z ∼ Inverse-Gamma

(
α0 + nk/2, β0 +

∑
i∈Ck

(yi − µk)2/2

)
(21)

with mk = s2k

(
µ0
σ2
0

+
∑

i∈Ck
yi

σ2
k

)
and s2k =

(
1
σ2
0

+ nk

σ2
k

)−1
.

Finally, hyper-parameters are specified as, µ0 = 0; σ2
0 = 100; α0 = β0 = 1/2; α = 4.

Here 50 datasets are simulated from a Gaussian mixture with three components such
that µ = (−5, 0, 5) and σ2 = c(1, 1, 1). The WBIC and the power posterior approximations
of the log-evidence are compared here; each power posterior estimate has tj = (j/(N))5 for
j = 1, 2, . . . , N = 40, as suggested by (Friel et al 2014). Figure 7 presents the WBIC against
the power posterior estimates of the evidence. Again there exists a tendency for WBIC to
overestimate the evidence, relative to power posteriors, as has been exemplified for all four
models under consideration.

As before the analysis was repeated under a unit information prior formulation. Results,
not presented here, were very similar to those for the tractable normal model.

6 Discussion

Estimating the model evidence is well understood to be a very challenging task. Watanabe’s
WBIC is an interesting contribution to this literature. Although motivated from statistical
learning theory, in principle it can be applied to both regular and singular models. From an
implementational point of view, it offers to provide a computationally cheap approximation
of the evidence and this is an overwhelming advantage in favour of its use. Our theoretical
case-study has suggested that an optimally-tuned WBIC estimator (where one has access to
the optimal temperature t∗) is likely to perform better than the power posterior approach.
However, the empirical experiments in this paper suggest that it can provide a poor estimate
of the evidence in practice, when tw is substituted for t∗, particularly in cases where one uses
weakly informative priors. Of course, it has been argued in the literature that specification
of priors for statistical model selection requires careful choice. In particular, unit information
priors are often advocated for this purpose. Our study suggests that WBIC could provide a
useful and cost-effective approach in this case.

In terms of future directions, an interesting question to investigate would be whether one
could improve upon the default temperature, tw = 1/ log(n). Insights such as Lemma 3.1
may provide a useful starting point and we are currently working in this direction.
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Figure 7: Finite Gaussian mixture model: WBIC against the power posterior estimate of
the evidence. (a) Sample of size n = 50. (b) Sample of size n = 1000. The approximation
is performing in a materially similar matter to the tractable normal model.
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Dauphine

Drton, M. and M. Plummer (2013), A Bayesian information criterion for singular models.
arXiv preprint

Friel, N., M. Hurn and J. Wyse (2014), Improving power posterior estimation of statistical
evidence. Statistics and Computing 24, 7–9–723

Friel, N. and A. N. Pettitt (2008), Marginal likelihood estimation via power posteriors.
Journal of the Royal Statistical Society, Series B 70, 589–607

Friel, N. and J. Wyse (2012), Estimating the evidence a review. Statistica Neerlandica
66(3), 288–308

Gelfand, A. E. and D. K. Dey (1994), Bayesian model choice: asymptotics and exact
calculations. Journal of the Royal Statistical Society. Series B (Methodological) 56,
501–514

Gelman, A., J. Hwang and A. Vehtari (2013), Understanding predictive information cri-
teria for Bayesian models. Statistics and Computing 24, 1–20

21



Gelman, A. and X.-L. Meng (1998), Simulating normalizing constants: from importance
sampling to bridge sampling to path sampling. Statistical Science 13, 163–185

Green, P. J. (1995), Reversible jump Markov chain Monte Carlo computation and Bayesian
model determination. Biometrika 82, 711–732

Hug, S., M. Schwarzfischer, J. Hasenauer, C. Marr and F. J. Theis (2016), An adaptive
scheduling scheme for calculating Bayes factors with thermodynamic integration using
Simpsons rule. Statistics and Computing (to appear)

Kass, R. E. and L. Wasserman (1995), A reference Bayesian test for nested hypothe-
ses and its relationship to the Schwarz criterion. Journal of the American Statistical
Association 90(431), 928–934

Kirkwood, J. G. (1935), Statistical mechanics of fluid mixtures. The Journal of Chemical
Physics 3(5), 300–313

Mononen, T. (2015), A case study of the widely applicable Bayesian information criterion
and its optimality. Statistics and Computing 25, 929–940

Neal, R. M. (1993), Probabilistic inference using Markov chain Monte Carlo meth-
ods. Technical report, CRG-TR-93-1 Department of Computer Science, University of
Toronto Toronto, Ontario, Canada

Oates, C. J., T. Papamarkou and M. Girolami (2016), The controlled thermodynamic in-
tegral for Bayesian model comparison. Journal of the American Statistical Association
(to appear)

Raftery, A. E. (1999), Bayes factors and BIC. Sociological Methods & Research 27(3),
411–417

Robert, C. and D. Wraith (2009), Computational methods for Bayesian model choice. In
Bayesian Inference and maximum entropy methods in Science and Engineering: The
29th International Workshop on Bayesian Inference and Maximum Entropy Methods
in Science and Engineering 1193, 251–262

Schwarz, G. E. (1978), Estimating the dimension of a model. The Annals of Statistics
6(2), 461–464

Skilling, J. (2006), Nested sampling for general Bayesian computation. Bayesian Analysis
1(4), 833–859

Vitoratou, S. and I. Ntzoufras (2013), Thermodynamic assessment of probability distri-
bution divergencies and Bayesian model comparison. arXiv preprint

Volinsky, C. T. and A. E. Raftery (2000), Bayesian information criterion for censored
survival models. Biometrics 56(1), 256–262

Watanabe, S. (2013), A Widely Applicable Bayesian Information Criterion. Journal of
Machine Learning Research 14, 867–897

Williams, E. (1959), Regression Analysis . Wiley

22


	1 Introduction
	2 Power posteriors
	3 Widely applicable Bayesian information criterion
	4 A theoretical comparision of WBIC and power posteriors
	5 Empirical examples
	5.1 A tractable normal model
	5.2 Non-nested linear regression
	5.3 Logistic regression models
	5.4 Finite Gaussian mixture model

	6 Discussion

