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Abstract

In this paper we consider an acceptance-rejection (AR) sampler
based on deterministic driver sequences. We prove that the discrep-
ancy of an N element sample set generated in this way is bounded
by O(N−2/3 logN), provided that the target density is twice continu-
ously differentiable with non-vanishing curvature and the AR sampler
uses the driver sequence

KM = {(jα, jβ) mod 1 | j = 1, . . . ,M},

where α, β are real algebraic numbers such that 1, α, β is a basis of a
number field over Q of degree 3. For the driver sequence

Fk = {(j/Fk , {jFk−1/Fk}) | j = 1, . . . , Fk},

where Fk is the k-th Fibonacci number and {x} = x − ⌊x⌋ is the
fractional part of a non-negative real number x, we can remove the
log factor to improve the convergence rate to O(N−2/3), where again
N is the number of samples we accepted.

We also introduce a criterion for measuring the goodness of driver
sequences. The proposed approach is numerically tested by calculating
the star-discrepancy of samples generated for some target densities
using KM and Fk as driver sequences. These results confirm that
achieving a convergence rate beyondN−1/2 is possible in practice using
KM and Fk as driver sequences in the acceptance-rejection sampler.

Keywords: Acceptance-rejection sampler, discrepancy, Fibonacci
lattice points, integration error.
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1 Introduction

Many applications involve sampling from a non-uniform distribution where
direct simulation is difficult or even impossible [8, 11]. One possible way to
obtain samples from such distributions is to choose a proposal density from
which we can sample with low cost and then take part of the initial points
as samples of the target density under some rules. The implementation of
this idea is known as acceptance-rejection technique. We are interested in
the properties of samples generated in this way, especially the discrepancy of
those points. By a generalization of the definition of the classical discrepancy,
the discrepancy with respect to a distribution is defined in the following way.
Let PN = {pj | j = 1, . . . , N} ⊂ [0, 1]s−1. Let ψ : [0, 1]s−1 → R+, where R+

denotes the set of non-negative real numbers. Then the star-discrepancy of
the point set PN with respect to ψ is given by

D∗
N,ψ(PN) = sup

t∈[0,1]s−1

∣∣∣∣∣
1

N

N∑

j=1

1[0,t)(pj)−
1

C

∫

[0,t)

ψ(z)dz

∣∣∣∣∣ , (1)

where

C =

∫

[0,1]s−1

ψ(z)dz > 0

is the normalizing constant, [0, t) =
∏s−1

i=1 [0, ti), and 1[0,t) is the indicator
function of [0, t), i.e., it is 1 if pj ∈ [0, t) and 0 otherwise. The special case
where ψ = 1 is denoted by D∗

N(PN).
The aim of this paper is to devise methods to generate sample sets with

low-discrepancy with respect to a given unnormalized target distribution.
This is in general a difficult problem and not much is known on how low-
discrepancy point sets can be generated. The existence of low-discrepancy
point sets with respect to an arbitrary non-uniform measure in [0, 1]s has been
discussed by Aistleitner and Dick in [1]. They proved that there exists an N
point set in [0, 1]s whose star-discrepancy associated with a normalized Borel

measure has the order of magnitude (logN)
3s+1

2 /N . Since the result in [1] is
based on probabilistic arguments, it is not known how to explicitly construct
good point sets. In general, it appears to be a very difficult problem to
explicitly construct point sets achieving this rate of convergence. Even how
to explicitly construct point sets which achieve a convergence rate beyond
N−1/2 is not known in most cases. In this paper we show that in dimension
1 it is possible to explicitly construct point sets with discrepancy of order
N−2/3 for the more general case where the target density is only known up
to a constant but satisfies some smoothness conditions.
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The star-discrepancy of samples appears in the upper bound on the inte-
gration error in the Koksma-Hlawka inequality [2, 3]

∣∣∣
1

N

N∑

j=1

f(pj)−
1

C

∫

[0,1]s−1

f(x)ψ(x) dx
∣∣∣ ≤ VHK(f)D

∗
N,ψ(PN),

where VHK(f) is the Hardy-Krause variation of the function, see [2, 3] and
Section 1.2 below for details. This makes the star-discrepancy an important
quality criterion for sample sets.

If the goal is to use the low-discrepancy point sets for numerical integra-
tion, then sometimes alternative methods can also be used. For instance,

1

C

∫

[0,1]s−1

f(x)ψ(x) dx

can be approximated by

( N∑

j=1

wjψ(pj)
)−1

N∑

j=1

wjf(pj)ψ(pj),

where we used some quadrature rule with weights wj and quadrature points
pj for j = 1, . . . , N . See for instance [5, 6, 7, 9] for more background on
suitable quadrature rules.

However, this method may not always yield good results. For instance, if∫
[0,1]s−1 ψ(x) dx is small, then even small errors in approximating

∫
[0,1]s−1 ψ(x) dx

by 1
N

N∑
j=1

ψ(pj) may yield large errors overall. In this case our method based

on acceptance-rejection provides a good alternative which still yields small
integration errors. Further, this method does not yield point sets with low
discrepancy with respect to the unnormalized target density, which is the
main aim of this paper.

In this paper we focus on the acceptance-rejection method which can be
used to obtain samples with distribution ψ through a rather simple procedure
as indicated below. The acceptance-rejection algorithm based on random
inputs works as follows.

Algorithm 1. For a given a target density ψ : [0, 1]s−1 → R+, choose a
proposal density H : [0, 1]s−1 → R+ such that there exists a constant L < ∞
with ψ(x) < LH(x) for all x in [0, 1]s−1. Then the acceptance-rejection
algorithm is given by

i) Draw X ∼ H and u ∼ U([0, 1]).
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ii) Accept Y = X as a sample of ψ if u ≤ ψ(X)
LH(X)

, otherwise go back to the
first step.

To improve the performance of this algorithm, there are at least two
aspects which can be studied, namely choosing a better proposal density H
[8, 11] or proposing good initial samples with respect to a well chosen H .
We focus on the latter point in this paper. Note that we always choose the
uniform distribution as our proposal distribution.

The acceptance-rejection algorithm based on a deterministic driver se-
quence works as follows.

Algorithm 2. For a given a target density ψ : [0, 1]s−1 → R+, assume that
there exists a constant L < ∞ such that ψ(x) < L for all x ∈ [0, 1]s−1.
Let the uniform distribution be the proposal density. Let A = {x ∈ [0, 1]s |
ψ(x1, . . . , xs−1) ≥ Lxs}.

i) Generate a uniformly distributed point set TM = {xj | j = 1, . . . ,M}
in [0, 1]s.

ii) Use the acceptance-rejection method for the points TM with respect to
the density ψ, i.e., we accept the point xj if xj ∈ A, otherwise reject.

Let Q̃N (TM ;ψ) = A ∩ TM be the sample set which we accepted.

iii) Project the points in Q̃N(TM ;ψ) onto the first s − 1 coordinates and
denote the resulting point set by QN(TM ;ψ) = {yj | j = 1, . . . , N} ⊂
[0, 1]s−1.

iv) Return the point set QN (TM ;ψ).

Via the definition of the acceptance-rejection algorithm, we can view QN

as a function of point sets TM and unnormalized target densities ψ, which
maps to point sets of size N (where N is itself a function of the particular
inputs). Note that the function QN (and in particular also N) also depends
on the choice of L, since L is not uniquely defined by ψ. We mainly suppress
the dependence on L in the following.

We restrict our investigation to the case where the density function is
defined in [0, 1] in this paper (which can be generalized to any bounded
interval), since in this case we can prove bounds on the star-discrepancy
beyond the order N−1/2. Generalizing our results to dimension s > 1 would
be of great interest, but this would require an extension of results on the
discrepancy with respect to convex sets with smooth boundary and non-
vanishing curvature, which is currently not known. See [3] for more details.
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1.1 Discrepancy bounds

In [14] we proposed a deterministic acceptance-rejection sampler using low-
discrepancy point sets as driver sequences. Therein we proved that the star-
discrepancy is of order N−1/s for density functions defined in the (s − 1)-
dimensional cube, using (t,m, s)-nets or (t, s)-sequences as driver sequences.
However, numerical results suggested a much better rate of convergence.
Additionally, we proved a lower bound on the star-discrepancy with respect
to a concave density function. The lower bound suggests a convergence rate

of the form N− 2

s+1 for density functions defined in [0, 1]s−1. We recall the
lower bound here.

Proposition 1. Let TM be an arbitrary point set in [0, 1]s. Then there exists
a concave density function ψ : [0, 1]s−1 → [0, 1] such that, for N samples
QN (TM ;ψ) generated by the acceptance-rejection algorithm with respect to
TM and ψ, we have

D∗
N,ψ(QN(TM ;ψ)) ≥ csN

− 2

s+1 ,

where cs > 0 is independent of N and TM but depends on s.

It is natural to ask whether the above bound is achievable, i.e., can we
construct a driver sequence TM such that the discrepancy of the point set
QN (TM ;ψ) achieves a convergence rate of (almost) N−2/3 in dimension 1
for a class of target densities ψ (note that dimension 1 corresponds to s =
2 in Proposition 1). Here we present two types of constructions of driver
sequences TM for which this property holds for the class of twice continuously
differentiable target densities with non-vanishing curvature. The first one is
shown in Theorem 1 below. It uses the notions of non-vanishing curvature
and number fields of degree 3, which we explain in the following.

The curvature of a twice continuously differentiable plane curve γ(t) =
(x(t), y(t)) used in this paper is defined as

κ(t) =
x′(t)y′′(t)− y′(t)x′′(t)

((x′(t))2 + (y′(t))2)3/2
,

where the parameterization is such that (x′(t))2 + (y′(t))2 6= 0 for all t in the
domain. If the curve is given by a function γ(t) = (t, f(t)), then this reduces
to

κ(t) =
f ′′(t)

(1 + (f ′(t))2)3/2
.

Recall that if f is concave, then κ ≤ 0 and if f is convex then κ ≥ 0. By the
assumption that the curve is twice continuously differentiable we have that
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κ is continuous. The assumption that the curvature is non-vanishing implies
therefore that |κ(t)| ≥ c > 0 for all t in the domain, and by the continuity
of t, κ is either positive or negative everywhere. In particular, if the curve
is given by a function, this means that the function is either strictly concave
or strictly convex everywhere.

For the construction of a suitable driver sequence we use algebraic number
fields over the set of rational numbers Q. An algebraic number field over Q
is a finite degree field extension of the field Q of rational numbers and its
dimension as a vector space over Q is called the degree of the number field.
For instance, the set Q(ξ, ξ2) = {a+ bξ + cξ2 | a, b, c ∈ Q}, where ξ is a real
root of a third degree irreducible polynomial over Z, is a (real) number field
of degree 3. In this case, {1, ξ, ξ2} is a basis of the number field.

Theorem 1. Let an unnormalized density function ψ : [0, 1] → R+ be twice
continuously differentiable and having non-vanishing curvature. Assume that
there exists a constant L <∞ such that ψ(x) ≤ L for all x ∈ [0, 1]. Let

KM = {(jα, jβ) mod 1 | j = 1, . . . ,M},

where α, β are real algebraic numbers such that 1, α, β is a basis of a num-
ber field over Q of degree 3. Then the discrepancy of QN(KM ;ψ) ⊂ [0, 1]
generated by the acceptance-rejection sampler using KM as driver sequence
satisfies

D∗
N,ψ(QN(KM ;ψ)) ≤ Cψ,LN

−2/3 logN,

where Cψ,L is a constant depending only on the target density ψ and the
constant L.

The proof of this result is presented in Section 3. We also prove the
following result which improves the previous bound by a factor of logN .
Before we can state this result, we introduce the following notation. Let Fk
denote the k-th Fibonacci number given by

F1 = F2 = 1, Fk = Fk−1 + Fk−2 for k ≥ 3.

Let
{x} = x− ⌊x⌋

denote the fractional part of the non-negative real number x.

Theorem 2. Let an unnormalized density function ψ : [0, 1] → R+ be twice
continuously differentiable and having non-vanishing curvature. Assume that
there exists a constant L <∞ such that ψ(x) ≤ L for all x ∈ [0, 1].
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Let

Fk =

{( j

Fk
,
{jFk−1

Fk

})
| j = 1, . . . , Fk

}
.

Then the discrepancy of QN(Fk;ψ) ⊂ [0, 1] generated by the acceptance-
rejection sampler using Fk as driver sequence satisfies

D∗
N,ψ(QN (Fk;ψ)) ≤ C ′

ψ,LN
−2/3,

where C ′
ψ,L is a constant depending only on the target density ψ and the

constant L.

To prove this result we first introduce a quality criterion for driver se-
quences in Section 4 (see Equation (6)) and then prove a bound on this
criterion for the set Fk in Section 5.

1.2 Integration error

In [2], Aistleitner and Dick proved a generalized Koksma-Hlawka inequality
for non-uniform measures which states that for any function having bounded
variation in the sense of Hardy and Krause (abbreviated as VHK), the inte-
gration error can be bounded by a product of the variation of the integrand
function times the discrepancy of the quadrature points. With the definition
of VHK given in [2, Section 2], the following inequality holds.

Proposition 2. Let f be a measurable function on [0, 1]s−1 which has bounded
variation in the sense of Hardy and Krause, VHK(f) < ∞. Let µ be a nor-
malized Borel measure on [0, 1]s−1, and let PN = {pj | j = 1, . . . , N} be a
point set in [0, 1]s−1. Then

∣∣∣
1

N

N∑

j=1

f(pj)−
∫

[0,1]s−1

f(x) dµ(x)
∣∣∣ ≤ VHK(f)D

∗
N,µ(PN).

In the following we use this result for s = 2. In this case, if the function f
is absolutely continuous, then the variation in the sense of Hardy and Krause
can be written as

VHK(f) =

∫ 1

0

|f ′(x)| dx.

Theorem 1, Theorem 2 and Proposition 2 imply the following result.
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Corollary 1. Let f : [0, 1] → R have bounded variation VHK(f) <∞. Let ψ
be non-negative, twice continuously differentiable and having non-vanishing
curvature. Then we have

∣∣∣
1

N

∑

x∈RN

f(x)− 1

C

∫ 1

0

f(x)ψ(x) dx
∣∣∣

≤





Cψ,LVHK(f)N
−2/3 logN, for RN = QN(KM ;ψ),

C ′
ψ,LVHK(f)N

−2/3, for RN = QN(Fk;ψ),

where N is the number of points we accepted, C =
∫
[0,1]

ψ(x) dx > 0 and

where Cψ,L and C ′
ψ,L are constants depending only on the target density ψ

and the constant L.

2 Numerical experiments

To demonstrate the performance of the deterministic acceptance-rejection
samplers, we consider two density functions defined on [0, 1] and calculate
the star-discrepancy of the samples generated by the proposed methods. For
comparison purpose, the convergence rate for the original algorithm using
random points and regular grids as driver sequence are also presented. Note
that numerical results are presented in a log-log scale in the figures.

Example 1. Let the target density ψ : [0, 1] → R+ be given by

ψ(x) =
3

16

(
4 sin

(πx
2

)
− x5/2 − x2

)
.

This density function satisfies all the conditions in our theory since it is
twice continuously differentiable and strictly concave. The numerical results
shown in Figure 1 suggest an empirical convergence rate of approximately
N−0.75 for samples of ψ obtained by the deterministic acceptance-rejection
sampler using the driver sequence

KM = {(jα, jβ) mod 1 | j = 1, . . . ,M}.

In the test we choose the real root of the polynomial x3+2x+2. Eisenstein’s
criterion implies that this polynomial is irreducible over Z. The root ξ is
approximated by −0.770916997059248 and we set α = ξ and β = ξ2.

Similarly, using the Fibonacci lattice point set

Fk = {(j/Fk, {jFk−1/Fk}) | j = 1, . . . , Fk},
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the numerical experiments show a convergence rate of approximately N−0.8.
The original acceptance-rejection sampler in the random setting produces
samples whose star-discrepancy converges at roughly N−1/2. A similar result
is observed for the regular grid GM given by

GM =

{( j

⌊
√
M⌋

,
m

⌊
√
M⌋

)
| j,m = 1, . . . , ⌊

√
M⌋
}
.

It is worth noticing that Fibonacci lattice points always provided the smallest
value of the discrepancy. The acceptance rate is roughly 69% for the first
example.

10 1 10 2 10 3 10 4 10 5 10 6

Number of points N

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

S
ta

r-
di

sc
re

pa
nc

y

Fibonacci points

0.900 N -0.818

KM

1.007 N -0.754

Random

0.921 N -0.518

Grid G M

0.602 N -0.487

Figure 1: Convergence order of the star-discrepancy with respect to

different driver sequences of Example 1.

Example 2. Consider the twice continuously differentiable and strictly con-
vex target density function

ψ(x) =

{ −1
2
x4 − 1

6
x2 + 107

108
, x ∈ [0, 1

3
),

−3
4
x4 − 2

27
x+ 1, x ∈ [1

3
, 1].
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We again observe much better results with deterministic driver sequences,
Fk and KM , compared with pseudo-random points and regular grids as shown
in Figure 2. As observed in the first example, a Fibonacci lattice point set
Fk yields a slightly better numerical result compared to the point set KM in
this experiment. The acceptance rate is around 80% for Example 2.

10 1 10 2 10 3 10 4 10 5 10 6

Number of points N

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

S
ta

r-
di

sc
re

pa
nc

y

Fibonacci points

0.861 N -0.802

KM

1.389 N -0.815

Random

0.878 N -0.515

Grid G M

0.999 N -0.491

Figure 2: Convergence order of the star-discrepancy with respect to

different driver sequences of Example 2.

3 Proof of Theorem 1

The proof of Theorem 1 is motivated by a recent paper due to Brandolini et
al. [3]. Therein they proved an upper bound for the following discrepancy
associated with a convex domain with smooth boundary. We recall the main
results pertaining to our paper here.

Let Ω be a bounded convex domain in R2 such that the boundary curve
is twice continuously differentiable and having non-vanishing curvature. For
t = (t1, t2) ∈ (0, 1)2 and any x ∈ R2, let

I(t,x) =
⋃

m∈Z2

([0, t1]× [0, t2] + x+m).

10



Consider the following discrepancy defined with respect to the set Ω and a
point set PN = {pj | j = 1, . . . , N} in R2,

D̃∗
N (PN ,Ω) = sup

t∈[0,1]2

x∈R2

∣∣∣
1

N

N∑

j=1

∑

m∈Z2

1I(t,x)∩Ω(xj +m)− λ(I(t,x) ∩ Ω)
∣∣∣, (2)

where λ denotes the Lebesgue measure.
The following result is [3, Theorem 2].

Proposition 3. Suppose that Ω is a convex domain in R2 such that the
boundary curve is twice continuously differentiable and having non-vanishing
curvature. Let 1, α, β be a basis of a number field over Q of degree 3. Let

KN = {xj = (jα, jβ) | j = 1, . . . , N}.

For the discrepancy defined in Equation (2), we have

D̃∗
N(KN ,Ω) ≤ cN−2/3 logN,

where the constant c depends on the minimum and maximum of the curvature
of the boundary of Ω and the length of the boundary, and on the numbers α
and β.

The proof of [3, Theorem 2] actually shows that a slightly more general
statement holds, which we describe in the following.

For given t and x, the set I(t,x) is the union of infinitely many rectangles
of the form [0, t1] × [0, t2] + x + m, where m ∈ Z2. Let K1, . . . , Kq denote
all those rectangles which have non-empty intersection with Ω, i.e., Kr =
[0, t1] × [0, t2] + x + mr for suitable choices of mr ∈ Z2 with Kr ∩ Ω 6= ∅.
Then

1

N

N∑

j=1

∑

m∈Z2

1I(t,x)∩Ω(xj +m)− λ(I(t,x) ∩ Ω)

=

q∑

r=1

(
1

N

N∑

j=1

∑

m∈Z2

1Kr∩Ω(xj +m)− λ(Kr ∩ Ω)

)
. (3)

In [3, p. 10] the authors state that they prove their result by showing the
upper bound for a single piece Kr, i.e. they show the bound

sup
t∈[0,1]2

x∈R2

∣∣∣∣∣
1

N

N∑

j=1

∑

m∈Z2

1Kr∩Ω(xj +m)− λ(Kr ∩ Ω)

∣∣∣∣∣ ≤ c′sN
−2/3 logN. (4)
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The bound on D̃N (K,Ω) then follows by the triangle inequality. We use (4)
rather then Proposition 3 in the following.

Note that we are only interested in sets Kr which are contained in the
unit square, i.e. Kr ⊂ [0, 1]2. In this case we have

1

N

N∑

j=1

∑

m∈Z2

1Kr∩Ω(xj +m) =
1

N

N∑

j=1

1Kr∩Ω(xj (mod 1)),

for any point set {x1 . . . ,xN} ⊂ R2. Thus we obtain from (4) that

sup
t∈[0,1]2

∣∣∣∣∣
1

N

N∑

j=1

1[0,t]∩Ω(xj (mod 1))− λ([0, t] ∩ Ω)

∣∣∣∣∣ ≤ c′sN
−2/3 logN. (5)

In order to be able apply this result in our setting, it remains to con-
struct a suitable convex set Ω in [0, 1]2 which has the graph of ψL−1 as
part of its boundary. We define the boundary of the set Ω by extending the
graph of ψL−1 using a Bézier curve such that the curve is twice continuously
differentiable. The Bézier curve can be constructed using the derivative in-
formation of ψL−1 at the boundary and further control points to control the
curvature of the curve. The set Ω enclosed by this curve then satisfies the
assumptions that its boundary is twice continuously differentiable with non-
vanishing curvature. The details of the construction are left to the reader
(see [10, Chapter 6]).

With these settings, the desired discrepancy bound in Theorem 1 now
follows from (5).

4 A quality criterion for driver sequences

In acceptance-rejection sampling, the choice of driver sequence can have a
significant impact on the properties of the accepted samples. In this section,
we will present a criterion which can be used to measure the quality of driver
sequences.

Let n = (n1, n2) ∈ Z2 and let |n| = max{|n1|, |n2|}. For a collection of
points TM = {xj | j = 1, . . . ,M} and R > 0, define the following quantity
QR with respect to the point set TM ,

QR(TM ) =
1

R
+

∑

0<|n|<R
n∈Z2\0

( 1

|n|3/2 +
1

(1 + |n1|)(1 + |n2|)
)
·
∣∣∣
1

M

M∑

j=1

e2πin·xj

∣∣∣. (6)
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The general Erdős-Turán inequality [3, Theorem 3] provides an upper
bound on the discrepancy. We restate this result as a proposition in the
following.

Proposition 4. There exists a positive function φ(u) on [0,∞) with rapid
decay at infinity such that for every collection of points {xj | j = 1, . . . ,M} ⊂
Rs, for every bounded Borel set D ⊂ Rs, and for every R > 0,

∣∣∣
1

M

M∑

j=1

∑

m∈Z2

1D(xj +m)− λ(D)
∣∣∣

≤ |ĤR(0)|+
∑

n∈Z2

0<|n|<R

(|1̂D(n)|+ |ĤR(n)|)
∣∣∣
1

N

M∑

j=1

e2πin·xj

∣∣∣,

where HR(x) = φ(R dist(x, ∂D)), where dist(x, ∂D) is the Euclidean distance
between x and the boundary ∂D of D, ĤR(0) is the zeroth Fourier coefficient
of HR and 1̂D is the Fourier transform of the indicator function 1D of D.

Under certain smoothness conditions on the boundary curve of D, the
quality criterion QR can be derived from the right-hand side of the Erdős-
Turán inequality by working out the corresponding Fourier coefficient decay.
More precisely, if D is the intersection of a convex set Ω with a rectangle
such that the boundary curve of Ω is twice continuously differentiable and
having non-vanishing curvature, then we have the formula for QR as shown
in Equation (6). This was shown in [3, Lemma 10 & Lemma 11]. We use
this fact in the proof of Theorem 3 below.

The following theorem shows a connection between the criterion QR for
the driver sequence and the star-discrepancy of the samples obtained by the
acceptance-rejection algorithm using a deterministic driver sequence. In the
following discussion, the notation xN . yN means that there exists a positive
constant θ such that xN ≤ θyN for all N .

Theorem 3. Let the unnormalized density function ψ : [0, 1] → R+ be twice
continuously differentiable and having non-vanishing curvature. Assume that
there exists a constant L < ∞ such that ψ(x) ≤ L for all x ∈ [0, 1]. Let
QN (TM ;ψ) = {yj | j = 1, . . . , N} ⊂ [0, 1] be generated by the acceptance-
rejection sampler using a point set TM = {xj | j = 1, . . . ,M} of cardinality
M as the driver sequence. Then we have

D∗
N,ψ(QN (TM ;ψ)) . QR(TM ).

13



Proof. Let
A = {x = (x1, x2) ∈ [0, 1]2 | ψ(x1) ≥ Lx2}

and
J∗
t = ([0, t)× [0, 1))

⋂
A

for t ∈ [0, 1].
Algorithm 2 implies that the points y1, . . . , yN are the first coordinates of

the points of the driver sequence x1, . . . ,xM which are in the set A. Hence
we have

M∑

j=1

1J∗

t
(xj) =

N∑

j=1

1[0,t)(yj).

Note that C =
∫ 1

0
ψ(z) dz = Lλ(A) and for any t ∈ [0, 1] we have

∫ t
0
ψ(z) dz =

Lλ(J∗
t ). Therefore,

∣∣∣
1

N

N∑

j=1

1[0,t)(yj)−
1

C

∫

[0,t)

ψ(z) dz
∣∣∣

=
∣∣∣
1

N

M∑

j=1

1J∗

t
(xj)−

1

λ(A)
λ(J∗

t )
∣∣∣

≤ M

N

∣∣∣
1

M

M∑

j=1

1J∗

t
(xj)− λ(J∗

t )
∣∣∣ +
∣∣∣λ(J∗

t )
(M
N

− 1

λ(A)

)∣∣∣

≤ M

N

(∣∣∣
1

M

M∑

j=1

1J∗

t
(xj)− λ(J∗

t )
∣∣∣+
∣∣∣λ(A)

(
1− 1

λ(A)

N

M

)∣∣∣
)

≤ M

N

(∣∣∣
1

M

M∑

j=1

1J∗

t
(xj)− λ(J∗

t )
∣∣∣+
∣∣∣λ(A)− 1

M

M∑

j=1

1JA(xj)
∣∣∣
)

≤ 2M

N
sup
t∈[0,1]

∣∣∣∣∣
1

M

M∑

j=1

1J∗

t
(xj)− λ(J∗

t )

∣∣∣∣∣ , (7)

where we used the estimation λ(J∗
t ) ≤ λ(A) and the fact thatN =

∑M
j=1 1A(xj)

is the number of accepted points.
For the Borel set J∗

t ⊆ [0, 1)2 we have

1

M

M∑

j=1

∑

m∈Z2

1J∗

t
(xj +m) =

1

M

M∑

j=1

1J∗

t
(xj (mod 1)).

14



Then by the general Erdős-Turán inequality in Proposition 4, we obtain,
for every R > 0,

∣∣∣
1

M

M∑

j=1

1J∗

t
(xj)− λ(J∗

t )
∣∣∣ ≤ |ĤR(0)|+

∑

n∈Z2

0<|n|<R

(|1̂J∗

t
(n)|+ |ĤR(n)|)

∣∣∣
1

M

M∑

j=1

e2πin·xj

∣∣∣.

Note that J∗
t is the intersection of the convex set Ω whose boundary was

constructed using a Bézier curve which is twice continuously differentiable
with non-vanishing curvature (see the proof of Theorem 1), and the rectangle
[0, t)× [0, 1). Thus we can use the following estimations from [3, Lemma 10
& Lemma 11],

|ĤR(0)| .
1

R
,

|ĤR(n)| .
1

|n|3/2 +
1

(1 + |n1|)(1 + |n2|)
,

|1̂J∗

t
(n)| .

1

|n|3/2 +
1

(1 + |n1|)(1 + |n2|)
,

the result now follows.

5 Proof of Theorem 2

We prove the following lemma which, together with Theorem 3, implies The-
orem 2.

Lemma 1. Let Fk denote the k-th Fibonacci number. Let

Fk =
{
xj =

( j
Fk
,
{jFk−1

Fk

})
| j = 1, . . . , Fk

}
.

Then we have
QR(Fk) . F

−2/3
k ,

for R = F⌈2k/3⌉. The implied constant is independent of Fk.

Proof. The quantity QR was defined in (6). We first consider the right-most
sum in the definition of QR, for which we have

∣∣∣
1

Fk

Fk∑

j=1

e
2πin·

(
j
Fk
,
jFk−1

Fk

)∣∣∣ =
∣∣∣
1

Fk

Fk∑

j=1

(
e2πin·(1,Fk−1)/Fk

)j∣∣∣

=





1, if Fk|(n1 + n2Fk−1),

0, if Fk ∤ (n1 + n2Fk−1),

15



where Fk|(n1 + n2Fk−1) means that Fk divides (n1 + n2Fk−1). Hence

∑

n∈Z2

0<|n|<R

( 1

|n|3/2 +
1

(1 + |n1|)(1 + |n2|)
)
·
∣∣∣
1

Fk

Fk∑

j=1

e
2πin·

(
j
Fk
,
jFk−1

Fk

)∣∣∣

=
∑

n∈Z2

0<|n|<R
Fk|(n1+n2Fk−1)

( 1

|n|3/2 +
1

(1 + |n1|)(1 + |n2|)
)
.

From [13, Definition 5.4 & Equation (5.11) & Theorem 5.17] we obtain
that

∑

n

1

max{1, |n1|}max{1, |n2|}
.
(logFk)

2

Fk
,

where the sum is over all n = (n1, n2) 6= (0, 0) with n1+n2Fk−1 ≡ 0 (mod Fk)
and −Fk/2 < ni ≤ Fk/2 for i = 1, 2. Hence

∑

0<|n|<R
Fk|(n1+n2Fk−1)

1

(1 + |n1|)(1 + |n2|)
≤

∑

0<|n|<R
Fk|(n1+n2Fk−1)

1

max{1, |n1|}max{1, |n2|}

.
(logFk)

2

Fk
.

Note that if n1 = 0, then Fk|n2Fk−1 which implies Fk|n2 since gcd(Fk, Fk−1) =
1. It further implies n2 = 0 by realising that |n2| ≤ R = F⌈2k/3⌉ < Fk for
k ≥ 3.

If n2 = 0, then Fk|n1, which implies that n1 = 0 since |n1| ≤ R =
F⌈2k/3⌉ < Fk for k ≥ 3.

Since Fk|(n1 + n2Fk−1), there is an ℓ ∈ Z such that n1 + n2Fk−1 = ℓFk.
For given n2, there is at most one value ℓ ∈ Z such that −R < n1 =
ℓFk − n2Fk−1 < R.

Now we estimate the remaining term of Equation (8). We have

∑

0<|n|<R
Fk|(n1+n2Fk−1)

1

|n|3/2 =
∑

−R<n2<R
n2 6=0

∑

ℓ∈Z
−R<ℓFk−n2Fk−1<R

1

max{|n2|, |ℓFk − n2Fk−1|}
3

2

. (8)

To bound this term we need some preliminary results on Fibonacci lattice
point sets Fk. The star-discrepancy with respect to uniform distribution
(given in Equation (1) using ψ = 1) of the Fibonacci point set Fk is bounded
by

D∗
Fk
(Fk) ≤ c0

logFk
Fk

,
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see [13, pp. 124]. The star-discrepancy D∗
Fk
(Fk) is defined with respect to

rectangles [0, t) = [0, t1) × [0, t2) for all (t1, t2) ∈ [0, 1]2. To switch to the
discrepancy DFk

(Fk) with respect to arbitrary rectangles [a, b) ⊆ [0, 1]2, we
use the inequality DFk

(Fk) ≤ 4D∗
Fk
(Fk), see [13, Proposition 2.4].

Consider a rectangle V of the following form,

V =
[ a
Fk
,
a+ u

Fk

)
×
[ b
Fk
,
b+ v

Fk

)
.

By the definition of the star-discrepancy, it follows that

∣∣∣
|V ∩ Fk|

Fk
− uv

F 2
k

∣∣∣ ≤ DFk
(Fk) ≤ 4D∗

Fk
(Fk) ≤ 4c0

logFk
Fk

.

This implies that

|V ∩ Fk| ≤ 4c0 logFk +
uv

Fk
. (9)

We now consider the double sum in Equation (8). We divide the range
of 0 < |n2| < F⌈2k/3⌉ into

Fi ≤ |n2| < Fi+1 for i = 2, 3, . . . ,
⌈2k
3

⌉
− 1.

Let a = Fi and u = Fi−1, then a + u = Fi+1. Similarly we divide the range
of 0 < |n1| = |ℓFk − n2Fk−1| < F⌈2k/3⌉ into

Fm ≤ |n1| < Fm+1 for m = 2, 3, . . . ,
⌈2k
3

⌉
− 1.

Let b = Fm and v = Fm−1, then b+ v = Fm+1. With those settings we have

a

Fk
≤ |n2|

Fk
<
a+ u

Fk
,

b

Fk
≤
∣∣n2Fk−1

Fk
− ℓ
∣∣ < b+ v

Fk
.

By Equation (9), the number of Fibonacci points in the rectangle V , given
by |Fk ∩V |, is therefore bounded by 4c0 logFk+

Fi−1Fm−1

Fk
. This is equivalent

to the statement that the number of (n1, n2) with n1 = ℓFk − n2Fk−1, a =
Fi ≤ |n2| < Fi+1 = a + u, and b = Fm ≤ |n1| < Fm+1 = b + v is bounded
above by a constant (which is independent of i, k,m) times

4c0 logFk +
Fi−1Fm−1

Fk
. (10)

This result can be obtained by considering the following four cases,
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(i) a ≤ n2 < a + u and b ≤ n2Fk−1 − ℓFk < b+ v,

(ii) a ≤ −n2 < a+ u and b ≤ −(n2Fk−1 − ℓFk) < b+ v,

(iii) a ≤ n2 < a + u and b ≤ −(n2Fk−1 − ℓFk) < b+ v,

(iv) a ≤ −n2 < a+ u and b ≤ n2Fk−1 − ℓFk < b+ v.

More precisely, for case (iii) and (iv), we consider the point set

F ′
k =

{( j
Fk
,
{
− jFk−1

Fk

})
| j = 1, . . . Fk

}

=
{( j
Fk
, 1−

{jFk−1

Fk

})
| j = 1, . . . Fk

}
.

Then the star-discrepancy of F ′
k, D

∗
Fk
(F ′

k) . logFk

Fk
by noting that x′

j is a

reflection of xj ∈ Fk and the inequalities D∗
Fk
(Fk) ≤ DFk

(F ′
k) ≤ 4D∗

Fk
(F ′

k).
On the other hand, for all 1 ≤ n2 < Fi+1 and k > i, using the contin-

ued fractions technique mentioned in [13, Appendix B] and a property of
Fibonacci numbers, we obtain

|n1| = |ℓFk − n2Fk−1| ≥ |Fi−1Fk − FiFk−1| = Fk−i. (11)

Since |n1| ≤ |n| < R = F⌈2k/3⌉, there is no solution if k − i ≥
⌈
2k
3

⌉
, i.e.

i ≤ ⌊k
3
⌋. Therefore
∑

0<|n|<R
n∈Z2

1

|n|3/2

=
∑

−R<n2<R
n2 6=0

∑

ℓ∈Z
−R<ℓFk−n2Fk−1<R

1

max{|n2|, |ℓFk − n2Fk−1|}3/2

= 2

⌈2k/3⌉−1∑

i=⌊k/3⌋+1

Fi+1−1∑

n2=Fi

⌊2k/3⌋−1∑

m=k−i

∑

ℓ∈Z
Fm≤|ℓFk−n2Fk−1|<Fm+1

1

(max{|n2|, |ℓFk − n2Fk−1|})3/2
,

(12)

where we used that for (n1, n2) ∈ Z2 which satisfy 0 < max{|n1|, |n2|} < R
and Fk|(n1 + n2Fk−1), also (−n1,−n2) ∈ Z2 satisfy these properties.

To further estimate the right-hand side of Equation (12), we use the
following inequalities. For Fi ≤ |n2| < Fi+1 and Fm ≤ |n1| < Fm+1 we have

max{|n2|, |ℓFk − n2Fk−1|} ≥ max{Fi, Fm}.
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For ⌊k
3
⌋ < i < ⌈k

2
⌉ and k − i ≤ m < k, we have max{Fi, Fm} = Fm.

Applying the bound given in (10) in each case, we obtain from Equa-
tion (12) that

∑

0<|n|<R
n∈Z2

1

|n|3/2 ≤ 2

⌈k/2⌉−1∑

i=⌊k/3⌋+1

k∑

m=k−i

(4c0 logFk
F

3/2
m

+
Fi−1Fm−1

F
3/2
m Fk

)

+2

⌈2k/3⌉−1∑

i=⌈k/2⌉

⌊2k/3⌋−1∑

m=k−i

( 4c0 logFk

max{Fi, Fm}
3

2

+
Fi−1Fm−1

max{Fi, Fm}
3

2Fk

)
.

It is well known that Fi = [ϕi/
√
5] with ϕ = (1+

√
5)/2, where [·] denotes

the nearest integer function given by the integer [x] = γ ∈ Z which satisfies
that γ − 1

2
< x ≤ γ + 1

2
. Thus we have

⌈k/2⌉−1∑

i=⌊k/3⌋+1

⌊2k/3⌋−1∑

m=k−i

logFk

F
3/2
m

. logFk

⌈k/2⌉−1∑

i=⌊k/3⌋+1

⌊2k/3⌋−1∑

m=k−i

1

ϕ
3

2
m

. logFk

⌈k/2⌉−1∑

i=⌊k/3⌋+1

ϕ− 3

2
(k−i)(1− ϕ− 3

2
(i−k/3+1))

1− ϕ−3/2

.
logFk

ϕ
3

2
k

⌈k/2⌉−1∑

i=⌊k/3⌋+1

ϕ
3

2
i

.
logFk

ϕ
3

2
k
ϕ

3

4
k .

logFk

F
3/4
k

, (13)

and

⌈k/2⌉−1∑

i=⌊k/3⌋+1

⌊2k/3⌋−1∑

m=k−i

Fi−1Fm−1

F
3/2
m Fk

.

⌈k/2⌉−1∑

i=⌊k/3⌋+1

⌊2k/3⌋−1∑

m=k−i

ϕi−k−
1

2
m

.

⌈k/2⌉−1∑

i=⌊k/3⌋+1

ϕi−k
ϕ− 1

2
(k−i)(1− ϕ− 1

2
(i−k/3+1))

1− ϕ−1/2

.
1

ϕ
3

2
k

⌈k/2⌉−1∑

i=⌊k/3⌋+1

ϕ
3

2
i .

1

ϕ
3

4
k
.

1

F
3/4
k

. (14)
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With respect to the second summation,

⌈2k/3⌉−1∑

i=⌈k/2⌉

⌊2k/3⌋−1∑

m=k−i

logFk
max{Fi, Fm}3/2

. logFk

⌈2k/3⌉−1∑

i=⌈k/2⌉

( i∑

m=k−i

ϕ− 3

2
i +

⌊2k/3⌋−1∑

m=i+1

ϕ− 3

2
m
)

. logFk

⌈2k/3⌉−1∑

i=⌈k/2⌉

kϕ− 3

2
i .

(logFk)
2

ϕ
3

4
k

.
(logFk)

2

F
3/4
k

.

(15)

Moreover, we obtain

⌈2k/3⌉−1∑

i=⌈k/2⌉

⌊2k/3⌋−1∑

m=k−i

Fi−1Fm−1

max{Fi, Fm}3/2Fk
.

⌈2k/3⌉−1∑

i=⌈k/2⌉

⌊2k/3⌋−1∑

m=k−i

ϕi+m−k− 3

2
max{i,m}

=

⌈2k/3⌉−1∑

i=⌈k/2⌉

( i∑

m=k−i

ϕm−k− 1

2
i +

⌊2k/3⌋−1∑

m=i+1

ϕi−k−
1

2
m
)

.

⌈2k/3⌉−1∑

i=⌈k/2⌉

ϕ
1

2
i−k +

⌈2k/3⌉−1∑

i=⌈k/2⌉

ϕ
1

2
i−k

. ϕ− 2

3
k + ϕ− 2

3
k .

1

F
2/3
k

. (16)

Since (logFk)
2

F
3/4
k

converges faster to 0 than F
−2/3
k , we obtain a convergence

rate of order F
−2/3
k of the right-hand side of (8). By setting R = F⌈2k/3⌉ we

obtain a convergence rate of order F
−2/3
k for QR(Fk), which completes the

proof.

Remark 1. Note that choosing R differently does not improve our result.
Since Equation (6) contains the factor 1

R
, we need to choose F

2/3
k . R.

Choosing R larger than that can only increase the second term in (6). But

for this second term we proved a convergence of order F
−2/3
k for R of order

F
2/3
k . Hence we cannot improve our result using a larger value of R.

Remark 2. Lattice point sets of the form {( j
N
, { g

N
}), j = 1, 2, . . . , N} have

small star-discrepancy with respect to rectangular boxes if the coefficients
in the continued fraction expansion of g

N
are bounded independently of N ,

see [13, Theorem 5.17]. In particular, for Fibonacci lattice point sets these
coefficients are always 1. Niederreiter [12] explicitly finds values of g for N
of the form 2ℓ, 3ℓ, 5ℓ, such that the continued fraction coefficient are at most
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3 for 2ℓ and 3ℓ, and at most 4 for 5ℓ. It is reasonable to suggest that similar
results to Theorem 2 and Corollary 1 can also be obtained for lattice point
sets based on the results in [12].
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